1
|
Gummadi ASC, Muppa DK, Yella VR. Dissecting non-B DNA structural motifs in untranslated regions of eukaryotic genomes. Genomics Inform 2024; 22:25. [PMID: 39605082 PMCID: PMC11603647 DOI: 10.1186/s44342-024-00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The untranslated regions (UTRs) of genes significantly impact various biological processes, including transcription, posttranscriptional control, mRNA stability, localization, and translation efficiency. In functional areas of genomes, non-B DNA structures such as cruciform, curved, triplex, G-quadruplex, and Z-DNA structures are common and have an impact on cellular physiology. Although the role of these structures in cis-regulatory regions such as promoters is well established in eukaryotic genomes, their prevalence within UTRs across different eukaryotic classes has not been extensively documented. Our study investigated the prevalence of various non-B DNA motifs within the 5' and 3' UTRs across diverse eukaryotic species. Our comparative analysis encompassed the 5'-UTRs and 3'UTRs of 360 species representing diverse eukaryotic domains of life, including Arthropoda (Diptera, Hemiptera, and Hymenoptera), Chordata (Artiodactyla, Carnivora, Galliformes, Passeriformes, Primates, Rodentia, Squamata, Testudines), Magnoliophyta (Brassicales), Fabales (Poales), and Nematoda (Rhabditida), on the basis of datasets derived from the UTRdb. We observed that species belonging to taxonomic orders such as Rhabditida, Diptera, Brassicales, and Hemiptera present a prevalence of curved DNA motifs in their UTRs, whereas orders such as Testudines, Galliformes, and Rodentia present a preponderance of G-quadruplexes in both UTRs. The distribution of motifs is conserved across different taxonomic classes, although species-specific variations in motif preferences were also observed. Our research unequivocally illuminates the prevalence and potential functional implications of non-B DNA motifs, offering invaluable insights into the evolutionary and biological significance of these structures.
Collapse
Affiliation(s)
- Aruna Sesha Chandrika Gummadi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Divya Kumari Muppa
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Venakata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
2
|
Garavís M, Edwards PJB, Serrano-Chacón I, Doluca O, Filichev V, González C. Understanding intercalative modulation of G-rich sequence folding: solution structure of a TINA-conjugated antiparallel DNA triplex. Nucleic Acids Res 2024; 52:2686-2697. [PMID: 38281138 PMCID: PMC10954471 DOI: 10.1093/nar/gkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
We present here the high-resolution structure of an antiparallel DNA triplex in which a monomer of para-twisted intercalating nucleic acid (para-TINA: (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol) is covalently inserted as a bulge in the third strand of the triplex. TINA is a potent modulator of the hybridization properties of DNA sequences with extremely useful properties when conjugated in G-rich oligonucleotides. The insertion of para-TINA between two guanines of the triplex imparts a high thermal stabilization (ΔTM = 9ºC) to the structure and enhances the quality of NMR spectra by increasing the chemical shift dispersion of proton signals near the TINA location. The structural determination reveals that TINA intercalates between two consecutive triads, causing only local distortions in the structure. The two aromatic moieties of TINA are nearly coplanar, with the phenyl ring intercalating between the flanking guanine bases in the sequence, and the pyrene moiety situated between the Watson-Crick base pair of the two first strands. The precise position of TINA within the triplex structure reveals key TINA-DNA interactions, which explains the high stabilization observed and will aid in the design of new and more efficient binders to DNA.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Química Física ‘Blas Cabrera’, (IQF-CSIC), Madrid 28006, Spain
| | - Patrick J B Edwards
- School of Natural Sciences, Massey University, Palmerston North 4412, New Zealand
| | | | - Osman Doluca
- School of Natural Sciences, Massey University, Palmerston North 4412, New Zealand
| | | | - Carlos González
- Instituto de Química Física ‘Blas Cabrera’, (IQF-CSIC), Madrid 28006, Spain
| |
Collapse
|
3
|
Klose JW, Begbie AJ, Toronjo-Urquiza L, Pukala TL. Native Mass Spectrometric Insights into the Formation and Stability of DNA Triplexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:613-621. [PMID: 38393825 DOI: 10.1021/jasms.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Deoxyribonucleic acid is a genetic biomacromolecule that contains the inherited information required to build and maintain a living organism. While the canonical duplex DNA structure is rigorously characterized, the structure and function of higher order DNA structures such as DNA triplexes are comparatively poorly understood. Previous literature has shown that these triplexes can form under physiological conditions, and native mass spectrometry offers a useful platform to study their formation and stability. However, experimental conditions including buffer salt concentration, pH, and instrumentation parameters such as ion mode can confound analysis by impacting the amount of triplex observed by mass spectrometry. Using model 30mer Y-type triplex sequences, we demonstrate the influence a range of experimental variables have on the detection of DNA triplex structures, informing suitable conditions for the study. When carefully considered conditions are used, mass spectrometry offers a powerful complementary tool for the analysis of higher order DNA assemblies.
Collapse
Affiliation(s)
- Jack W Klose
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexander J Begbie
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Yella VR, Vanaja A. Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie 2023; 214:101-111. [PMID: 37311475 DOI: 10.1016/j.biochi.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The promoter regions of gene regulation are under evolutionary constraints and earlier studies uncovered that they are characterized by enrichment of functional non-B DNA structural signatures like curved DNA, cruciform DNA, G-quadruplex, triple-helical DNA, slipped DNA structures, and Z-DNA. However, these studies are restricted to a few model organisms, single non-B DNA motif types, or whole genomic sequences, and their comparative accumulation in promoter regions of different domains of life has not been reported comprehensively. In this study, for the first time, we investigated the preponderance of non-B DNA-prone motifs in promoter regions in 1180 genomes belonging to 28 taxonomic groups using the non-B DNA Motif Search Tool (nBMST). The trends suggest that they are predominant in promoters compared to the upstream and downstream regions of all three domains of life and variably linked to taxonomic groups. Cruciform DNA motif is the most abundant form of non-B DNA, spanning from archaea to lower eukaryotes. Curved DNA motifs are prominent in host-associated bacteria, and suppressed in mammals. Triplex-DNA and slipped DNA structure repeats are discretely dispersed in all lineages. G-quadruplex motifs are significantly enriched in mammals. We also observed that the unique enrichment of non-B DNA in promoters is strongly linked to genome GC, size, evolutionary time divergence, and ecological adaptations. Overall, our work systematically reports the unique non-B DNA structural landscape of cellular organisms from the perspective of the cis-regulatory code of genomes.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India.
| | - Akkinepally Vanaja
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
5
|
Kumar S, Arora A, Kumar R, Senapati NN, Singh BK. Recent advances in synthesis of sugar and nucleoside coumarin conjugates and their biological impact. Carbohydr Res 2023; 530:108857. [PMID: 37343455 DOI: 10.1016/j.carres.2023.108857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Naturally occurring coumarin and sugar molecules have a diverse range of applications along with superior biocompatibility. Coumarin, a member of the benzopyrone family, exhibits a wide spectrum of medicinal properties, such as anti-coagulant, anti-bacterial, anti-tumor, anti-oxidant, anti-cancer, anti-inflammatory and anti-viral activities. The sugar moiety functions as the central scaffold for the synthesis of complex molecules, attributing to their excellent biocompatibility, well-defined stereochemistry, benign nature and outstanding aqueous solubility. When the coumarin moiety is conjugated with the sugar or nucleoside molecule, the resulting conjugates exhibit significant biological properties. Due to the remarkable growth of such bioconjugates in the field of science over the last decade, owing to their future prospect as a potential bioactive core, an update to this area is very much needed. The present review focusses on the synthesis, characterization and the various therapeutic applications of coumarin conjugates, i.e., sugar and nucleoside coumarin conjugates along with their perspective for future research.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry and Environmental Science, Medgar Evers College, City University of New York, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India.
| | | | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Kohestani H, Wereszczynski J. The effects of RNA.DNA-DNA triple helices on nucleosome structures and dynamics. Biophys J 2023; 122:1229-1239. [PMID: 36798026 PMCID: PMC10111275 DOI: 10.1016/j.bpj.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Noncoding RNAs (ncRNAs) are an emerging epigenetic factor and have been recognized as playing a key role in many gene expression pathways. Structurally, binding of ncRNAs to isolated DNA is strongly dependent on sequence complementary and results in the formation of an RNA.DNA-DNA (RDD) triple helix. However, in vivo DNA is not isolated but is rather packed in chromatin fibers, the fundamental unit of which is the nucleosome. Biochemical experiments have shown that ncRNA binding to nucleosomal DNA is elevated at DNA entry and exit sites and is dependent on the presence of the H3 N-terminal tails. However, the structural and dynamical bases for these mechanisms remain unknown. Here, we have examined the mechanisms and effects of RDD formation in the context of the nucleosome using a series of all-atom molecular dynamics simulations. Results highlight the importance of DNA sequence on complex stability, elucidate the effects of the H3 tails on RDD structures, show how RDD formation impacts the structure and dynamics of the H3 tails, and show how RNA alters the local and global DNA double-helical structure. Together, our results suggest ncRNAs can modify nucleosome, and potentially higher-order chromatin, structures and dynamics as a means of exerting epigenetic control.
Collapse
Affiliation(s)
- Havva Kohestani
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Departments of Physics & Biology, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
7
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
8
|
Li C, Zhou Z, Ren C, Deng Y, Peng F, Wang Q, Zhang H, Jiang Y. Triplex-forming oligonucleotides as an anti-gene technique for cancer therapy. Front Pharmacol 2022; 13:1007723. [PMID: 36618947 PMCID: PMC9811266 DOI: 10.3389/fphar.2022.1007723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of double-stranded DNA with high specificity and affinity and inhibit gene expression. Triplex-forming oligonucleotides have gained prominence because of their potential applications in antigene therapy. In particular, the target specificity of triplex-forming oligonucleotides combined with their ability to suppress oncogene expression has driven their development as anti-cancer agents. So far, triplex-forming oligonucleotides have not been used for clinical treatment and seem to be gradually snubbed in recent years. But triplex-forming oligonucleotides still represent an approach to down-regulate the expression of the target gene and a carrier of active substances. Therefore, in the present review, we will introduce the characteristics of triplex-forming oligonucleotides and their anti-cancer research progress. Then, we will discuss the challenges in their application.
Collapse
Affiliation(s)
- Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zunzhen Zhou
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Deng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Peng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qiongfen Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China,*Correspondence: Hong Zhang, ; Yuan Jiang,
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China,*Correspondence: Hong Zhang, ; Yuan Jiang,
| |
Collapse
|
9
|
Notomi R, Sasaki S, Taniguchi Y. Recognition of 5-methyl-CG and CG base pairs in duplex DNA with high stability using antiparallel-type triplex-forming oligonucleotides with 2-guanidinoethyl-2'-deoxynebularine. Nucleic Acids Res 2022; 50:12071-12081. [PMID: 36454012 PMCID: PMC9757063 DOI: 10.1093/nar/gkac1110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
The formation of triplex DNA is a site-specific recognition method that directly targets duplex DNA. However, triplex DNA formation is generally formed for the GC and AT base pairs of duplex DNA, and there are no natural nucleotides that recognize the CG and TA base pairs, or even the 5-methyl-CG (5mCG) base pair. Moreover, duplex DNA, including 5mCG base pairs, epigenetically regulates gene expression in vivo, and thus targeting strategies are of biological importance. Therefore, the development of triplex-forming oligonucleotides (TFOs) with artificial nucleosides that selectively recognize these base pairs with high affinity is needed. We recently reported that 2'-deoxy-2-aminonebularine derivatives exhibited the ability to recognize 5mCG and CG base pairs in triplex formation; however, this ability was dependent on sequences. Therefore, we designed and synthesized new nucleoside derivatives based on the 2'-deoxy-nebularine (dN) skeleton to shorten the linker length connecting to the hydrogen-bonding unit in formation of the antiparallel motif triplex. We successfully demonstrated that TFOs with 2-guanidinoethyl-2'-deoxynebularine (guanidino-dN) recognized 5mCG and CG base pairs with very high affinity in all four DNA sequences with different adjacent nucleobases of guanidino-dN as well as in the promoter sequences of human genes containing 5mCG base pairs with a high DNA methylation frequency.
Collapse
Affiliation(s)
- Ryotaro Notomi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo city, Nagasaki 859-3298, Japan
| | - Yosuke Taniguchi
- To whom correspondence should be addressed. Tel: +81 92 642 6569; Fax: +81 92 642 6876;
| |
Collapse
|
10
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
11
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
12
|
Bege M, Borbás A. The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals (Basel) 2022; 15:ph15080909. [PMID: 35893733 PMCID: PMC9330994 DOI: 10.3390/ph15080909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
13
|
Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peptide nucleic acid (PNA) is an analog of natural nucleic acids, where the sugar-phosphate backbone of DNA is replaced by an electrostatically neutral N-(2-aminoethyl)glycine backbone. This unique peptide-based backbone enables PNAs to form a very stable duplex with the complementary nucleic acids via Watson–Crick base pairing since there is no electrostatic repulsion between PNA and DNA·RNA. With this high nucleic acid affinity, PNAs have been used in a wide range of fields, from biological applications such as gene targeting, to engineering applications such as probe and sensor developments. In addition to single-stranded DNA, PNA can also recognize double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is hard to achieve with other artificial nucleic acids and is expected to be a promising method to recognize dsDNA in cellula or in vivo since the invasion does not require the prior denaturation of dsDNA. In this paper, we provide basic knowledge of PNA and mainly focus on the research of PNA invasion.
Collapse
|
14
|
Rangel VM, Gu L, Chen G, Chen QH, Xue L. 5-Substituted 3, 3', 4', 7-tetramethoxyflavonoids - A novel class of potent DNA triplex specific binding ligands. Bioorg Med Chem Lett 2022; 61:128608. [PMID: 35143982 DOI: 10.1016/j.bmcl.2022.128608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
Abstract
Herein, we present a class of potent triplex DNA binding ligands derived from the natural product quercetin, which is the first of its kind that has ever been reported in the literature. The binding of 5-substituted quercetin derivatives (3, 3', 4', 7-tetramethoxyflavonoids) to triplex and duplex DNA was investigated using several biophysical tools, including thermal denaturation monitored by UV, circular dichroism, differential scanning calorimetry, and isothermal titration calorimetry. Experimental data reveal that several 5-substituted 3, 3', 4', 7-tetramethoxyflavonoids have remarkable effects on binding to DNA triple helices, and they do not influence the double-helical DNA structures. A few derivatives such as compounds 5 and 7 have comparable (if not better) binding affinities to neomycin, a well-known DNA triplex binding ligand, under the same conditions. The amino-containing side chains at the 5-position of 3, 3', 4', 7-tetramethoxyflavonoids are crucial for the observed binding affinity and specificity.
Collapse
Affiliation(s)
- Vanessa M Rangel
- Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Landy Gu
- Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, CA 93740, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, CA 93740, USA
| | - Liang Xue
- Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| |
Collapse
|
15
|
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35:355-369. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.
Collapse
Affiliation(s)
- Christopher M Topham
- Molecular Forces Consulting, 24 Avenue Jacques Besse, 81500, Lavaur, France.
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| | - Jeremy C Smith
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| |
Collapse
|
16
|
Hari Y, Ito Y, Hama C, Osawa T. The Effect of the Base Triplets Adjacent to a T•CG or 5-MethylC•CG Triplet in the Triplex DNA. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Investigation of the Characteristics of NLS-PNA: Influence of NLS Location on Invasion Efficiency. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide nucleic acid can recognise sequences in double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is a promising method for the recognition of dsDNA in cellula because peptide nucleic acid (PNA) invasion does not require the prior denaturation of dsDNA. To increase its applicability, we developed PNAs modified with a nuclear localisation signal (NLS) peptide. In this study, the characteristics of NLS-modified PNAs were investigated for the future design of novel peptide-modified PNAs.
Collapse
|
18
|
Fujii A, Nakagawa O, Kishimoto Y, Nakatsuji Y, Nozaki N, Obika S. Oligonucleotides Containing Phenoxazine Artificial Nucleobases: Triplex-Forming Abilities and Fluorescence Properties. Chembiochem 2019; 21:860-864. [PMID: 31568630 DOI: 10.1002/cbic.201900536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 11/11/2022]
Abstract
1,3-Diaza-2-oxophenoxazine ("phenoxazine"), a tricyclic cytosine analogue, can strongly bind to guanine moieties and improve π-π stacking effects with adjacent bases in a duplex. Phenoxazine has been widely used for improving duplex-forming abilities. In this study, we have investigated whether phenoxazine and its analogue, 1,3,9-triaza-2-oxophenoxazine (9-TAP), could improve triplex-forming abilities. A triplex-forming oligonucleotide (TFO) incorporating a phenoxazine component was found to show considerably decreased binding affinity with homopurine/homopyrimidine double-stranded DNA, so the phenoxazine system was considered not to function as either a protonated cytosine or thymine analogue. Alternatively, a 9-TAP-containing artificial nucleobase developed by us earlier as a new phenoxazine analogue functioned as a thymine analogue with respect to AT base pairs in a parallel triplex DNA motif. The fluorescence of the 9-TAP moiety was maintained even in triplex (9-TAP:AT) formation, so 9-TAP might be useful as an imaging tool for various oligonucleotide nanotechnologies requiring triplex formation.
Collapse
Affiliation(s)
- Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yusuke Nakatsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Natsumi Nozaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Yang Y, Huang Y, Li C. A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Anal Chim Acta 2018; 1055:90-97. [PMID: 30782375 DOI: 10.1016/j.aca.2018.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Here we report an electrochemical DNA (E-DNA) sensor to detect a variety of analytes by using a novel interfacial probe that rationally integrates triplex-forming oligonucleotide (TFO) into a tetrahedral DNA nanostructure (TDN). In the presence of analyte, the blocked TFO is released and subsequently binds the edge of TDN to form a triplex DNA structure, which confines the redox reporter to be in close proximity to the underlying electrode and enhances the electrochemical signal. Thanks to the unique design and property of the probe, the proposed sensor could efficiently suppress the background signal (from 0.69 μA to 0.092 μA) and thus enhance the signal-to-noise ratio, resulting in improved sensing performance. Furthermore, the sensor displays new merits such as rapid response (∼35 min), one-step operation, easy regeneration (buffer change) and good generality (changing recognition element) compared with traditional TDN-based E-DNA sensor using enzyme displays signal transducer. In addition, to demonstrate real-world applicability of this new sensor, we have successfully detected different analytes (e.g., DNA, protein, and metal ion) in the complex media (e.g., serum, blood, and lake water), implying its considerable potential for precise bioanalysis in the future.
Collapse
Affiliation(s)
- Yucai Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
20
|
LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis 2018; 9:805. [PMID: 30042378 PMCID: PMC6057987 DOI: 10.1038/s41419-018-0869-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/10/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits poor prognosis, with high metastasis and low survival. Long non-coding RNAs (lncRNAs) play critical roles in tumor progression. Here, we identified lncRNA MIR100HG as a pro-oncogene for TNBC progression. Knockdown of MIR100HG decreased cell proliferation and induced cell arrest in the G1 phase, whereas overexpression of MIR100HG significantly increased cell proliferation. Furthermore, MIR100HG regulated the p27 gene to control the cell cycle, and subsequently impacted the progression of TNBC. In analyzing its underlying mechanism, bioinformatics prediction and experimental data demonstrated that MIR100HG participated in the formation of RNA–DNA triplex structures. MIR100HG in The Cancer Genome Atlas (TCGA) and breast cancer cell lines showed higher expression in TNBC than in other tumor types with poor prognosis. In conclusion, our data indicated a novel working pattern of lncRNA in TNBC progression, which may be a potential therapeutic target in such cancers.
Collapse
|
21
|
del Villar-Guerra R, Gray RD, Trent JO, Chaires JB. A rapid fluorescent indicator displacement assay and principal component/cluster data analysis for determination of ligand-nucleic acid structural selectivity. Nucleic Acids Res 2018; 46:e41. [PMID: 29361140 PMCID: PMC6283418 DOI: 10.1093/nar/gky019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
We describe a rapid fluorescence indicator displacement assay (R-FID) to evaluate the affinity and the selectivity of compounds binding to different DNA structures. We validated the assay using a library of 30 well-known nucleic acid binders containing a variety chemical scaffolds. We used a combination of principal component analysis and hierarchical clustering analysis to interpret the results obtained. This analysis classified compounds based on selectivity for AT-rich, GC-rich and G4 structures. We used the FID assay as a secondary screen to test the binding selectivity of an additional 20 compounds selected from the NCI Diversity Set III library that were identified as G4 binders using a thermal shift assay. The results showed G4 binding selectivity for only a few of the 20 compounds. Overall, we show that this R-FID assay, coupled with PCA and HCA, provides a useful tool for the discovery of ligands selective for particular nucleic acid structures.
Collapse
Affiliation(s)
- Rafael del Villar-Guerra
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
22
|
D'Souza AD, Belotserkovskii BP, Hanawalt PC. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:158-166. [PMID: 29357316 PMCID: PMC5820110 DOI: 10.1016/j.bbagrm.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023]
Abstract
The selective inhibition of transcription of a chosen gene by an artificial agent has numerous applications. Usually, these agents are designed to bind a specific nucleotide sequence in the promoter or within the transcribed region of the chosen gene. However, since optimal binding sites might not exist within the gene, it is of interest to explore the possibility of transcription inhibition when the agent is designed to bind at other locations. One of these possibilities arises when an additional transcription initiation site (e.g. secondary promoter) is present upstream from the primary promoter of the target gene. In this case, transcription inhibition might be achieved by inducing the formation of an RNA-DNA hybrid (R-loop) upon transcription from the secondary promoter. The R-loop could extend into the region of the primary promoter, to interfere with promoter recognition by RNA polymerase and thereby inhibit transcription. As a sequence-specific R-loop-inducing agent, a peptide nucleic acid (PNA) could be designed to facilitate R-loop formation by sequestering the non-template DNA strand. To investigate this mode for transcription inhibition, we have employed a model system in which a PNA binding site is localized between the T3 and T7 phage RNA polymerase promoters, which respectively assume the roles of primary and secondary promoters. In accord with our model, we have demonstrated that with PNA-bound DNA substrates, transcription from the T7 promoter reduces transcription from the T3 promoter by 30-fold, while in the absence of PNA binding there is no significant effect of T7 transcription upon T3 transcription.
Collapse
Affiliation(s)
- Alicia D D'Souza
- Department of Biology, Stanford University, Stanford, CA 94305-5020, United States
| | | | - Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, CA 94305-5020, United States.
| |
Collapse
|
23
|
Haque L, Bhuiya S, Das S. Assessment of intercalative interaction of the benzophenanthridine plant alkaloid nitidine with higher-ordered forms of RNA: spectroscopic evaluation. NEW J CHEM 2018. [DOI: 10.1039/c8nj03705a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectrophotometric, spectropolarimetric, viscometric and spectrofluorimetric analysis of the binding of the alkaloid nitidine to double- and triple-helical forms of RNA have served to highlight the ability of this drug to produce changes in the structure of RNA.
Collapse
Affiliation(s)
- Lucy Haque
- Department of Chemistry
- Jadavpur University
- Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Raja S. C. Mullick Road
- Kolkata 700 032
- India
| |
Collapse
|
24
|
Lee HT, Carr CE, Khutsishvili I, Marky LA. Effect of Loop Length and Sequence on the Stability of DNA Pyrimidine Triplexes with TAT Base Triplets. J Phys Chem B 2017; 121:9175-9184. [PMID: 28875701 DOI: 10.1021/acs.jpcb.7b07591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the thermodynamic contributions of loop length and loop sequence to the overall stability of DNA intramolecular pyrimidine triplexes. Two sets of triplexes were designed: in the first set, the C5 loop closing the triplex stem was replaced with 5'-CTnC loops (n = 1-5), whereas in the second set, both the duplex and triplex loops were replaced with a 5'-GCAA or 5'-AACG tetraloop. For the triplexes with a 5'-CTnC loop, the triplex with five bases in the loop has the highest stability relative to the control. A loop length lower than five compromises the strength of the base-pair stacks without decreasing the thermal stability, leading to a decreased enthalpy, whereas an increase in the loop length leads to a decreased enthalpy and a higher entropic penalty. The incorporation of the GCAA loop yielded more stable triplexes, whereas the incorporation of AACG in the triplex loop yielded a less stable triplex due to an unfavorable enthalpy term. Thus, addition of the GCAA tetraloop can cause an increase in the thermodynamics of the triplex without affecting the sequence or melting behavior and may result in an additional layer of genetic regulation.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
25
|
Effect of the 3-halo substitution of the 2′-deoxy aminopyridinyl-pseudocytidine derivatives on the selectivity and stability of antiparallel triplex DNA with a CG inversion site. Bioorg Med Chem 2017; 25:3853-3860. [DOI: 10.1016/j.bmc.2017.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
|
26
|
Zou L, Li R, Zhang M, Luo Y, Zhou N, Wang J, Ling L. A colorimetric sensing platform based upon recognizing hybridization chain reaction products with oligonucleotide modified gold nanoparticles through triplex formation. NANOSCALE 2017; 9:1986-1992. [PMID: 28106202 DOI: 10.1039/c6nr09089c] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel colorimetric sensing strategy for biomolecule assay has been developed, which integrates the signal amplification of the hybridization chain reaction (HCR) with the assembly of gold nanoparticles (AuNPs) through triplex formation. In the presence of targets, the HCR process can be triggered, the HCR products are specifically recognized by triplex-forming oligonucleotide (TFO) functionalized AuNPs, accompanying the aggregation of AuNPs and a dramatic absorbance change at 522 nm. In addition, the DNA hairpin probes can form rigid triplex structures with TFO-functionalized AuNPs in the absence of targets, resulting in a negligible background signal. By taking advantage of this new biosensor platform, a broad range of targets, involving nucleic acids, small molecules and proteins, have been successfully determined with high sensitivity and selectivity, which may hold great potential for practical application.
Collapse
Affiliation(s)
- Li Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Ruimin Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Manjun Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Yanwei Luo
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Nian Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
27
|
Vasilyeva SV, Filichev VV, Boutorine AS. Application of Cu(I)-catalyzed azide-alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA. Beilstein J Org Chem 2016; 12:1348-60. [PMID: 27559384 PMCID: PMC4979877 DOI: 10.3762/bjoc.12.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Efficient protocols based on Cu(I)-catalyzed azide-alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole-imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable triple helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- Institute of Chemical Biology & Fundamental Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France
| |
Collapse
|
28
|
Wirth-Hamdoune D, Ullrich S, Scheffer U, Radanović T, Dürner G, Göbel MW. A Bis(guanidinium)alcohol Attached to a Hairpin Polyamide: Synthesis, DNA Binding, and Plasmid Cleavage. Chembiochem 2016; 17:506-14. [DOI: 10.1002/cbic.201500566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Wirth-Hamdoune
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Toni Radanović
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Gerd Dürner
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
29
|
Aviñó A, Mazzini S, Gargallo R, Eritja R. The Effect of Small Cosolutes that Mimic Molecular Crowding Conditions on the Stability of Triplexes Involving Duplex DNA. Int J Mol Sci 2016; 17:211. [PMID: 26861295 PMCID: PMC4783943 DOI: 10.3390/ijms17020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022] Open
Abstract
Triplex stability is studied in crowding conditions using small cosolutes (ethanol, acetonitrile and dimethylsulfoxide) by ultraviolet (UV), circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. The results indicate that the triplex is formed preferentially when the triplex forming oligonucleotide (TFO) is RNA. In addition, DNA triplexes (D:D·D) are clearly less stable in cosolute solutions while the stability of the RNA triplexes (R:D·D) is only slightly decreased. The kinetic of triplex formation with RNA-TFO is slower than with DNA-TFO and the thermal stability of the triplex is increased with the salt concentration in EtOH-water solutions. Accordingly, RNA could be considered a potential molecule to form a stable triplex for regulatory purposes in molecular crowding conditions.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, Milan 20133, Italy.
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, Barcelona 08028, Spain.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
30
|
Kosbar TR, Sofan MA, Abou-Zeid L, Pedersen EB. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA. Org Biomol Chem 2016; 13:5115-21. [PMID: 25833006 DOI: 10.1039/c5ob00535c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.
Collapse
Affiliation(s)
- Tamer R Kosbar
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
31
|
An innovative platform for quick and flexible joining of assorted DNA fragments. Sci Rep 2016; 6:19278. [PMID: 26758940 PMCID: PMC4725820 DOI: 10.1038/srep19278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022] Open
Abstract
Successful synthetic biology efforts rely on conceptual and experimental designs in
combination with testing of multi-gene constructs. Despite recent progresses,
several limitations still hinder the ability to flexibly assemble and collectively
share different types of DNA segments. Here, we describe an advanced system for
joining DNA fragments from a universal library that automatically maintains open
reading frames (ORFs) and does not require linkers, adaptors, sequence homology,
amplification or mutation (domestication) of fragments in order to work properly.
This system, which is enhanced by a unique buffer formulation, provides unforeseen
capabilities for testing, and sharing, complex multi-gene circuitry assembled from
different DNA fragments.
Collapse
|
32
|
Affiliation(s)
- Natsuhisa Oka
- Department of Biomolecular Science, Faculty of Engineering, Gifu University
| | - Takeshi Wada
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
33
|
Ito Y, Masaki Y, Kanamori T, Ohkubo A, Seio K, Sekine M. Synthesis of 5-[3-(2-aminopyrimidin-4-yl)aminopropyn-1-yl]uracil derivative that recognizes Ade-Thy base pairs in double-stranded DNA. Bioorg Med Chem Lett 2016; 26:194-6. [PMID: 26602276 DOI: 10.1016/j.bmcl.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/28/2022]
Abstract
5-[3-(2-Aminopyrimidin-4-yl)aminopropyn-1-yl]uracil (Ura(Pyr)) was designed as a new nucleobase to recognize Ade-Thy base pair in double-stranded DNA. We successfully synthesized the dexoynucleoside phosphoramidite having Ura(Pyr) and incorporated it into triplex forming oligonucleotides (TFOs). Melting temperature analysis revealed that introduction of Ura(Pyr) into TFOs could effectively stabilize their triplex structures without loss of base recognition capabilities.
Collapse
Affiliation(s)
- Yu Ito
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Kohji Seio
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan.
| | - Mitsuo Sekine
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan.
| |
Collapse
|
34
|
Abstract
Since the first description of the canonical B-form DNA double helix, it has been suggested that alternative DNA, DNA–RNA, and RNA structures exist and act as functional genomic elements. Indeed, over the past few years it has become clear that, in addition to serving as a repository for genetic information, genomic DNA elicits biological responses by adopting conformations that differ from the canonical right-handed double helix, and by interacting with RNA molecules to form complex secondary structures. This review focuses on recent advances on three-stranded (triplex) nucleic acids, with an emphasis on DNA–RNA and RNA–RNA interactions. Emerging work reveals that triplex interactions between noncoding RNAs and duplex DNA serve as platforms for delivering site-specific epigenetic marks critical for the regulation of gene expression. Additionally, an increasing body of genetic and structural studies demonstrates that triplex RNA–RNA interactions are essential for performing catalytic and regulatory functions in cellular nucleoprotein complexes, including spliceosomes and telomerases, and for enabling protein recoding during programmed ribosomal frameshifting. Thus, evidence is mounting that DNA and RNA triplex interactions are implemented to perform a range of diverse biological activities in the cell, some of which will be discussed in this review.
Collapse
Affiliation(s)
- Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Role of long purine stretches in controlling the expression of genes associated with neurological disorders. Gene 2015; 572:175-83. [DOI: 10.1016/j.gene.2015.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 11/22/2022]
|
36
|
Rodríguez L, Villalobos X, Solé A, Lliberós C, Ciudad CJ, Noé V. Improved design of PPRHs for gene silencing. Mol Pharm 2015; 12:867-77. [PMID: 25615267 DOI: 10.1021/mp5007008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the modulation of gene expression by nucleic acids has become a routine tool in biomedical research for target validation and it is also used to develop new therapeutic approaches. Recently, we developed the so-called polypurine reverse Hoogsteen hairpins (PPRHs) that show high stability and a low immunogenic profile and we demonstrated their efficacy both in vitro and in vivo. In this work, we explored different characteristics of PPRHs to improve their usage as a tool for gene silencing. We studied the role of PPRH length in the range from 20 to 30 nucleotides. We also proved their higher affinity of binding and efficacy on cell viability compared to nonmodified TFOs. To overcome possible off-target effects, we tested wild-type PPRHs, which proved to be capable of binding to their target sequence with more affinity, displaying a higher stability of binding and a higher effect in terms of cell viability. Moreover, we developed a brand new molecule called Wedge-PPRH with the ability to lock the ds-DNA into the displaced structure and proved its efficacy in prostate and breast cancer cell lines.
Collapse
Affiliation(s)
- Laura Rodríguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Hari Y, Obika S, Kashima S, Matsuda Y, Sakata A, Takamine R, Ijitsu S. Base Pair Recognition Ability of 2-(Methylamino)pyrimidin-4-yl Nucleobase in Parallel Triplex DNA. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Ikawa Y, Katsumata S, Sakashita R, Furuta H. Spectrometric Detection of DNA by the Bis-Zn(II) Complex of a Water-soluble Doubly N-Confused Hexaphyrin. CHEM LETT 2014. [DOI: 10.1246/cl.140765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama
| | - Sho Katsumata
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Ryuichi Sakashita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- Center for Molecular Systems (CMS), Kyushu University
| |
Collapse
|
39
|
Hari Y. Development of artificial nucleic acid that recognizes a CG base pair in triplex DNA formation. YAKUGAKU ZASSHI 2014; 133:1201-8. [PMID: 24189561 DOI: 10.1248/yakushi.13-00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An oligonucleotide that can form a triplex with double-stranded DNA is called a triplex-forming oligonucleotide (TFO). TFOs have gained considerable attention because of their potential as gene targeting tools. However, triplex DNA formation involves inherent problems for practical use. The most important problem is that natural nucleotides in TFO do not have sufficient affinity and base pair-selectivity to pyrimidine-purine base pair, like a CG or TA base pair, within dsDNA. This suggests that dsDNA region including a CG or TA base pair cannot be targeted. Therefore, artificial nucleotides, especially with non-natural nucleobases, capable of direct recognition of a CG or TA base pair via hydrogen bond formation have been developed; however, nucleotides with better selectivity and stronger affinity are necessary for implementing this dsDNA-targeting technology using TFOs. Under such a background, we considered that facile and efficient synthesis of various nucleobase derivatives in TFOs would be useful for finding an ideal nucleobase for recognition of a CG or TA base pair because detailed and rational exploration of nucleobase structures is facilitated. Recently, to develop a nucleobase recognizing a CG base pair, we have used post-elongation modification, i.e., modification after oligonucleotide synthesis, for the facile synthesis of nucleobase derivatives. This review mainly summarizes our recent findings on the development of artificial nucleobases and nucleotides for recognition of a CG base pair in triplexes formed between dsDNA and TFOs.
Collapse
Affiliation(s)
- Yoshiyuki Hari
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
40
|
Akabane-Nakata M, Obika S, Hari Y. Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA. Org Biomol Chem 2014; 12:9011-5. [PMID: 25285418 DOI: 10.1039/c4ob01760a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phosphoramidite of a 2'-O,4'-C-methylene-bridged nucleoside, bearing 4-(2,4,6-triisopropylbenzenesulfonyloxy)pyridin-2-one as a nucleobase precursor, was synthesized and introduced into an oligonucleotide. Treatment with various secondary amines after elongating the oligonucleotide on an automated DNA synthesizer enabled facile and mild conversion of the precursor into the corresponding N,N-disubstituted 3-deazacytosine nucleobases. The evaluation of the triplex-forming ability of the synthesized oligonucleotides with double-stranded DNA showed that the nucleobase possessing the (3S)-3-guanidinopyrrolidine moiety can recognize a CG base pair with high sequence-selectivity and binding-affinity.
Collapse
Affiliation(s)
- Masaaki Akabane-Nakata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan.
| | | | | |
Collapse
|
41
|
Hégarat N, Novopashina D, Fokina AA, Boutorine AS, Venyaminova AG, Praseuth D, François JC. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation. FEBS J 2014; 281:1417-1431. [DOI: 10.1111/febs.12714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Nadia Hégarat
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
| | - Darya Novopashina
- Laboratory of RNA Chemistry; Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; Novosibirsk Russia
| | - Alesya A. Fokina
- Laboratory of RNA Chemistry; Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; Novosibirsk Russia
| | - Alexandre S. Boutorine
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
| | - Alya G. Venyaminova
- Laboratory of RNA Chemistry; Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; Novosibirsk Russia
| | - Danièle Praseuth
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
| | - Jean-Christophe François
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint Antoine; Paris France
- Faculté de Médecine and Hôpital Saint Antoine; INSERM; UMR_S 938; CDR Saint Antoine; Paris France
| |
Collapse
|
42
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
43
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
44
|
Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG. Fluorescent probes for nucleic Acid visualization in fixed and live cells. Molecules 2013; 18:15357-97. [PMID: 24335616 PMCID: PMC6270009 DOI: 10.3390/molecules181215357] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Collapse
Affiliation(s)
- Alexandre S. Boutorine
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| | - Olga A. Krasheninina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 2, Novosibirsk 630090, Russia
| | - Karine Nozeret
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| |
Collapse
|
45
|
Doluca O, Hale TK, Edwards PJB, González C, Filichev VV. Assembly Dependent Fluorescence Enhancing Nucleic Acids in Sequence-Specific Detection of Double-Stranded DNA. Chempluschem 2013; 79:58-66. [PMID: 31986766 DOI: 10.1002/cplu.201300310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/29/2013] [Indexed: 12/19/2022]
Abstract
In this study the position of the thiazole orange derivative in triplex-forming oligonucleotides (TFOs) is varied and the fluorescence of the resulting complexes with DNA duplexes, single-stranded DNAs and RNAs are evaluated. Under similar conditions single attachment of the TO-dye to 2'-O-propargyl nucleotides in the TFOs (assembly dependent fluorescence enhancing nucleic acids, AFENA) led to probes with low fluorescent intensity in the single-stranded state with fluorescence quantum yield (ΦF ) of 0.9 %-1.5 %. Significant increase in fluorescence intensity was detected after formation of DNA triplexes (ΦF =23.5 %-34.9 %). Under similar conditions, Watson-Crick-type duplexes formed by the probes with single stranded (ss) RNA and ssDNA showed lower fluorescence intensities. Bugle insertions of twisted intercalating nucleic acid (TINA) monomers were shown to improve the fluorescent characteristics of GT/GA-containing antiparallel AFENA-TFOs. Self-aggregation of TFOs caused by guanosines was eliminated by TINA insertion which also promoted DNA triplex formation at pH 7.2. Importantly these AFENA-TINA-TFOs can bind to the duplex in the presence of complementary RNA at 37 °C.
Collapse
Affiliation(s)
- Osman Doluca
- College of Sciences, Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North (New Zealand), Fax: (+64) 6-3505682.,International Burch University, Francuske Revolucije, 71210 Sarajevo (Bosnia and Herzegovina)
| | - Tracy K Hale
- College of Sciences, Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North (New Zealand), Fax: (+64) 6-3505682
| | - Patrick J B Edwards
- College of Sciences, Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North (New Zealand), Fax: (+64) 6-3505682
| | - Carlos González
- Instituto de Química Física Rocasalano, CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Vyacheslav V Filichev
- College of Sciences, Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North (New Zealand), Fax: (+64) 6-3505682
| |
Collapse
|
46
|
Biver T. Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Wei MT, Walter A, Gabrielian A, Schütz H, Birch-Hirschfeld E, Lin SB, Lin WC, Fritzsche H, Kan LS. Studies on the Extension of Sequence-independence and the Enhancement of DNA Triplex Formation. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Hari Y, Kashima S, Inohara H, Ijitsu S, Imanishi T, Obika S. Base-pair recognition ability of hydroxyphenyl nucleobases in parallel triplex DNA. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.05.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer. Bioorg Med Chem 2013; 21:5583-8. [PMID: 23830701 DOI: 10.1016/j.bmc.2013.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/22/2022]
Abstract
Phosphoramidites containing 2-propynyloxy or 1-butyn-4-yl as nucleobase precursors were synthesized and introduced into oligonucleotides using an automated DNA synthesizer. Copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of the oligonucleotides with various azides gave the corresponding triazolylated oligonucleotides, triplex-forming ability of these synthetic oligonucleotides with double-stranded DNA targets was evaluated by UV melting experiments. It was found that nucleobases containing 2-(1-m-carbonylaminophenyl-1,2,3-triazol-4-yl)ethyl units likely interacted with A of a TA base pair in a parallel triplex DNA.
Collapse
|
50
|
Bhowmik D, Kumar GS. Interaction of 9-O-(ω-amino) alkyl ether berberine analogs with poly(dT)·poly(dA)*poly(dT) triplex and poly(dA)·poly(dT) duplex: a comparative study. Mol Biol Rep 2013; 40:5439-50. [PMID: 23666107 DOI: 10.1007/s11033-013-2642-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Isoquinoline alkaloids and their analogs represent an important class of molecules for their broad range of clinical and pharmacological utility. These compounds are of current interest owing to their low toxicity and excellent chemo preventive properties. These alkaloids can play important role in stabilising the nucleic acid triple helices. The present study has focused on the interaction of five 9-O-(ω-amino) alkyl ether berberine analogs with the DNA triplex poly(dT)·poly(dA)*poly(dT) and the parent duplex poly(dA)·poly(dT) studied using various biophysical techniques. Scatchard analysis of the spectral data indicated that the analogs bind both to the duplex and triplex in a non-cooperative manner in contrast to the cooperative binding of berberine to the DNA triplex. Strong intercalative binding to the DNA triplex structure was revealed from ferrocyanide quenching, fluorescence polarization and viscosity results. Thermal melting studies demonstrated higher stabilization of the Hoogsteen base paired third strand of the DNA triplex compared to the Watson-Crick strand. Circular dichroism studies suggested a stronger perturbation of the DNA triplex conformation by the alkaloid analogs compared to the duplex. The binding was entropy-driven in each case and the entropy contribution to free energy increased as the length of the alkyl side chain increased. The analogs exhibited stronger binding affinity to the triple helical structure compared to the parent double helical structure.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | |
Collapse
|