1
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. PLANT CELL REPORTS 2022; 41:33-51. [PMID: 34402946 DOI: 10.1007/s00299-021-02773-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Purification of 5′-phosphodiesterase from Adzuki (Vigna angularis L.) bean. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Sabatucci A, Pintus F, Cabras T, Vincenzoni F, Maccarrone M, Medda R, Dainese E. Structure of a nucleotide pyrophosphatase/phosphodiesterase (NPP) from Euphorbia characias latex characterized by small-angle X-ray scattering: clues for the general organization of plant NPPs. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:857-867. [PMID: 32876061 DOI: 10.1107/s2059798320010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Little information is available concerning the structural features of nucleotide pyrophosphatase/phosphodiesterases (NPPs) of plant origin and the crystal structures of these proteins have not yet been reported. The aim of this study was to obtain insight into these aspects by carrying out a comparative analysis of the sequences of two different fragments of an NPP from the latex of the Mediterranean shrub Euphorbia characias (ELNPP) and by studying the low-resolution structure of the purified protein in solution by means of small-angle X-ray scattering. This is the first structure of a plant NPP in solution that has been reported to date. It is shown that the ELNPP sequence is highly conserved in many other plant species. Of note, the catalytic domains of these plant NPPs have the same highly conserved PDE-domain organization as mammalian NPPs. Moreover, ELNPP is a dimer in solution and this oligomerization state is likely to be common to other plant enzymes.
Collapse
Affiliation(s)
- Annalaura Sabatucci
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico University, Via Álvaro del Portillo 21, 00128 Roma, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Enrico Dainese
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
4
|
Wu W, Lin Y, Liu P, Chen Q, Tian J, Liang C. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:603-617. [PMID: 29329437 PMCID: PMC5853315 DOI: 10.1093/jxb/erx441] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/13/2017] [Indexed: 05/20/2023]
Abstract
Plant root cell walls are dynamic systems that serve as the first plant compartment responsive to soil conditions, such as phosphorus (P) deficiency. To date, evidence for the regulation of root cell wall proteins (CWPs) by P deficiency remains sparse. In order to gain a better understanding of the roles played by CWPs in the roots of soybean (Glycine max) in adaptation to P deficiency, we conducted an iTRAQ (isobaric tag for relative and absolute quantitation) proteomic analysis. A total of 53 CWPs with differential accumulation in response to P deficiency were identified. Subsequent qRT-PCR analysis correlated the accumulation of 21 of the 27 up-regulated proteins, and eight of the 26 down-regulated proteins with corresponding gene expression patterns in response to P deficiency. One up-regulated CWP, purple acid phosphatase 1-like (GmPAP1-like), was functionally characterized. Phaseolus vulgaris transgenic hairy roots overexpressing GmPAP1-like displayed an increase in root-associated acid phosphatase activity. In addition, relative growth and P content were significantly enhanced in GmPAP1-like overexpressing lines compared to control lines when deoxy-ribonucleotide triphosphate (dNTP) was applied as the sole external P source. Taken together, the results suggest that the modulation of CWPs may regulate complex changes in the root system in response to P deficiency, and that the cell wall-localized GmPAP1-like protein is involved in extracellular dNTP utilization in soybean.
Collapse
Affiliation(s)
- Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Pandao Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Hainan, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Wang J, Si Z, Li F, Xiong X, Lei L, Xie F, Chen D, Li Y, Li Y. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus. PLANT MOLECULAR BIOLOGY 2015; 88:515-529. [PMID: 26105827 DOI: 10.1007/s11103-015-0323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation.
Collapse
Affiliation(s)
- Jianyun Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li HF, Chen XP, Zhu FH, Liu HY, Hong YB, Liang XQ. Transcriptome profiling of peanut (Arachis hypogaea) gynophores in gravitropic response. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1249-1260. [PMID: 32481192 DOI: 10.1071/fp13075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/18/2013] [Indexed: 06/11/2023]
Abstract
Peanut (Arachis hypogaea L.) produces flowers aerially, but the fruit develops underground. This process is mediated by the gynophore, which always grows vertically downwards. The genetic basis underlying gravitropic bending of gynophores is not well understood. To identify genes related to gynophore gravitropism, gene expression profiles of gynophores cultured in vitro with tip pointing upward (gravitropic stimulation sample) and downward (control) at both 6 and 12h were compared through a high-density peanut microarray. After gravitropic stimulation, there were 174 differentially expressed genes, including 91 upregulated and 83 downregulated genes at 6h, and 491 differentially expressed genes including 129 upregulated and 362 downregulated genes at 12h. The differentially expressed genes identified were assigned to 24 functional categories. Twenty pathways including carbon fixation, aminoacyl-tRNA biosynthesis, pentose phosphate pathway, starch and sucrose metabolism were identified. The quantitative real-time PCR analysis was performed for validation of microarray results. Our study paves the way to better understand the molecular mechanisms underlying the peanut gynophore gravitropism.
Collapse
Affiliation(s)
- Hai-Fen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiao-Ping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fang-He Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hai-Yan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yan-Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuan-Qiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Purification and characterisation of a soluble nucleotide pyrophosphatase/phosphodiesterase from prickly pear (Opuntia ficus indica) fruits. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Olczak M, Ciuraszkiewicz J, Wójtowicz H, Maszczak D, Olczak T. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) contains an iron-manganese center. FEBS Lett 2009; 583:3280-4. [PMID: 19755125 DOI: 10.1016/j.febslet.2009.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 08/31/2009] [Accepted: 09/09/2009] [Indexed: 11/26/2022]
Abstract
Yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1) represents a novel group of enzymes. Here we report that it possesses one iron atom and one manganese atom (1:1 molar ratio) per subunit. The enzyme exhibits visible absorption maximum at approximately 530 nm. Prolonged oxidation of PPD1 leads to loss of the charge-transfer band and catalytic activity, whereas after reduction PPD1 remains active. Replacement of conserved amino-acid residues coordinating metals results in the loss of enzymatic activity. Despite low amino-acid sequence homology of PPD1 to well-characterized approximately 55-kDa purple acid phosphatases, their overall fold, topology of active center and metal content are highly similar.
Collapse
Affiliation(s)
- Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
9
|
Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, Muñoz FJ, Rodríguez-López M, Baroja-Fernández E, Pozueta-Romero J. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway. THE PLANT CELL 2006; 18:2582-92. [PMID: 17028208 PMCID: PMC1626603 DOI: 10.1105/tpc.105.039891] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 07/24/2006] [Accepted: 09/14/2006] [Indexed: 05/12/2023]
Abstract
A nucleotide pyrophosphatase/phosphodiesterase (NPP) activity that catalyzes the hydrolytic breakdown of ADP-glucose (ADPG) has been shown to occur in the plastidial compartment of both mono- and dicotyledonous plants. To learn more about this enzyme, we purified two NPPs from rice (Oryza sativa) and barley (Hordeum vulgare) seedlings. Both enzymes are glycosylated, since they bind to concanavalin A, stain with periodic acid-Schiff reagent, and are digested by Endo-H. A complete rice NPP cDNA, designated as NPP1, was isolated, characterized, and overexpressed in transgenic plants displaying high ADPG hydrolytic activity. Databank searches revealed that NPP1 belongs to a functionally divergent group of plant nucleotide hydrolases. NPP1 contains numerous N-glycosylation sites and a cleavable hydrophobic signal sequence that does not match with the N-terminal part of the mature protein. Both immunocytochemical analyses and confocal fluorescence microscopy of rice cells expressing NPP1 fused with green fluorescent protein (GFP) revealed that NPP1-GFP occurs in the plastidial compartment. Brefeldin A treatment of NPP1-GFP-expressing cells prevented NPP1-GFP accumulation in the chloroplasts. Endo-H digestibility studies revealed that both NPP1 and NPP1-GFP in the chloroplast are glycosylated. Collectively, these data demonstrate the trafficking of glycosylated proteins from the endoplasmic reticulum-Golgi system to the chloroplast in higher plants.
Collapse
Affiliation(s)
- Yohei Nanjo
- Laboratory of Plant and Microbial Genome Control, Department of Applied Biological Chemistry, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Olczak M, Olczak T. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 2006; 359:45-53. [PMID: 17046707 DOI: 10.1016/j.ab.2006.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 11/30/2022]
Abstract
Protein expression and secretion in insect cells have been widely studied in the baculovirus-infected insect cell system. In directly transfected insect cells only intracellular expression and purification of recombinant proteins have been studied in detail. To examine multiple recombinant protein variants, easy and fast expression and a purification screening system are required. The aim of this study was to establish an effective and rapid secretion system for human azurocidin using directly transfected insect cells. We also constructed and tested expression vectors possessing heterologous signal peptides derived from human azurocidin, yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1), and papaya papain IV to secrete yellow lupin and red kidney bean purple acid phosphatases, PPD1, and papain IV. Our results demonstrate that the secretion vectors used here can direct recombinant proteins to the culture medium very effectively, allowing their simple purification on a small/medium scale. Based on secretion and activity analyses it seems that the azurocidin signal peptide is one of the most potent secretion signals.
Collapse
Affiliation(s)
- Mariusz Olczak
- Laboratory of Biochemistry, Institute of Biochemistry and Molecular Biology, Wroclaw University, 50-137 Wroclaw, Poland.
| | | |
Collapse
|
11
|
Zambonelli C, Roberts MF. Non-HKD Phospholipase D Enzymes: New Players in Phosphatidic Acid Signaling? ACTA ACUST UNITED AC 2005; 79:133-81. [PMID: 16096028 DOI: 10.1016/s0079-6603(04)79003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Carlo Zambonelli
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
12
|
Olczak M, Olczak T. Expression and purification of active plant diphosphonucleotide phosphatase/phosphodiesterase from baculovirus-infected insect cells. Protein Expr Purif 2005; 39:116-23. [PMID: 15596367 DOI: 10.1016/j.pep.2004.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/14/2004] [Indexed: 10/26/2022]
Abstract
We have previously purified and characterized a diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin seeds. This report describes an efficient strategy for overexpression in baculovirus-infected Spodoptera frugiperda Sf9 cells and purification of a functional PPD1 enzyme. We tested six variants of recombinant PPD1, differing in secretion peptides, fusion tags, and promoters. The highest expression level of the active PPD1 was achieved when the native signal peptide and the C-terminal V5-6His tag were attached. This recombinant protein was secreted at very high level (18.4 mg/L) to serum-free medium. Single-step purification procedure using metal affinity chromatography resulted in the homogeneous PPD1. The overexpressed protein showed enzymatic activity comparable to the native enzyme isolated previously from plant material. We showed that PPD1, which belongs to purple acid phosphatase family, formed tetrameric structure, which is non-typical for this group of enzymes.
Collapse
Affiliation(s)
- Mariusz Olczak
- Laboratory of Biochemistry, Institute of Biochemistry and Molecular Biology, Wroclaw University, Wroclaw, Poland.
| | | |
Collapse
|
13
|
Van Der Rest B, Rolland N, Boisson AM, Ferro M, Bligny R, Douce R. Identification and characterization of plant glycerophosphodiester phosphodiesterase. Biochem J 2004; 379:601-7. [PMID: 14750903 PMCID: PMC1224124 DOI: 10.1042/bj20031489] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 12/22/2003] [Accepted: 01/29/2004] [Indexed: 11/17/2022]
Abstract
GPX-PDE (glycerophosphodiester phosphodiesterase; EC 3.1.4.46) is a relatively poorly characterized enzyme that catalyses the hydrolysis of various glycerophosphodiesters (glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoglycerol, glycerophosphoserine and bis-glycerophosphoglycerol), releasing sn-glycerol 3-phosphate and the corresponding alcohol. In a previous study, we demonstrated the existence of a novel GPX-PDE in the cell walls and vacuoles of plant cells. Since no GPX-PDE had been identified in any plant organism, the purification of GPX-PDE from carrot cell walls was attempted. After extraction of cell wall proteins from carrot cell suspension cultures with CaCl2, GPX-PDE was purified up to 2700-fold using, successively, ammonium sulphate precipitation, gel filtration and concanavalin A-Sepharose. Internal sequence analysis of a 55 kDa protein identified in the extract following 2700-fold purification revealed strong similarity to the primary sequence of GLPQ, a bacterial GPX-PDE. To confirm the identity of plant GPX-PDE, an Arabidopsis thaliana cDNA similar to that encoding the bacterial GPX-PDE was cloned and overexpressed in a bacterial expression system, and was used to raise antibodies against the putative Arabidopsis thaliana GPX-PDE. Immunochemical assays performed on carrot cell wall proteins extracted by CaCl2 treatment showed a strong correlation between GPX-PDE activity and detection of the 55 kDa protein, validating the identity of the plant GPX-PDE. Finally, various properties of the purified enzyme were investigated. GPX-PDE is a multimeric enzyme, specific for glycerophosphodiesters, exhibiting a K(m) of 36 microM for glycerophosphocholine and active within a wide pH range (from 4 to 10). Since these properties are similar to those of GLPQ, the bacterial GPX-PDE, the similarities between plant and bacterial enzymes are also discussed.
Collapse
Affiliation(s)
- Benoît Van Der Rest
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CEA, CNRS, INRA Université Joseph Fourier, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
14
|
Olczak M, Watorek W. Processing of N-glycans of two yellow lupin phosphohydrolases during seed maturation and dormancy. PHYTOCHEMISTRY 2002; 61:645-655. [PMID: 12423885 DOI: 10.1016/s0031-9422(02)00360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acid phosphatase (AP) and diphosphonucleoside phosphatase/phosphodiesterase (PPD1) were purified from yellow lupin (Lupinus luteus L.) immature green seeds (40 days after blooming), dry seeds (40 days later) and dry seeds stored for 160 days. Both enzymes are known to differ in the type of N-glycosylation: the first has an N-glycosylation pattern typical for a vacuolar protein, while the second enzyme has a pattern typical for an extracellular or membrane-bound protein. N-Glycans were released from each of the enzyme preparations, fluorescence labeled, separated and identified by HPLC (GlycoSep N and GlycoSep H columns). Changes in the level of each N-glycan during seed maturation and dormancy were compared. The results show that N-glycan processing in the case of AP and PPD1-two proteins residing in the same plant organ, but possibly in different compartments-is not synchronized and performed not only in metabolically active maturing seeds, but also in metabolically inactive dormant seeds.
Collapse
Affiliation(s)
- Mariusz Olczak
- Wroclaw University, Institute of Biochemistry and Molecular Biology, Tamka 2, Poland
| | | |
Collapse
|
15
|
van der Rest B, Boisson AM, Gout E, Bligny R, Douce R. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. PLANT PHYSIOLOGY 2002; 130:244-55. [PMID: 12226504 PMCID: PMC166557 DOI: 10.1104/pp.003392] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/06/2002] [Accepted: 05/16/2002] [Indexed: 05/19/2023]
Abstract
Glycerophosphocholine (GroPCho) is a diester that accumulates in different physiological processes leading to phospholipid remodeling. However, very little is known about its metabolism in higher plant cells. (31)P-Nuclear magnetic resonance spectroscopy and biochemical analyses performed on carrot (Daucus carota) cells fed with GroPCho revealed the existence of an extracellular GroPCho phosphodiesterase. This enzymatic activity splits GroPCho into sn-glycerol-3-phosphate and free choline. In vivo, sn-glycerol-3-phosphate is further hydrolyzed into glycerol and inorganic phosphate by acid phosphatase. We visualized the incorporation and the compartmentation of choline and observed that the major choline pool was phosphorylated and accumulated in the cytosol, whereas a minor fraction was incorporated in the vacuole as free choline. Isolation of plasma membranes, culture medium, and cell wall proteins enabled us to localize this phosphodiesterase activity on the cell wall. We also report the existence of an intracellular glycerophosphodiesterase. This second activity is localized in the vacuole and hydrolyzes GroPCho in a similar fashion to the cell wall phosphodiesterase. Both extra- and intracellular phosphodiesterases are widespread among different plant species and are often enhanced during phosphate deprivation. Finally, competition experiments on the extracellular phosphodiesterase suggested a specificity for glycerophosphodiesters (apparent K(m) of 50 microM), which distinguishes it from other phosphodiesterases previously described in the literature.
Collapse
Affiliation(s)
- Benoît van der Rest
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5019, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier, Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | | | | | |
Collapse
|
16
|
Olczak M, Olczak T. Diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus L.) belongs to a novel group of specific metallophosphatases. FEBS Lett 2002; 519:159-63. [PMID: 12023036 DOI: 10.1016/s0014-5793(02)02740-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cDNA encoding previously purified and characterized diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) was identified. The ppd1 gene encodes a protein containing a cleavable signal sequence. A functional expression of PPD1 in Saccharomyces cerevisiae confirmed the proper gene identification. A gene homologous to ppd1, encoding a putative membrane protein (PPD2), as well as fragments of two other genes encoding PPD3 and PPD4 proteins were also isolated. Amino acids composing the putative active center of PPD1 and PPD2 are similar to those present in known purple acid phosphatases, which suggests that the reported genes might encode a novel group of specific metallophosphatases. RT-PCR revealed that the corresponding PPD1 mRNA accumulates in stems and leaves, and PPD2 mRNA in stems, leaves and seedlings.
Collapse
Affiliation(s)
- Mariusz Olczak
- Institute of Biochemistry and Molecular Biology, Wroclaw University, Tamka 2, Wroclaw, Poland
| | | |
Collapse
|
17
|
Rodríguez-López M, Baroja-Fernández E, Zandueta-Criado A, Moreno-Bruna B, Muñoz FJ, Akazawa T, Pozueta-Romero J. Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett 2001; 490:44-8. [PMID: 11172808 DOI: 10.1016/s0014-5793(01)02135-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two isoforms of ADPglucose pyrophosphatase/phosphodiesterase (AGPPase) have been characterized using barley leaves (Hordeum vulgare L.). Whilst one of the isoforms, designated as soluble AGPPase1 (SAGPPase1), is soluble in low ionic strength buffers, the other, SAGPPase2, is extractable using cell wall hydrolytic enzymes or high salt concentration solutions, thus indicating that it is adventitiously bound to the cell wall. Both AGPPase isoforms are highly resistant to SDS, this characteristic being utilized to purify them to homogeneity after zymographic detection of AGPPase activity in SDS-containing gels. N-terminal and internal amino acid sequencing analyses revealed that both SAGPPase1 and SAGPPase2 are distinct oligomers of the previously designated HvGLP1, which is a member of the ubiquitously distributed group of proteins of unknown function designated as germin-like proteins (GLPs).
Collapse
Affiliation(s)
- M Rodríguez-López
- Instituto de Agrobiotecnología y Recursos Naturales, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas, Ctra. Mutilva s/n, 31192 Mutilva Baja, Navarra, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Olczak M, Watorek W. Structural analysis of N-glycans from yellow lupin (Lupinus luteus) seed diphosphonucleotide phosphatase/phosphodiesterase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:236-45. [PMID: 11042390 DOI: 10.1016/s0304-4165(00)00128-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-linked oligosaccharide chains released by hydrazinolysis from yellow lupin seed diphosphonucleotide phosphatase/phosphodiesterase were fluorescence labeled and separated by high performance liquid chromatography (GlycoSep N and GlycoSep H columns). Exoglycosidase sequencing elucidated the structures of 24 separated N-glycans. Thirty percent of isolated glycans were found to be of high-mannose type (three to eight mannosyl residues), 42% were complex type and 26% belonged to paucimannosidic type. Among complex type glycans, structures with Lewis(a) epitope were identified. It is very unusual to find all types of plant N-glycans in one protein. Possible reasons for such a broad spectrum of N-glycan structures are discussed.
Collapse
Affiliation(s)
- M Olczak
- Institute of Biochemistry and Molecular Biology, Wroclaw University, Tamka 2, 50-137, Wroclaw, Poland
| | | |
Collapse
|