1
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
2
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
3
|
Gianchandani RY, Neupane S, Iyengar JJ, Heung M. PATHOPHYSIOLOGY AND MANAGEMENT OF HYPOGLYCEMIAIN END-STAGE RENAL DISEASE PATIENTS: A REVIEW. Endocr Pract 2016; 23:353-362. [PMID: 27967230 DOI: 10.4158/ep161471.ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This review focuses on hypoglycemia in patients with end-stage renal disease (ESRD). It discusses the pathophysiology of glucose metabolism in the kidney, the impact of dialysis on glucose and insulin metabolism, and the challenges of glucose monitoring in ESRD. The clinical relevance of these changes is reviewed in relation to altered blood glucose targets and modification of antidiabetes therapy to prevent hypoglycemia. Based on current data and guidelines, recommendations for the outpatient and inpatient setting are provided for diabetes management in ESRD. METHODS PubMed, OVID, and Google Scholar were searched to identify related articles through May 2016 using the following keywords: "glucose metabolism," "kidney," "diabetes," "hypoglycemia," "ESRD," and "insulin" in various combinations for this review. RESULTS In ESRD, a combination of impaired insulin clearance, changes in glucose metabolism, and the dialysis process make patients vulnerable to low blood glucose levels. Hypoglycemia accounts for up to 3.6% of all ESRD-related admissions. At admission or during hospitalization, hypoglycemia in ESRD has a poor prognosis, with mortality rates reported at 30%. Several guidelines suggest a modified hemoglobin A1c (A1c) goal of 7 to 8.5% (53 to 69 mmol/mol) and an average blood glucose goal of 150 to 200 mg/dL. Noninsulin antidiabetes agents like dipeptidyl peptidase 4 inhibitors, repaglinide, and glipizide in appropriate doses and reduction of insulin doses up to 50% may help decrease hypoglycemia. CONCLUSION Patients with ESRD are at high risk for hypoglycemia. Increased awareness by providers regarding these risks and appropriate diabetes regimen adjustments can help minimize hypoglycemic events. ABBREVIATIONS ADA = antidiabetes agent BG = blood glucose CKD = chronic kidney disease DPP-4 = dipeptidyl peptidase 4 eGFR = estimated glomerular filtration rate ESRD = end-stage renal disease GFR = glomerular filtration rate HD = hemodialysis NPH = neutral protamine Hagedorn PD = peritoneal dialysis SA = short acting SU = sulfonylurea.
Collapse
|
4
|
Khouli MM. Masked hypoglycemia in the presence of icodextrin for peritoneal dialysis. J Emerg Med 2013; 44:e191-e193. [PMID: 22579020 DOI: 10.1016/j.jemermed.2012.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/26/2011] [Accepted: 02/19/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Handheld glucose meters remain a rapid means of excluding hypoglycemia as a cause of altered mental status in the Emergency Department. However, emergency physicians must be alert for factors that can mask hypoglycemia at the bedside. CASE REPORT An 80-year-old man with diabetes mellitus and end-stage renal disease on peritoneal dialysis presents with altered mental status, hypotension, and a bedside handheld glucose meter reading of 99mg/dL. His mental status failed to improve with treatment of hypotension and the patient was intubated for airway protection. Laboratory-measured serum glucose was 29mg/dL. His mental status improved after glucose administration. It was subsequently determined that the patient used icodextrin (Extraneal(®), Baxter Healthcare Corporation, Deerfield, IL) as his peritoneal dialysate. This is partly absorbed into serum and hydrolyzed to oligosaccharides that are falsely detected as glucose by many handheld glucose meters. CONCLUSION The peritoneal dialysate icodextrin can produce falsely elevated bedside glucose meter values. As the prevalence of diabetic nephropathy and dialysis increases, emergency physicians must remain vigilant for such cases of unrecognized hypoglycemia.
Collapse
Affiliation(s)
- Michael M Khouli
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, N 46202, USA
| |
Collapse
|
5
|
Bechtold M, Panke S. Model-based characterization of operational stability of multimeric enzymes with complex deactivation behavior: An in-silico investigation. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Rice MJ, Pitkin AD, Coursin DB. Review article: glucose measurement in the operating room: more complicated than it seems. Anesth Analg 2010; 110:1056-65. [PMID: 20142354 DOI: 10.1213/ane.0b013e3181cc07de] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abnormalities of blood glucose are common in patients undergoing surgery, and in recent years there has been considerable interest in tight control of glucose in the perioperative period. Implementation of any regime of close glycemic control requires more frequent measurement of blood glucose, a function for which small, inexpensive, and rapidly responding point-of-care devices might seem highly suitable. However, what is not well understood by many anesthesiologists and other staff caring for patients in the perioperative period is the lack of accuracy of home glucose meters that were designed for self-monitoring of blood glucose by patients. These devices have been remarketed to hospitals without appropriate additional testing and without an appropriate regulatory framework. Clinicians who are accustomed to the high level of accuracy of glucose measurement by a central laboratory device or by an automated blood gas analyzer may be unaware of the potential for harmful clinical errors that are caused by the inaccuracy exhibited by many self-monitoring of blood glucose devices, especially in the hypoglycemic range. Knowledge of the limitations of these meters is essential for the perioperative physician to minimize the possibility of a harmful measurement error. In this article, we will highlight these areas of interest and review the indications, technology, accuracy, and regulation of glucose measurement devices used in the perioperative setting.
Collapse
Affiliation(s)
- Mark J Rice
- University of Florida College of Medicine, Gainesville, FL 32610-0254, USA.
| | | | | |
Collapse
|
7
|
Baik SH, Michel F, Aghajari N, Haser R, Harayama S. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state. Appl Environ Microbiol 2005; 71:3285-93. [PMID: 15933031 PMCID: PMC1151818 DOI: 10.1128/aem.71.6.3285-3293.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A thermostable glucose dehydrogenase (GlcDH) mutant of Bacillus megaterium IWG3 harboring the Q252L substitution (Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Biol. Chem. 264:6381-6385, 1989) is stable at pH values above 9, but only in the presence of 2 M NaCl. Another GlcDH mutant exhibiting increased stability at an alkaline pH in the absence of NaCl has been isolated previously (S.-H. Baik, T. Ide, H. Yoshida, O. Kagami, and S. Harayama, Appl. Microbiol. Biotechnol. 61:329-335, 2003). This mutant had two amino acid substitutions, Q252L and E170K. In the present study, we characterized three GlcDH mutants harboring the substitutions Q252L, E170K, and Q252L/E170K under low-salt conditions. The GlcDH mutant harboring two substitutions, Q252L/E170K, was stable, but mutants harboring a single substitution, either Q252L or E170K, were unstable at an alkaline pH. Gel filtration chromatography analyses demonstrated that the oligomeric state of the Q252/E170K enzyme was stable, while the tetramers of the enzymes harboring a single substitution (Q252L or E170K) dissociated into dimers at an alkaline pH. These results indicated that the Q252L and E170K substitutions synergistically strengthened the interaction at the dimer-dimer interface. The crystal structure of the E170K/Q252L mutant, determined at 2.0-angstroms resolution, showed that residues 170 and 252 are located in a hydrophobic cavity at the subunit-subunit interface. We concluded that these residues in the wild-type enzyme have thermodynamically unfavorable effects, while the Q252L and E170K substitutions increase the subunit-subunit interactions by stabilizing the hydrophobic cavity.
Collapse
Affiliation(s)
- Sang-Ho Baik
- Marine Biotechnology Institute, Heita Kamaishi, Iwate 026-0001, Japan.
| | | | | | | | | |
Collapse
|
8
|
Chant A, Kraemer-Pecore CM, Watkin R, Kneale GG. Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr Purif 2005; 39:152-9. [PMID: 15642465 DOI: 10.1016/j.pep.2004.10.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Histidine (His) tags are one of the most popular fusion tags for the isolation of proteins via metal affinity chromatography. The fusion tag is routinely left attached to the protein when carrying out experiments, with the assumption that the addition has no effect on structure or function. In the present study, we have prepared four proteins of the gene regulatory protein AreA from Aspergillus nidulans for crystallization experiments: a 91-amino acid peptide encompassing the minimal DNA-binding region, both with and without the His-tag (HZFB and ZFB, respectively), and a 155-amino acid protein previously proposed to be the entire DNA-binding domain for AreA, both with and without the His-tag (HG1b and G1b, respectively). To test the integrity of the four AreA proteins, urea denaturation experiments and DNA-binding studies were performed using fluorescence spectroscopy. The DNA-binding data showed similar dissociation constants for all proteins, with Kd values in the nanomolar range. The urea denaturation data, however, clearly indicated that the HZFB protein exhibited a completely different denaturation profile when compared to the ZFB, HG1b, and G1b proteins. The HZFB protein showed a profile indicative of the presence of an altered conformation around the sole tryptophan, whereas the other proteins showed a transition point between 3 and 4 M urea concentration. These data show that, although function was not altered for any of the proteins studied, the structure of one of the His-tagged proteins was different from the native form of that protein.
Collapse
Affiliation(s)
- Alan Chant
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | | | | | | |
Collapse
|
9
|
Vreuls C, Filée P, Van Melckebeke H, Aerts T, De Deyn P, Llabrès G, Matagne A, Simorre JP, Frère JM, Joris B. Guanidinium chloride denaturation of the dimeric Bacillus licheniformis BlaI repressor highlights an independent domain unfolding pathway. Biochem J 2005; 384:179-90. [PMID: 15285720 PMCID: PMC1134101 DOI: 10.1042/bj20040658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Bacillus licheniformis 749/I BlaI repressor is a prokaryotic regulator that, in the absence of a beta-lactam antibiotic, prevents the transcription of the blaP gene, which encodes the BlaP beta-lactamase. The BlaI repressor is composed of two structural domains. The 82-residue NTD (N-terminal domain) is a DNA-binding domain, and the CTD (C-terminal domain) containing the next 46 residues is a dimerization domain. Recent studies have shown the existence of the monomeric, dimeric and tetrameric forms of BlaI in solution. In the present study, we analyse the equilibrium unfolding of BlaI in the presence of GdmCl (guanidinium chloride) using different techniques: intrinsic and ANS (8-anilinonaphthalene-l-sulphonic acid) fluorescence, far- and near-UV CD spectroscopy, cross-linking, analytical ultracentrifugation, size exclusion chromatography and NMR spectroscopy. In addition, the intact NTD and CTD were purified after proteolysis of BlaI by papain, and their unfolding by GdmCl was also studied. GdmCl-induced equilibrium unfolding was shown to be fully reversible for BlaI and for the two isolated fragments. The results demonstrate that the NTD and CTD of BlaI fold/unfold independently in a four-step process, with no significant co-operative interactions between them. During the first step, the unfolding of the BlaI CTD occurs, followed in the second step by the formation of an 'ANS-bound' intermediate state. Cross-linking and analytical ultracentrifugation experiments suggest that the dissociation of the dimer into two partially unfolded monomers takes place in the third step. Finally, the unfolding of the BlaI NTD occurs at a GdmCl concentration of approx. 4 M. In summary, it is shown that the BlaI CTD is structured, more flexible and less stable than the NTD upon GdmCl denaturation. These results contribute to the characterization of the BlaI dimerization domain (i.e. CTD) involved in the induction process.
Collapse
Affiliation(s)
- Christelle Vreuls
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
- †Laboratoire de Physique Biomédicale, Institut de Physique B5, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Patrice Filée
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Hélène Van Melckebeke
- ‡Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, 38027 Grenoble, France
| | - Tony Aerts
- §Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Peter De Deyn
- §Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gabriel Llabrès
- †Laboratoire de Physique Biomédicale, Institut de Physique B5, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - André Matagne
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Jean-Pierre Simorre
- ‡Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, 38027 Grenoble, France
| | - Jean-Marie Frère
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Bernard Joris
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Disse E, Thivolet C. Hypoglycemic coma in a diabetic patient on peritoneal dialysis due to interference of icodextrin metabolites with capillary blood glucose measurements. Diabetes Care 2004; 27:2279. [PMID: 15333503 DOI: 10.2337/diacare.27.9.2279] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Mehmet S, Quan G, Thomas S, Goldsmith D. Important causes of hypoglycaemia in patients with diabetes on peritoneal dialysis. Diabet Med 2001; 18:679-82. [PMID: 11553209 DOI: 10.1046/j.0742-3071.2001.00556.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Diabetes is now the commonest cause of end-stage renal failure, so there are many diabetic patients receiving dialysis therapy. There are several important ways in which dialysis practice can impinge unfavourably on glucose control. This study focuses on the interaction between maltose-derived metabolites in a new peritoneal dialysis fluid and blood glucose measurements using reagent sticks that depend on the glucose dehydrogenase method. CASE REPORT We report the cases of three patients, with insulin-treated diabetes and end-stage renal disease treated with peritoneal dialysis, who experienced symptomatic hypoglycaemia with inaccurate glucose readings on reagent strips when converted to icodextrin. CONCLUSION Careful teamwork between diabetes and renal physicians and specialist nurses is highly desirable to achieve good glucose control in a group of patients at particular risk of microvascular and macrovascular complications.
Collapse
Affiliation(s)
- S Mehmet
- Department of Diabetes, Endocrinology and Internal Medicine, Guy's Hospital, Guy's, King's and St. Thomas' Hospital Medical School, London, UK
| | | | | | | |
Collapse
|