1
|
Zhao QY, Liu WJ, Wang JG, Li H, Lv JL, Wang Y, Wang C. Increasing cisplatin exposure promotes small-cell lung cancer transformation after a shift from glucose metabolism to fatty acid metabolism. J Cancer Res Clin Oncol 2025; 151:126. [PMID: 40155472 PMCID: PMC11953189 DOI: 10.1007/s00432-025-06164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVES Lung cancer is a leading cause of global cancer mortality. Clinical observations reveal that histological transformation from non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) is accompanied by mutations in TP53 and RB1. By applying gradually increasing cisplatin concentrations to mimic the escalating drug pressure within the tumor microenvironment, this study investigated the link between phenotypic transformation to SCLC in cisplatin-resistant human lung adenocarcinoma cells and alterations in cellular energy production pathways. MATERIALS AND METHODS We established two cisplatin-resistant NSCLC cell lines with varying resistance levels. RNAseq analyses identified TP53 and RB1 gene mutations. Comprehensive functional assays were performed to characterize A549/DDP1 μg/mL and A549/DDP3 μg/mL cells, focusing on proliferation and migratory capabilities. Cellular bioenergetics were assessed through glycolysis and oxidative phosphorylation analyses. Western blotting was employed to examine epithelial-mesenchymal transition (EMT), glucose metabolism, and lipid metabolism markers. Cell cycle distribution was analyzed by flow cytometry. Additionally, a xenograft mouse model was developed for in vivo validation. RESULTS TP53 and RB1 mutations were associated with cisplatin concentration-dependent phenotypic transformation, with A549/DDP cells acquiring a more aggressive SCLC-like phenotype (In the article we call the A549/DDPSCLC cells). Analysis of cell bioenergetics profiling and Western blot analyses revealed enhanced glucose metabolism in A549/DDP1 μg/mL cells, while A549/DDPSCLC cells exhibited predominant lipid metabolism. Compound3K and Etomoxir specifically inhibit the activity of PKM2 and CPT1A, respectively, with Etomoxir demonstrating substantially inhibited A549/DDPSCLC cells growth and more cell cycle arrest in the G0/G1 phase. Combinatorial of Compound3K and Etomoxir effectively induced cell death in A549/DDPSCLC phenotype cells in vitro. Etomoxir alone or combined with Compound3K significantly inhibited tumor growth in vivo, with enhanced efficacy in the combination group. CONCLUSIONS This study provides the first evidence of cisplatin concentration-dependent metabolic reprogramming during NSCLC-to-SCLC transformation. We identified a phenotypic transition from NSCLC to SCLC accompanied by a metabolic shift from glucose to fatty acid metabolism, offering new insights into therapeutic strategies for treatmentresistant lung cancer.
Collapse
Affiliation(s)
- Qiu-Yu Zhao
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
| | - Wen-Jun Liu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
| | - Jian-Guang Wang
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
| | - He Li
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
| | - Jia-Lu Lv
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China
| | - Yumeng Wang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, 201210, China
| | - Chun Wang
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Gao P, Chang WR, Song JY, An FY, Wang YJ, Xiao ZP, Jin H, Zhang XH, Yan CL. The role of HIF-1α in hypoxic metabolic reprogramming in osteoarthritis. Pharmacol Res 2025; 213:107649. [PMID: 39947451 DOI: 10.1016/j.phrs.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The joint dysfunction caused by osteoarthritis (OA) is increasingly becoming a major challenge in global healthcare, and there is currently no effective strategy to prevent the progression of OA. Therefore, better elucidating the relevant mechanisms of OA occurrence and development will provide theoretical basis for formulating new prevention and control strategies. Due to long-term exposure of cartilage tissue to the hypoxic microenvironment of joints, metabolic reprogramming changes occur. Hypoxia-inducible factor-1alpha (HIF-1α), as a core gene regulating hypoxia response in vivo, plays an important regulatory role in the hypoxic metabolism of chondrocytes. HIF-1α adapts to the hypoxic microenvironment by regulating metabolic reprogramming changes such as glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, and lipid metabolism in OA chondrocytes. In addition, HIF-1α also regulates macrophage polarization and synovial inflammation, chondrocytes degeneration and extracellular matrix (ECM) degradation, subchondral bone remodeling and angiogenesis in the hypoxic microenvironment of OA, and affects the pathophysiological progression of OA. Consequently, the regulation of chondrocytes metabolic reprogramming by HIF-1α has become an important therapeutic target for OA. Therefore, this article reviews the mechanism of hypoxia affecting chondrocyte metabolic reprogramming, focusing on the regulatory mechanism of HIF-1α on chondrocyte metabolic reprogramming, and summarizes potential effective ingredients or targets targeting chondrocyte metabolic reprogramming, in order to provide more beneficial basis for the prevention and treatment of clinical OA and the development of effective drugs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Wei-Rong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Jia-Yi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Fang-Yu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Yu-Jie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Zhi-Pan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Xu-Hui Zhang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Chun-Lu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China; Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| |
Collapse
|
3
|
Zhang JX, Hu YX, Liu Y, Chen ZZ, Zheng JT, Qu XT, Zhang Y, Tang WY, Huang SC, Liu CS. Xianglian pill alleviates ulcerative colitis by inhibiting M1 macrophage polarization via modulation of energy metabolite itaconate. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156179. [PMID: 39467429 DOI: 10.1016/j.phymed.2024.156179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Xianglian pill (XLP) is a traditional Chinese medicine (TCM) that is widely used to treat ulcerative colitis (UC). However, its mechanism of action in UC is unclear. PURPOSE This study aimed to investigate the mechanism of action of XLP in treating UC and role of M1 macrophage polarization in this process. STUDY DESIGN In vivo experiments were performed using UC mice while in vitro experiments were conducted using RAW264.7 cells. METHODS Mice were administered 3 % dextran sulfate to induce UC model and then treated with XLP. Changes in histopathology and pro-inflammatory cytokines were evaluated. The levels of M1 macrophages in mesenteric lymph nodes were detected by flow cytometry. Colon metabolite levels were analyzed using an energy metabolomic assay. To assess itaconate's impact, both in vivo (mice) and in vitro (RAW264.7 cells) models were employed. Immunofluorescence staining was used to measure the expression levels of TNF-α, IL-6, and iNOS, while qRT-PCR was utilized to quantify the mRNA levels of TET2, STAT1, and Nfkbiz. RESULTS XLP alleviated ulcerative damage and reduced TNF-α and IL-6 levels in colon, and also downregulated the levels of M1 macrophages and modulated the state of energy metabolism. Specifically, XLP significantly increased ITA level in colonic tissue and this increase was significantly associated with decreased levels of M1 macrophages and alleviation of UC following XLP treatment. Moreover, ITA directly suppressed the polarization of macrophage from M0 to M1 phenotype, accompanied by the decrease of TNF-α, IL-6, and iNOS levels. Further, ITA decreased inflammatory responses in M1 macrophage by inhibiting the TET2/STAT1 and TET2/NF-κB signaling pathways. CONCLUSION XLP can treat UC by suppressing M1 macrophage polarization via increasing the level of energy metabolite ITA.
Collapse
Affiliation(s)
- Jia-Xuan Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Yin-Xia Hu
- Department of Gastroenterology, PLA General Hospital of Southern Theater Command, Guangzhou 510010, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Zi-Zhao Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jin-Ting Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xuan-Tong Qu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Yin Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Si-Cong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Chang-Shun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China.
| |
Collapse
|
4
|
Fagundes RR, Zaldumbide A, Taylor CT. Role of hypoxia-inducible factor 1 in type 1 diabetes. Trends Pharmacol Sci 2024; 45:798-810. [PMID: 39127527 DOI: 10.1016/j.tips.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Type 1 diabetes (T1D) is a common autoimmune disease in which dysregulated glucose metabolism is a key feature. T1D is both poorly understood and in need of improved therapeutics. Hypoxia is frequently encountered in multiple tissues in T1D patients including the pancreas and sites of diabetic complications. Hypoxia-inducible factor (HIF)-1, a ubiquitous master regulator of the adaptive response to hypoxia, promotes glucose metabolism through transcriptional and non-transcriptional mechanisms and alters disease progression in multiple preclinical T1D models. However, how HIF-1 activation in β-cells of the pancreas and immune cells (two key cell types in T1D) ultimately affects disease progression remains controversial. We discuss recent advances in our understanding of the role of hypoxia/HIF-1-induced glycolysis in T1D and explore the possible use of drugs targeting this pathway as potential new therapeutics.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Cormac T Taylor
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research and Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
6
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
8
|
Norman O, Koivunen J, Mäki JM, Pihlajaniemi T, Heikkinen A. Identification of suitable reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) in the fibrotic phase of the bleomycin mouse model of pulmonary fibrosis. PLoS One 2022; 17:e0276215. [PMID: 36251700 PMCID: PMC9576074 DOI: 10.1371/journal.pone.0276215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe lung disease with a poor prognosis and few treatment options. In the most widely used experimental model for this disease, bleomycin is administered into the lungs of mice, causing a reaction of inflammation and consequent fibrosis that resembles the progression of human IPF. The inflammation and fibrosis together induce changes in gene expression that can be analyzed with reverse transcription quantitative real-time PCR (RT-qPCR), in which accurate normalization with a set of stably expressed reference genes is critical for obtaining reliable results. This work compares ten commonly used candidate reference genes in the late, fibrotic phase of bleomycin-induced pulmonary fibrosis and ranks them from the most to the least stable using NormFinder and geNorm. Sdha, Polr2a and Hprt were identified as the best performing and least variable reference genes when alternating between normal and fibrotic conditions. In order to validate the findings, we investigated the expression of Tnf and Col1a1, representing the hallmarks of inflammation and fibrotic changes, respectively. With the best three genes as references, both were found to be upregulated relative to untreated controls, unlike the situation when analyzed solely with Gapdh, a commonly used reference gene. We therefore recommend Sdha, Polr2a and Hprt as reference genes for RT-qPCR in the 4-week bleomycin challenge that represents the late fibrotic phase.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M. Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
9
|
Abstract
Cellular hypoxia occurs when the demand for sufficient molecular oxygen needed to produce the levels of ATP required to perform physiological functions exceeds the vascular supply, thereby leading to a state of oxygen depletion with the associated risk of bioenergetic crisis. To protect against the threat of hypoxia, eukaryotic cells have evolved the capacity to elicit oxygen-sensitive adaptive transcriptional responses driven primarily (although not exclusively) by the hypoxia-inducible factor (HIF) pathway. In addition to the canonical regulation of HIF by oxygen-dependent hydroxylases, multiple other input signals, including gasotransmitters, non-coding RNAs, histone modifiers and post-translational modifications, modulate the nature of the HIF response in discreet cell types and contexts. Activation of HIF induces various effector pathways that mitigate the effects of hypoxia, including metabolic reprogramming and the production of erythropoietin. Drugs that target the HIF pathway to induce erythropoietin production are now approved for the treatment of chronic kidney disease-related anaemia. However, HIF-dependent changes in cell metabolism also have profound implications for functional responses in innate and adaptive immune cells, and thereby heavily influence immunity and the inflammatory response. Preclinical studies indicate a potential use of HIF therapeutics to treat inflammatory diseases, such as inflammatory bowel disease. Understanding the links between HIF, cellular metabolism and immunity is key to unlocking the full therapeutic potential of drugs that target the HIF pathway. Hypoxia-dependent changes in cellular metabolism have important implications for the effective functioning of multiple immune cell subtypes. This Review describes the inputs that shape the hypoxic response in individual cell types and contexts, and the implications of this response for cellular metabolism and associated alterations in immune cell function. Hypoxia is a common feature of particular microenvironments and at sites of immunity and inflammation, resulting in increased activity of the hypoxia-inducible factor (HIF). In addition to hypoxia, multiple inputs modulate the activity of the HIF pathway, allowing nuanced downstream responses in discreet cell types and contexts. HIF-dependent changes in cellular metabolism mitigate the effects of hypoxia and ensure that energy needs are met under conditions in which oxidative phosphorylation is reduced. HIF-dependent changes in metabolism also profoundly affect the phenotype and function of immune cells. The immunometabolic effects of HIF have important implications for targeting the HIF pathway in inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- School of Medicine, The Conway Institute & Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Arbildi P, Rodríguez-Camejo C, Perelmuter K, Bollati-Fogolín M, Sóñora C, Hernández A. Hypoxia and inflammation conditions differentially affect the expression of tissue transglutaminase spliced variants and functional properties of extravillous trophoblast cells. Am J Reprod Immunol 2022; 87:e13534. [PMID: 35263002 DOI: 10.1111/aji.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Persistent hypoxia and inflammation beyond early pregnancy are involved in a bad outcome because of defective trophoblast invasiveness. Tissue transglutaminase (TG2) coregulates several cell functions. An aberrant expression and/or transamidation activity could contribute to placental dysfunction. METHOD OF STUDY The first-trimester trophoblast cell line (Swan-71) was used to study TG2 expression and cell functions in the absence or presence of inflammatory cytokines (TNF-α, IL-1β) or chemical hypoxia (CoCl2 ). We analyzed The concentration of cytokines in the supernatant by ELISA; Cell migration by scratch assay; NF-κB activation by detection of nuclear p65 by immunofluorescence or flow cytometry using a Swan-71 NF-κB-hrGFP reporter cell line. Tissue transglutaminase expression was analyzed by immunoblot and confocal microscopy. Expression of spliced mRNA variants of tissue transglutaminase was analyzed by RT-PCR. Transamidation activity was assessed by flow cytometry using 5-(biotinamido)-pentylamine substrate. RESULTS Chemical hypoxia and TGase inhibition, but not inflammatory stimuli, decreased Swan-71 migration. IL-6 production was also decreased by chemical hypoxia, but increased by inflammation. Intracellular TGase activity was increased by all stimuli, but NF-κB activation was observed only in the presence of proinflammatory cytokines. TG2 expression was decreased by CoCl2 and TNF-α. Translocation of TG2 and p65 to nuclei was observed only with TNF-α, without colocalization. Differential relative expression of spliced variants of mRNA was observed between CoCl2 and inflammatory stimuli. CONCLUSION The observed decrease in total TG2 expression and relative increase in short variants under hypoxia conditions could contribute to impaired trophoblast invasion and impact on pregnancy outcome.
Collapse
Affiliation(s)
- Paula Arbildi
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Claudio Rodríguez-Camejo
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Sóñora
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica (EUTM)-Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| |
Collapse
|
11
|
Ghasemishahrestani Z, Melo Mattos LM, Tilli TM, Santos ALSD, Pereira MD. Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Curr Med Chem 2021; 28:3514-3534. [PMID: 32814521 DOI: 10.2174/0929867327999200819123357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the 'Warburg effect'. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- Zeinab Ghasemishahrestani
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Maura Melo Mattos
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Martins Tilli
- Centro de Desenvolvimento Tecnologico em Saude, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Dias Pereira
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Gabryelska A, Karuga FF, Szmyd B, Białasiewicz P. HIF-1α as a Mediator of Insulin Resistance, T2DM, and Its Complications: Potential Links With Obstructive Sleep Apnea. Front Physiol 2020; 11:1035. [PMID: 33013447 PMCID: PMC7509176 DOI: 10.3389/fphys.2020.01035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSA) is described as an independent risk factor for the onset and progression of type 2 diabetes (T2DM), as well as for insulin resistance (IR). The mechanisms underlying these processes remain unclear. One of the proposed molecular mechanism is based on the oxygen-sensitive α-subunit of hypoxia-inducible factor 1 (HIF-1α)-a key regulator of oxygen metabolism. The concept that stabilization of HIF-1α may influence T2DM and IR is supported by cell and animal models. Cell culture studies revealed that both glucose uptake and glycolysis are regulated by HIF-1α. Furthermore, animal models indicated that increased fasting glucose may be caused by a single night with intermittent hypoxia. Moreover, in these models, hypoxia time was correlated with IR. Mice models revealed that inhibition of HIF-1α protein may downregulate fasting blood glucose and plasma insulin level. Administration of superoxide dismutase mimetic resulted in inhibition of HIF-1α protein, catecholamines, and chronic intermittent hypoxia-induced hypertension in a mice model. The hypothesis that hypoxia is an independent risk factor for IR is strengthened by experimentally confirmed improvement of insulin sensitivity among OSA patients treated with the continuous positive airway pressure. Furthermore, recent studies suggest that HIF-1α protein concentration is increased in individuals with OSA. In this literature review, we summarize the current knowledge about HIF-1α in OSA in relation to the possible pathways in which they contribute to metabolic disorders.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Bartosz Szmyd
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
13
|
Lord T, Nixon B. Metabolic Changes Accompanying Spermatogonial Stem Cell Differentiation. Dev Cell 2020; 52:399-411. [PMID: 32097651 DOI: 10.1016/j.devcel.2020.01.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Male fertility is driven by spermatogonial stem cells (SSCs) that self-renew while also giving rise to differentiating spermatogonia. Spermatogonial transitions are accompanied by a shift in gene expression, however, whether equivalent changes in metabolism occur remains unexplored. In this review, we mined recently published scRNA-seq databases from mouse and human testes to compare expression profiles of spermatogonial subsets, focusing on metabolism. Comparisons revealed a conserved upregulation of genes involved in mitochondrial function, biogenesis, and oxidative phosphorylation in differentiating spermatogonia, while gene expression in SSCs reflected a glycolytic cell. Here, we also discuss the relationship between metabolism and the external microenvironment within which spermatogonia reside.
Collapse
Affiliation(s)
- Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, the University of Newcastle, Callaghan, Newcastle, NSW 2300, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia.
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, the University of Newcastle, Callaghan, Newcastle, NSW 2300, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
14
|
Chen L, Wang Z, Xu Q, Liu Y, Chen L, Guo S, Wang H, Zeng K, Liu J, Zeng S, Yu L. The failure of DAC to induce OCT2 expression and its remission by hemoglobin-based nanocarriers under hypoxia in renal cell carcinoma. Theranostics 2020; 10:3562-3578. [PMID: 32206108 PMCID: PMC7069078 DOI: 10.7150/thno.39944] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Human organic cation transporter 2 (OCT2) is the most abundant and important uptake transporter involved in the renal excretion of cationic drugs. Abnormal hypermethylation- mediated silencing of OCT2 results in oxaliplatin resistance in renal cell carcinoma (RCC). The epigenetic activation of OCT2 by decitabine (DAC) reversed this resistance in normoxic conditions. Given the hypoxic characteristic of RCC, it is still unclear whether hypoxia promotes DAC resistance and is involved in the regulation of OCT2. Methods: The mRNA and protein expression of OCT2 was determined by qRT-PCR and Western blotting. MSRE-qPCR and BSP were used to examine methylation modifications at the OCT2 promoter. The ChIP-qPCR analysis was performed to detect the abundance of histone modification and HIF-1α. The accumulation of DAC and 5-mC were detected using LC-MS, and the amount of 5-hmC was determined by dot blot analysis. To understand the role of hypoxia in the regulation of equilibrative nucleoside transporter 1 (ENT1) expression, the HIF-1α KO cell model was constructed. The re-emulsion method was used for the construction of H-NPs, an oxygen nanocarrier based on hemoglobin, to alleviate the drug resistance of DAC under hypoxia. Results: DAC was unable to upregulate OCT2 expression in hypoxic conditions because of the hypermethylation and low H3K4me3 modification in its promoter region. Hypoxia-mediated repression of human ENT1, which was markedly suppressed in RCC, resulted in a decrease in the cellular accumulation of DAC. Besides, hypoxia-induced upregulation of histone deacetylase HDAC9, which impaired the enrichment of H3K27ac modification in the OCT2 promoter, led to the transcriptional repression of OCT2. H-NPs could attenuate the hypoxia-induced loss of DAC activity and sensitize RCC cells to the sequential combination therapy of DAC and oxaliplatin. Conclusions: Hypoxia-mediated repression of ENT1 led to the inability of DAC to upregulate the expression of OCT2 under hypoxia. H-NPs could alleviate resistance to oxaliplatin and DAC in RCC cells under hypoxia and may have potential clinical applications.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyang Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Le Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhang Guo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou 310022, China
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310022, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Validation of a New Rodent Experimental System to Investigate Consequences of Long Duration Space Habitation. Sci Rep 2020; 10:2336. [PMID: 32047211 PMCID: PMC7012842 DOI: 10.1038/s41598-020-58898-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Animal models are useful for exploring the health consequences of prolonged spaceflight. Capabilities were developed to perform experiments in low earth orbit with on-board sample recovery, thereby avoiding complications caused by return to Earth. For NASA’s Rodent Research-1 mission, female mice (ten 32 wk C57BL/6NTac; ten 16 wk C57BL/6J) were launched on an unmanned vehicle, then resided on the International Space Station for 21/22d or 37d in microgravity. Mice were euthanized on-orbit, livers and spleens dissected, and remaining tissues frozen in situ for later analyses. Mice appeared healthy by daily video health checks and body, adrenal, and spleen weights of 37d-flight (FLT) mice did not differ from ground controls housed in flight hardware (GC), while thymus weights were 35% greater in FLT than GC. Mice exposed to 37d of spaceflight displayed elevated liver mass (33%) and select enzyme activities compared to GC, whereas 21/22d-FLT mice did not. FLT mice appeared more physically active than respective GC while soleus muscle showed expected atrophy. RNA and enzyme activity levels in tissues recovered on-orbit were of acceptable quality. Thus, this system establishes a new capability for conducting long-duration experiments in space, enables sample recovery on-orbit, and avoids triggering standard indices of chronic stress.
Collapse
|
16
|
Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart. Mol Cell Biochem 2019; 461:15-22. [PMID: 31300984 DOI: 10.1007/s11010-019-03584-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Adaptation to chronic hypoxia renders the heart more tolerant to ischemia/reperfusion injury. To evaluate changes in gene expression after adaptation to chronic hypoxia by RT-qPCR, it is essential to select suitable reference genes. In a chronically hypoxic rat model, no specific reference genes have been identified in the myocardium. This study aimed to select the best reference genes in the left (LV) and right (RV) ventricles of chronically hypoxic and normoxic rats. Sprague-Dawley rats were adapted to continuous normobaric hypoxia (CNH; 12% O2 or 10% O2) for 3 weeks. The expression levels of candidate genes were assessed by RT-qPCR. The stability of genes was evaluated by NormFinder, geNorm and BestKeeper algorithms. The best five reference genes in the LV were Top1, Nupl2, Rplp1, Ywhaz, Hprt1 for the milder CNH and Top1, Ywhaz, Sdha, Nupl2, Tomm22 for the stronger CNH. In the RV, the top five genes were Hprt1, Nupl2, Gapdh, Top1, Rplp1 for the milder CNH and Tomm22, Gapdh, Hprt1, Nupl2, Top1 for the stronger CNH. This study provides validation of reference genes in LV and RV of CNH rats and shows that suitable reference genes differ in the two ventricles and depend on experimental protocol.
Collapse
|
17
|
Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev 2019; 37:665-676. [PMID: 30209795 DOI: 10.1007/s10555-018-9764-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may represent the quintessential example of a moonlighting protein. The latter are a new, intriguing class of cell proteins which exhibit multiple activities in different subcellular locales apart from their initially, well-characterized function. As such, apart from its classical role in energy production, membrane-bound GAPDH is required for membrane fusion, endocytosis and, intriguingly, for iron transport. Cytoplasmic GAPDH regulates mRNA stability and is required for ER to Golgi trafficking. Nuclear GAPDH is involved in apoptosis, transcriptional gene regulation, the maintenance of DNA integrity, as well as nuclear tRNA export. Paradoxically, the etiology of a number of human pathologies is dependent upon GAPDH structure and function. In particular, recent evidence indicates a significant role for moonlighting GAPDH in tumorigenesis. Specifically, these include its role in the survival of tumor cells, in tumor angiogenesis, as well as its control of tumor cell gene expression and posttranscriptional regulation of tumor cell mRNA. Each of these activities correlates with increased tumor progression and, unfortunately, a poor prognosis for the afflicted individual.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, The Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19047, USA.
| |
Collapse
|
18
|
Lee M, Wang C, Jin SW, Labrecque MP, Beischlag TV, Brockman MA, Choy JC. Expression of human inducible nitric oxide synthase in response to cytokines is regulated by hypoxia-inducible factor-1. Free Radic Biol Med 2019; 130:278-287. [PMID: 30391674 DOI: 10.1016/j.freeradbiomed.2018.10.441] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
Abstract
The production of nitric oxide (NO) by inducible NO synthase (iNOS) and the regulation of gene expression by hypoxia-inducible factors (HIFs) are important for many aspects of human cell biology. However, little is known about whether iNOS expression is controlled by HIFs in human cells. Stimulation of A549 human lung epithelial cells with cytokines (TNF, IL-1 and IFNγ) increased the nuclear accumulation of HIF-1 in normoxic conditions. Activation of HIF-1 by hypoxia or CoCl2 was not sufficient to induce iNOS expression. However, pharmacological inhibition of HIF-1 reduced the induction of iNOS expression in A549 cells and primary human astrocytes. Moreover, elimination of HIF-1α expression and activity by CRISPR/Cas9 gene editing significantly reduced the induction of human iNOS gene promoter, mRNA and protein expression by cytokine stimulation. Three putative hypoxia response elements (HRE) are present within the human iNOS gene promoter and elimination of an HRE at -4981 bp reduced the induction of human iNOS promoter activity in response to cytokine stimulation. These findings establish an important role for HIF-1α in the induction of human iNOS gene expression in response to cytokine stimulation.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Steven W Jin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mark P Labrecque
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mark A Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
19
|
Absence of Beta-2 microgloblulin ( B2M ) and hypoxanthine-guanine phosphoribosyl transferase-1( HPRT1 ) gene modulation in U87MG and U251 Glioblastoma cell lines subjected to cobalt chloride mediated hypoxia. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Del Rey MJ, Valín Á, Usategui A, García-Herrero CM, Sánchez-Aragó M, Cuezva JM, Galindo M, Bravo B, Cañete JD, Blanco FJ, Criado G, Pablos JL. Hif-1α Knockdown Reduces Glycolytic Metabolism and Induces Cell Death of Human Synovial Fibroblasts Under Normoxic Conditions. Sci Rep 2017. [PMID: 28623342 PMCID: PMC5473902 DOI: 10.1038/s41598-017-03921-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased glycolysis and HIF-1α activity are characteristics of cells under hypoxic or inflammatory conditions. Besides, in normal O2 environments, elevated rates of glycolysis support critical cellular mechanisms such as cell survival. The purpose of this study was to analyze the contribution of HIF-1α to the energy metabolism and survival of human synovial fibroblasts (SF) under normoxic conditions. HIF-1α was silenced using lentiviral vectors or small-interfering RNA (siRNA) duplexes. Expression analysis by qRT-PCR and western blot of known HIF-1α target genes in hypoxia demonstrated the presence of functional HIF-1α in normoxic SF and confirmed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a HIF-1α target even in normoxia. HIF-1α silencing induced apoptotic cell death in cultured SF and, similarly, treatment with glycolytic, but not with OXPHOS inhibitors, induced SF death. Finally, in vivo HIF-1α targeting by siRNA showed a significant reduction in the viability of human SF engrafted into a murine air pouch. Our results demonstrate that SF are highly dependent on glycolytic metabolism and that HIF-1α plays a regulatory role in glycolysis even under aerobic conditions. Local targeting of HIF-1α provides a feasible strategy to reduce SF hyperplasia in chronic arthritic diseases.
Collapse
Affiliation(s)
- Manuel J Del Rey
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Álvaro Valín
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carmen M García-Herrero
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Autónoma de Madrid, Madrid, Spain
| | - María Galindo
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Bravo
- Servicio de Cirugía Ortopédica y Traumatología, Hospital 12 de Octubre, Madrid, Spain
| | - Juan D Cañete
- Unitat d'Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Francisco J Blanco
- Laboratorio de Investigación Osteoarticular y del Envejecimiento, Instituto de Investigación Biomédica de A Coruña, INIBIC, A Coruña, Spain
| | - Gabriel Criado
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - José L Pablos
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Idda A, Bebbere D, Corona G, Masala L, Casula E, Cincotti A, Ledda S. Insights on Cryopreserved Sheep Fibroblasts by Cryomicroscopy and Gene Expression Analysis. Biopreserv Biobank 2017; 15:310-320. [PMID: 28328240 DOI: 10.1089/bio.2016.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cryopreservation includes a set of techniques aimed at storing biological samples and preserving their biochemical and functional features without any significant alterations. This study set out to investigate the effects induced by cryopreservation on cultured sheepskin fibroblasts (CSSF) through cryomicroscopy and gene expression analysis after subsequent in vitro culture. CSSF cells were cryopreserved in a cryomicroscope (CM) or in a straw programmable freezer (SPF) using a similar thermal profile (cooling rate -5°C/min to -120°C, then -150°C/min to -196°C). CSSF volume and intracellular ice formation (IIF) were monitored by a CM, while gene expression levels were investigated by real-time polymerase chain reaction in SPF-cryopreserved cells immediately after thawing (T0) and after 24 or 48 hours (T24, T48) of post-thaw in vitro culture. No significant difference in cell viability was observed at T0 between CM and SPF samples, while both CM and SPF groups showed lower viability (p < 0.05) compared to the untreated control group. Gene expression analysis of cryopreserved CSSF 24 and 48 hours post-thawing showed a significant upregulation of the genes involved in protein folding and antioxidant mechanisms (HPS90b and SOD1), while a transient increase (p < 0.05) in the expression levels of OCT4, BCL2, and GAPDH was detected 24 hours post-thawing. Overall, our data suggest that cryostored CSSF need at least 24 hours to activate specific networks to promote cell readaptation.
Collapse
Affiliation(s)
- Antonella Idda
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Daniela Bebbere
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Giuseppina Corona
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Laura Masala
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| | - Elisa Casula
- 2 Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari , Cagliari, Italy
| | - Alberto Cincotti
- 2 Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari , Cagliari, Italy
| | - Sergio Ledda
- 1 Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari , Sassari, Italy
| |
Collapse
|
22
|
Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 2016; 73:377-92. [PMID: 26499846 PMCID: PMC11108301 DOI: 10.1007/s00018-015-2070-4] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the "Warburg effect", i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.
Collapse
Affiliation(s)
- Zhaoyong Li
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
23
|
Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes. G3-GENES GENOMES GENETICS 2015; 6:141-8. [PMID: 26564948 PMCID: PMC4704712 DOI: 10.1534/g3.115.024448] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Glyptosternoid fishes (Siluriformes), one of the three broad fish lineages (the two other are schizothoracines and Triplophysa), have a limited distribution in the rivers in the Tibetan Plateau and peripheral regions. To investigate the genetic mechanisms underlying adaptation to the Tibetan Plateau in several fish species from gradient altitudes, a total of 20,659,183–37,166,756 sequence reads from six species of catfish were generated by Illumina sequencing, resulting in six assemblies. Analysis of the 1,656 orthologs among the six assembled catfish unigene sets provided consistent evidence for genome-wide accelerated evolution in the three glyptosternoid lineages living at high altitudes. A large number of genes refer to functional categories related to hypoxia and energy metabolism exhibited rapid evolution in the glyptosternoid lineages relative to yellowhead catfish living in plains areas. Genes showing signatures of rapid evolution and positive selection in the glyptosternoid lineages were also enriched in functions associated with energy metabolism and hypoxia. Our analyses provide novel insights into highland adaptation in fishes and can serve as a foundation for future studies aiming to identify candidate genes underlying the genetic basis of adaptation in Tibetan fishes.
Collapse
|
24
|
Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12:10-22. [PMID: 25859407 PMCID: PMC4383849 DOI: 10.7497/j.issn.2095-3941.2014.0019] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/26/2014] [Indexed: 02/04/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
Collapse
Affiliation(s)
- Jin-Ying Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fan Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chao-Qun Hong
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao-Jiang Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guang-Ji Zhou
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guo-Jun Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yu-Kun Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
25
|
Fatty acid-bearing albumin but not fatty acid-depleted albumin induces HIF-1 activation in human renal proximal tubular epithelial cell line HK-2. Biochem Biophys Res Commun 2014; 450:476-81. [PMID: 24924632 DOI: 10.1016/j.bbrc.2014.05.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
Abstract
Recently, we found that albumin overload induces expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) protein and several HIF-1 target genes in human renal proximal tubular epithelial cell line HK-2. In this study, the role of albumin-bound fatty acids in the albumin-induced HIF-1 activation was studied. The enhancing effect of fatty acid-bearing human serum albumin [FA(+)HSA] treatment on HIF-1α protein expression was much greater than that of fatty acid-depleted human serum albumin [FA(-)HSA] treatment. The FA(+)HSA treatment induced HIF-1 target gene mRNAs such as those of glucose transporter 1 (GLUT1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and breast cancer resistance protein (BCRP) in concentration-dependent manners, while FA(-)HSA caused no significant increases in these mRNAs. Consistent with increased GLUT1 mRNA, GLUT1 protein expression and GLUT inhibitor cytochalasin B-sensitive d-[(3)H]glucose uptake activity were significantly enhanced by treatment with FA(+)HSA, but not with FA(-)HSA. These findings indicate that fatty acids bound to albumin play a crucial role in albumin-induced HIF-1 activation followed by changes in HIF-1 target gene expression and protein product activity.
Collapse
|
26
|
Gallo S, Gatti S, Sala V, Albano R, Costelli P, Casanova E, Comoglio PM, Crepaldi T. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death Dis 2014; 5:e1185. [PMID: 24743740 PMCID: PMC4001309 DOI: 10.1038/cddis.2014.155] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.
Collapse
Affiliation(s)
- S Gallo
- Department of Oncology, University of Turin, Turin, Italy
| | - S Gatti
- Department of Oncology, University of Turin, Turin, Italy
| | - V Sala
- Department of Oncology, University of Turin, Turin, Italy
| | - R Albano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - P Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - E Casanova
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - P M Comoglio
- 1] Department of Oncology, University of Turin, Turin, Italy [2] Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - T Crepaldi
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Zapata-Morales JR, Galicia-Cruz OG, Franco M, Martinez Y Morales F. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J Biol Chem 2013; 289:346-57. [PMID: 24196951 DOI: 10.1074/jbc.m113.526814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we demonstrated the regulation of glucose transporters by hypoxia inducible factor-1α (HIF-1α) activation in renal epithelial cells. LLC-PK1 monolayers were incubated for 1, 3, 6, or 12 h with 0% or 5% O2 or 300 μm cobalt (CoCl2). We evaluated the effects of hypoxia on the mRNA and protein expression of HIF-1α and of the glucose transporters SGLT1, SGLT2, and GLUT1. The data showed an increase in HIF-1α mRNA and protein expression under the three evaluated conditions (p < 0.05 versus t = 0). An increase in GLUT1 mRNA (12 h) and protein expression (at 3, 6, and 12 h) was observed (p < 0.05 versus t = 0). SGLT1 and SGLT2 mRNA and protein expression decreased under the three evaluated conditions (p < 0.05 versus t = 0). In conclusion, our results suggest a clear decrease in the expression of the glucose transporters SGLT1 and SGLT2 under hypoxic conditions which implies a possible correlation with increased expression of HIF-1α.
Collapse
Affiliation(s)
- Juan R Zapata-Morales
- From the Department of Pharmacology, School of Medicine, University of San Luis Potosi, 78210 San Luis Potosi, Mexico and
| | | | | | | |
Collapse
|
28
|
Abstract
Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
29
|
Tumor hypoxia and metabolism -- towards novel anticancer approaches. ANNALES D'ENDOCRINOLOGIE 2013; 74:111-4. [PMID: 23597945 DOI: 10.1016/j.ando.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transcription factor hypoxia-inducible factor-1 (HIF-1) facilitates the induction of enzymes necessary for regulation of biological processes required for cell survival and the acquisition of an aggressive and invasive phenotype, such as regulation of the intracellular pH (pHi), anaerobic glycolysis, angiogenesis, migration/invasion... In this presentation, we will highlight some of the HIF-1-induced gene products - carbonic anhydrases IX and XII (CAs) and monocarboxylate transporters (MCTs) - which regulate the pHi by controlling export of metabolically-generated acids (carbonic and lactic acids). We reported that targeting these pHi-regulated processes through inhibition of either HIF-1-induced CAIX/CAXII or HIF-1-induced MCT4, MCT1 or Basigin/EMMPRIN/CD147 chaperone of MCTs, severely restricts glycolysis-generated ATP levels and tumor growth. In addition, we demonstrated that the Myc/HIF-1-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzing a key step producing the NADH cofactor, activates the Akt pathway, thereby upregulating expression of the anti-apoptotic Bcl-xL. As a consequence, high expression of GAPDH contributes to tumor aggressiveness, in particular in the context Myc-driven B lymphomas. We propose that membrane-bound carbonic anhydrases (CAIX, CAXII), monocarboxylate transporters/chaperon Basigin (Myc-induced MCT1 and HIF-induced-MCT4) and GAPDH that are associated with exacerbated tumor metabolism, represent new potential targets for anticancer therapy.
Collapse
|
30
|
Vajda A, Marignol L, Barrett C, Madden SF, Lynch TH, Hollywood D, Perry AS. Gene expression analysis in prostate cancer: the importance of the endogenous control. Prostate 2013; 73:382-90. [PMID: 22926970 DOI: 10.1002/pros.22578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/02/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aberrant gene expression is a hallmark of cancer. Quantitative reverse-transcription PCR (qRT-PCR) is the gold-standard for quantifying gene expression, and commonly employs a house-keeping gene (HKG) as an endogenous control to normalize results; the choice of which is critical for accurate data interpretation. Many factors, including sample type, pathological state, and oxygen levels influence gene expression including putative HKGs. The aim of this study was to determine the suitability of commonly used HKGs for qRT-PCR in prostate cancer. METHODS Prostate cancer (LNCaP, 22Rv1, PC3, and DU145) and normal (PWR1E and RWPE1) cell lines were cultured in air and hypoxia. The performance of 16 HKGs was assessed using Normfinder and coefficient of variation. In silico promoter analysis was performed to identify putative hypoxia response elements (HREs). The impact of the endogenous control on expression levels of HIF1A and GSTP1 was investigated by qRT-PCR in cell lines and tissue specimens respectively. RESULTS Hypoxia altered expression of several HKGs: IPO8, B2M, and PGK1. The most stably expressed HKGs were ACTB, PPIA, and UBC. Both UBC and ACTB showed constitutive expression of HIF1A in air and hypoxia, while PGK1 falsely implied a sixfold hypoxia-induced down-regulation. In prostate tumors, UBC and PGK1 both revealed down-regulation of GSTP1 relative to matched benign, whereas ACTB showed variability. CONCLUSIONS This study demonstrates that no universal endogenous control exists for gene expression studies, even within one disease type. It highlights the importance of validating expression of intended HKGs between different sample types and environmental exposures.
Collapse
Affiliation(s)
- Alice Vajda
- Prostate Molecular Oncology, Academic Unit of Clinical and Molecular Oncology, Institute of Molecular Medicine, Trinity College Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Park MR, Park JY, Kwon DN, Cho SG, Park C, Seo HG, Ko YG, Gurunathan S, Kim JH. Altered protein profiles in human umbilical cords with preterm and full-term delivery. Electrophoresis 2013. [DOI: 10.1002/elps.201200197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mi-Ryung Park
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Jong-Yi Park
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Chankyu Park
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Han-Geuk Seo
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science; RDA; Namwon; Republic of Korea
| | | | - Jin-Hoi Kim
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| |
Collapse
|
32
|
|
33
|
Lao YM, Lu Y, Jiang JG, Luo LX. Six regulatory elements lying in the promoter region imply the functional diversity of chloroplast GAPDH in Duanliella bardawil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9211-9220. [PMID: 22906227 DOI: 10.1021/jf302659z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-known proverbial protein involved in various functions in vivo. The functional diversity of GAPDH from Dunaliella bardawil (DbGAPDH) may relate to the regulatory elements lying in the promoter at the transcriptional level. Using RT-PCR and RACE reactions, gapdh cDNA was isolated, and the full-length genomic sequence was obtained by LA-PCR-based genome walking. The full-length cDNA sequence was 1645 bp containing an 1128 bp putative open reading frame (ORF), which coded a 375 amino acids-deduced polypeptide whose molecular weight was 40.27 kDa computationally. Protein conserved domain search and structural computation found that DbGAPDH consists of two structural conserved domains highly homologous in most species; multiple sequence alignment discovered two positive charge residues (Lys164 and Arg 233), which play a critical role in the protein-protein interaction between GAPDH, phosphoribulokinase (PRK), and CP12. Phylogenetic analysis demonstrated that DbGAPDH has a closer relationship with analogues from algae and higher plants than with those from other species. In silico analysis of the promoter region revealed six potential regulatory elements might be involved in four hypothesized functions characterized by chloroplast GAPDH: oxygen-, light-, pathogen-, and cold-induced regulation. These results might supply some hints for the functional diversity mechanisms of DbGAPDH, and fresh information for further research to bridge the gap between our knowledge of DNA and protein structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
34
|
Lange CA, Bainbridge JW. Oxygen Sensing in Retinal Health and Disease. Ophthalmologica 2012; 227:115-31. [DOI: 10.1159/000331418] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 12/24/2022]
|
35
|
Della Beffa C, Klawonn F, Menetski JP, Schumacher HR, Pessler F. Evaluation of glyceraldehyde-3-phosphate, prolylpeptidyl isomerase A, and a set of stably expressed genes as reference mRNAs in urate crystal inflammation. BMC Res Notes 2011; 4:443. [PMID: 22023915 PMCID: PMC3213070 DOI: 10.1186/1756-0500-4-443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/25/2011] [Indexed: 01/20/2023] Open
Abstract
Background The murine air pouch membrane represents an easily accessible tissue for studies on gene regulation in acute inflammation. Considering that acute inflammation may affect expression of molecular reference genes, we evaluated the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prolylpeptidyl isomerase A (PPIA) in the air pouch membrane during a complete time course of urate crystal inflammation and correlated the results with expression of interleukin (IL)-1β and hypoxia inducible factor (HIF)-1α. In addition, we aimed to identify alternate potential reference genes. Methods Using custom microfluidic real-time PCR arrays, the expression of 96 genes including GAPDH, PPIA, IL-1β, and HIF-1α was determined in dissected air pouch membranes 1, 4, 9, 18, 27, and 50 hours (h) after injecting monosodium urate (MSU) crystals into the pouch. One-way ANOVA was used to detect differential gene expression throughout the time course. Using the genes on these arrays as a convenience sample, alternate candidate reference genes were sought (1) with a biostatistical approach and (2) using the geNorm software tool. Results Pouch leukocytes peaked at t = 9h and declined toward t = 50h. PPIA expression was not differentially regulated (p = 0.52, ANOVA). In contrast, GAPDH mRNA increased steadily after crystal injection, reaching a maximal 2.8-fold increase at t = 18h (p = 0.0006, t test), which followed a marked induction of IL-1β (max., 208-fold at t = 4h, p = 8.4 × 10-5, t test) and HIF-1α (max., 6.6-fold at t = 4h, p = 0.00025, t test). Fifteen genes were artifactually identified as "significantly regulated" when Ct values were normalized against GAPDH expression. The biostatistical approach and the geNorm analysis identified overlapping sets of candidate reference genes. Both ranked PPIA as the best candidate, followed by defender against cell death 1 (DAD1) and high-mobility group B1 (HMGB1). Conclusions GAPDH mRNA expression is up-regulated in urate crystal inflammation, possibly due to inflammation-associated hypoxia. Using GAPDH mRNA for molecular normalization resulted in significant artifacts in the calculated expression of the target mRNAs. PPIA and other stably expressed genes promise to be more appropriate reference genes in this model.
Collapse
Affiliation(s)
- Cristina Della Beffa
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr, 7, 38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
36
|
Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, Mazurier F. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol 2011; 131:1793-805. [PMID: 21633368 DOI: 10.1038/jid.2011.141] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Besides lung, postnatal human epidermis is the only epithelium in direct contact with atmospheric oxygen. Skin epidermal oxygenation occurs mostly through atmospheric oxygen rather than tissue vasculature, resulting in a mildly hypoxic microenvironment that favors increased expression of hypoxia-inducible factor-1α (HIF-1α). Considering the wide spectrum of biological processes, such as angiogenesis, inflammation, bioenergetics, proliferation, motility, and apoptosis, that are regulated by this transcription factor, its high expression level in the epidermis might be important to HIF-1α in skin physiology and pathophysiology. Here, we review the role of HIF-1α in cutaneous angiogenesis, skin tumorigenesis, and several skin disorders.
Collapse
|
37
|
Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys 2011; 509:1-8. [DOI: 10.1016/j.abb.2011.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 02/13/2011] [Indexed: 11/22/2022]
|
38
|
Busk M, Toustrup K, Sørensen BS, Alsner J, Horsman MR, Jakobsen S, Overgaard J. In vivo identification and specificity assessment of mRNA markers of hypoxia in human and mouse tumors. BMC Cancer 2011; 11:63. [PMID: 21306648 PMCID: PMC3042974 DOI: 10.1186/1471-2407-11-63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor hypoxia is linked to poor prognosis, but identification and quantification of tissue hypoxia remains a challenge. The hypoxia-specificity of HIF-1α target genes in vivo has been questioned due to the confounding influence of other microenvironmental abnormalities known to affect gene expression (e.g., low pH). Here we describe a new technique that by exploiting intratumoral oxygenation heterogeneity allows us to identify and objectively rank the most robust mRNA hypoxia biomarkers. METHODS Mice carrying human (FaDudd) or murine (SCCVII) tumors were injected with the PET hypoxia tracer FAZA. Four hours post-injection tumors were removed, frozen, and crushed into milligram-sized fragments, which were transferred individually to pre-weighed tubes containing RNAlater and then weighed. For each fragment radioactivity per tissue mass and expression patterns of selected mRNA biomarkers were analyzed and compared. RESULTS In both tumour models, fragmentation into pieces weighing 10 to 60 mg resulted in tissue fragments with highly variable relative content of hypoxic cells as evidenced by an up to 13-fold variation in FAZA radioactivity per mass of tissue. Linear regression analysis comparing FAZA retention with patterns of gene expression in individual tissue fragments revealed that CA9, GLUT1 and LOX mRNA levels were equally and strongly correlated to hypoxic extent in FaDudd. The same link between hypoxia and gene expression profile was observed for CA9 and GLUT1, but not LOX, in SCCVII tumors. Apparent in vivo hypoxia-specificity for other putative molecular markers of tissue hypoxia was considerably weaker. CONCLUSIONS The portrayed technique allows multiple pairwise measurements of mRNA transcript levels and extent of hypoxia in individual tumors at a smallest possible volumetric scale which (by limiting averaging effects inherent to whole-tumor analysis) strengthen the conclusiveness on true hypoxia-specificity of candidate genes while limiting the required number of tumors. Among tested genes, our study identified CA9, GLUT1 and possibly LOX as highly specific biomarkers of tumor hypoxia in vivo.
Collapse
Affiliation(s)
- Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
39
|
Semenza GL. Oxygen homeostasis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:336-361. [PMID: 20836033 DOI: 10.1002/wsbm.69] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metazoan life is dependent upon the utilization of O(2) for essential metabolic processes and oxygen homeostasis is an organizing principle for understanding metazoan evolution, ontology, physiology, and pathology. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is expressed by all metazoan species and functions as a master regulator of oxygen homeostasis. Recent studies have elucidated complex mechanisms by which HIF-1 activity is regulated and by which HIF-1 regulates gene expression, with profound consequences for prenatal development, postnatal physiology, and disease pathogenesis.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| |
Collapse
|
40
|
Li Y, Li Y, Zhang T, Chan WK. The aryl hydrocarbon receptor nuclear translocator-interacting protein 2 suppresses the estrogen receptor signaling via an Arnt-dependent mechanism. Arch Biochem Biophys 2010; 502:121-9. [PMID: 20674540 DOI: 10.1016/j.abb.2010.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
We explored whether modulation of the estrogen receptor (ER) signaling is possible through an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent mechanism. We utilized the Arnt-interacting protein 2 (Ainp2) to examine whether the presence of Ainp2 in MCF-7 cells would interfere with the Arnt-mediated ER signaling. We found that Arnt increased the 17 beta-estradiol (E2)-dependent luciferase activity and Ainp2 significantly suppressed this Arnt-mediated luciferase activity. Ainp2 significantly suppressed 25% of the E2- and Arnt-dependent up-regulation of the GREB1 message. No suppression of the ER target gene expression by Ainp2 was detected in Arnt-knockdown MCF-7 cells and in Arnt-independent ER signaling. Although Ainp2 did not interact with ER alpha and ER beta, it suppressed the ER alpha::Arnt interaction and reduced the E2-driven recruitment of Arnt to the GREB1 promoter. We concluded that Ainp2 suppresses the ER signaling by not allowing Arnt to participate in the ER-dependent, Arnt-mediated activation of gene transcription.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | |
Collapse
|
41
|
Glyceraldehyde-3-phosphate dehydrogenase expression is altered by hypoxia in melanoma cells and primary human melanocytes. Melanoma Res 2010; 20:61-3. [PMID: 20051782 DOI: 10.1097/cmr.0b013e328333d8c2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Chen JK, Zhan YJ, Yang CS, Tzeng SF. Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes. J Cell Biochem 2010; 112:59-70. [DOI: 10.1002/jcb.22732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Scatena R, Bottoni P, Pontoglio A, Giardina B. Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 2010; 4:143-158. [DOI: 10.1002/prca.200900157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
44
|
Correia SC, Moreira PI. Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? J Neurochem 2010; 112:1-12. [DOI: 10.1111/j.1471-4159.2009.06443.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Liao SH, Zhao XY, Han YH, Zhang J, Wang LS, Xia L, Zhao KW, Zheng Y, Guo M, Chen GQ. Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells. Proteomics 2009; 9:3901-12. [PMID: 19637235 DOI: 10.1002/pmic.200800922] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), consisting of oxygen-sensitive HIF-1alpha and constitutively expressed HIF-1beta subunits, is a master transcriptional activator for cellular response to hypoxia. To explore direct HIF-1 targets, here we used differential gel electrophoresis (DIGE) to compare the HIF-1-regulated proteins between leukemic U937T-cell line with and without conditional induction of HIF-1alpha protein by tetracycline-off system. Among the upregulated proteins identified, mRNA levels of annexin A1, macrophage-capping protein (CapG), S100 calcium-binding protein A4 (S100A4), S100A11, acyl-CoA-binding protein and calcyclin-binding protein also increased. The expressions of the annexin A1, CapG and S100A4 genes were significantly induced by hypoxia in five adherent cell lines tested besides U937 cells, while their expressions were blocked by the short hairpin RNA specifically against HIF-1alpha. Further luciferase reporter assay and chromatin immunoprecipitation showed that HIF-1alpha directly bound to three hypoxia-responsive elements located at intron 1 of S100A4 gene and hypoxia-responsive element at -350 to -346 of CapG gene, which are essential for HIF-1-induced expression. Additionally, the role of S100A4 expression in migration and invasion of cancer cells were also confirmed. These findings would provide new sights for understanding the molecular mechanisms underlying HIF-1 action.
Collapse
Affiliation(s)
- Shi-Hua Liao
- Institute of Health Sciences, Chinese Academy of Sciences/Shanghai Jiao-Tong University School of Medicine, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Colell A, Green DR, Ricci JE. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 2009; 16:1573-81. [PMID: 19779498 DOI: 10.1038/cdd.2009.137] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.
Collapse
Affiliation(s)
- A Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas and Liver Unit, Hospital Clinic i Provincial, Centro de Investigaciones Biomédicas Esther Koplowitz, and CIBEREHD, IDIBAPS, 08036-Barcelona, Spain.
| | | | | |
Collapse
|
47
|
Smith RW, Cash P, Ellefsen S, Nilsson GE. Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 2009; 9:2217-29. [PMID: 19322784 DOI: 10.1002/pmic.200800662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
48
|
Abstract
Growing evidence indicates that ubiquitin ligases play a critical role in the hypoxia response. Among them, Siah2, a RING finger ligase, is an important regulator of pathways activated under hypoxia. Siah2 regulates prolyl hydroxylases PHD3 and 1 under oxygen concentration of 2% to 5%, thereby allowing accumulation of hypoxia-inducible factor (HIF)-1alpha, a master regulator of the hypoxia response within the range of physiological normoxic to mild hypoxic conditions. Growing evidence also indicates an important function for Siah2 in tumor development and progression based on pancreatic cancer, mammary tumor, and melanoma mouse models. This review summarizes our current understanding of Siah2 regulation and function with emphasis on hypoxia and tumorigenesis.
Collapse
Affiliation(s)
- Koh Nakayama
- Medical Top Track Program, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jianfei Qi
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, California
| | - Ze’ev Ronai
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, California
| |
Collapse
|
49
|
Said HM, Polat B, Hagemann C, Anacker J, Flentje M, Vordermark D. Absence of GAPDH regulation in tumor-cells of different origin under hypoxic conditions in - vitro. BMC Res Notes 2009; 2:8. [PMID: 19144146 PMCID: PMC2646737 DOI: 10.1186/1756-0500-2-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/13/2009] [Indexed: 12/21/2022] Open
Abstract
Background Gene expression studies related to cancer diagnosis and treatment are important. In order to conduct such experiment accurately, absolutely reliable housekeeping genes are essential to normalize cancer related gene expression. The most important characteristics of such genes are their presence in all cells and their expression levels remain relatively constant under different experimental conditions. However, no single gene of this group of genes manifests always stable expression levels under all experimental conditions. Incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of GAPDH expression regulation in Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines as well as in human lung adenocarcinoma epithelial cell line (A-549) in addition to both HT-29, and HCT-116 colon cancer cell lines, under hypoxic conditions in vitro in comparison to other housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches was comparatively examined in vitro on both protein and mRNA level, by western blot and semi quantitative RT-PCR, respectively. Findings No hypoxia-induced regulatory effect on GAPDH expression was observed in the cell lines studied in vitro that were; Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines, Human lung adenocarcinoma epithelial cell line (A-549), both colon cancer cell lines HT-29, and HCT-116. Conclusion As it is the case for human hepatocellular carcinoma, mouse hepatoma, human colon cancer, and human lung adenocarcinoma, GAPDH represents an optimal choice of a housekeeping gene and/(or) loading control to determine the expression of hypoxia induced genes in tumors of different origin. The results confirm our previous findings in human glioblastoma that this gene is not an attractive target for tumor therapeutic approaches because of the lack of GAPDH regulation under hypoxia.
Collapse
Affiliation(s)
- Harun M Said
- Department of Radiation Oncology, Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Fink T, Lund P, Pilgaard L, Rasmussen JG, Duroux M, Zachar V. Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 2008; 9:98. [PMID: 18976469 PMCID: PMC2585587 DOI: 10.1186/1471-2199-9-98] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 10/31/2008] [Indexed: 11/10/2022] Open
Abstract
Background For the accurate determination of gene expression changes during growth and differentiation studies on adipose-derived stem cells (ASCs), quantitative real-time RT-PCR has become a method of choice. The technology is very sensitive, however, without a proper selection of reference genes, to which the genes of interest are normalized, erroneous results may be obtained. Results In this study, we have compared the gene expression levels of a panel of twelve widely used reference genes during hypoxic culture, osteogenic and chondrogenic differentiation, and passaging of primary human ASCs. We found that several of the commonly used reference genes including 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin were unsuitable for normalization in the conditions we tested, whereas tyrosine 3/tryptophan 5-monooxygenase activation protein (YMHAZ), TATAA-box binding protein (TBP), beta-glucuronidase (GUSB) were the most stable across all conditions. Conclusion When determining gene expression levels in adipose-derived stem cells, we recommend normalizing transcription levels to the geometric mean of YMHAZ, TBP and GUSB.
Collapse
Affiliation(s)
- Trine Fink
- Laboratory for Stem Cell Research, Aalborg University, Denmark.
| | | | | | | | | | | |
Collapse
|