1
|
Ru J, Chen X, Dong X, Hu L, Zhang J, Yang Y. Discovery of a polyurethane-degrading enzyme from the gut bacterium of plastic-eating mealworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136159. [PMID: 39437469 DOI: 10.1016/j.jhazmat.2024.136159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Although numerous polyurethane (PU)-degrading enzymes were identified from a diverse array of microorganisms in soil or compost, it is intriguing to investigate whether novel PU-degrading enzymes can be discovered in other biological environments. This study reports the discovery of an enzyme (MTL) for PU plastic degradation from the bacterial strain Mixta tenebrionis BIT-26, isolated from the gut of plastic-eating mealworms. MTL shows significant degradation activity towards three commercial PU substrates, including Impranil®DLN-SD, thermoplastic films (PEGA-HDI), and thermoset foams (PEGA-TDI), by cleaving the ester bonds in the polyester polyol moieties. The structure, molecular docking, and site-directed mutagenesis analyses elucidate the substrate binding model. A combination of structure-based comparison and mutational studies reveals the underlying architecture of the enzyme's specificity. These findings provide a fresh perspective into understanding plastic metabolism in the gut of plastic-eating insects and a prospective path for developing a biodegradation technique for plastic waste disposal.
Collapse
Affiliation(s)
- Jiakang Ru
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xuena Dong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Lin Hu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jianli Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
2
|
Rmili F, Frikha F, Chamkha M, Sayari A, Fendri A. Structure elucidation of Staphylococcus capitis lipase. Molecular dynamics simulations to investigate the effects of calcium and zinc ions on the structural stability. J Biomol Struct Dyn 2023; 41:10450-10462. [PMID: 36546696 DOI: 10.1080/07391102.2022.2159528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Cold-adapted and organic solvent tolerant lipases have significant potential in a wide range of synthetic reactions in industry. But there are no sufficient studies on how these enzymes interacts with their substrates. Herein, the predicted structure and function of the Staphylococcus capitis lipase (SCL) are studied. Given the high amino acid sequence homology with the Staphylococcus simulans lipase (SSL), 3D structure models of closed and open forms of the S. capitis lipase were built using the structure of SSL as template. The models suggested the presence of a main lid and a second lid that may act with the former as a double door to control the access to the active site. The SCL models also allowed us to identify key residues involved in binding substrates, calcium or zinc ions. By following this model and utilizing molecular dynamics (MD) simulations, the stability of the S. capitis lipase at low temperatures could be explained in the presence and in the absence of calcium and zinc. Due to its thermolability, the SCL is extremely valuable for different biotechnological applications in a wide variety of industries from molecular biology to detergency to food and beverage preparation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatma Rmili
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Jiang S, Zhou Z, Han J, Fan Q, Long Z, Wang J. Enhanced enzyme thermostability of a family I.3 lipase LipSR1 by T118A mutation at the calcium-binding site. Biotechnol Lett 2023; 45:1199-1207. [PMID: 37439931 DOI: 10.1007/s10529-023-03413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES The lipase gene lipSR1 isolated from oil-contaminated soil exhibits high hydrolytic activity for short-chain fatty acid substrates. A single calcium ion is required to anchor the lid of LipSR1 in an open conformation by coordination with two aspartate residues and three other residues in the lid. The lid of LipSR1 is anchored by Ca2+, which is coordinated by side-chain carboxyl oxygens of Asp153 and Asp157, carbonyl oxygens of Thr118 and Ser144, and the side chain of Gln120. RESULTS D157A, D153R, Q120A, S144A, and T118A mutants were produced by site-directed mutagenesis in this study. Analyses of hydrolytic activity and thermostability showed that the properties of D157A, D153R, Q120A, and S144A were almost lost, suggesting that Asp157, Asp153, Gln120, and Ser144 are important residues for LipSR1. However, the catalytic performance of T118A was clearly maintained. Moreover, the thermostability of mutant T118A was higher than that of wild-type LipSR1. CONCLUSIONS These results indicated that mutation of threonine at position 118 improved the stability of the enzyme at high temperature.
Collapse
Affiliation(s)
- Shijie Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingfeng Fan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhijian Long
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Farihan Afnan Mohd Rozi M, Noor Zaliha Raja Abd Rahman R, Thean Chor Leow A, Shukuri Mohamad Ali M. Ancestral Sequence Reconstruction of Ancient Lipase from Family I.3 Bacterial Lipolytic Enzymes. Mol Phylogenet Evol 2021; 168:107381. [PMID: 34968679 DOI: 10.1016/j.ympev.2021.107381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/14/2023]
Abstract
Family I.3 lipase is distinguished from other families by the amino acid sequence and secretion mechanism. Little is known about the evolutionary process driving these differences. This study attempt to understand how the diverse temperature stabilities of bacterial lipases from family I.3 evolved. To achieve that, eighty-three protein sequences sharing a minimum 30% sequence identity with Antarctic Pseudomonas sp. AMS8 lipase were used to infer phylogenetic tree. Using ancestral sequence reconstruction (ASR) technique, the last universal common ancestor (LUCA) sequence of family I.3 was reconstructed. A gene encoding LUCA was synthesized, cloned and expressed as inclusion bodies in E. coli system. Insoluble form of LUCA was refolded using urea dilution method and then purified using affinity chromatography. The purified LUCA exhibited an optimum temperature and pH at 70℃ and 10 respectively. Various metal ions increased or retained the activity of LUCA. LUCA also demonstrated tolerance towards various organic solvents in 25% v/v concentration. The finding from this study could support the understanding on temperature and environment during ancient time. In overall, reconstructed ancestral enzymes have improved physicochemical properties that make them suitable for industrial applications and ASR technique can be employed as a general technique for enzyme engineering.
Collapse
Affiliation(s)
- Mohamad Farihan Afnan Mohd Rozi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Gene cloning, heterologous expression, and partial characterization of a novel cold-adapted subfamily I.3 lipase from Pseudomonas fluorescence KE38. Sci Rep 2020; 10:22063. [PMID: 33328564 PMCID: PMC7745013 DOI: 10.1038/s41598-020-79199-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023] Open
Abstract
A novel cold-active true lipase from Pseudomonas sp. KE38 was cloned, sequencing and expressed in E. coli by degenerate PCR and genome walking technique. The open reading frame of the cloned gene encoded a polypeptide chain of 617 amino acids with a confirmed molecular weight of 64 kD. Phylogenetic analysis of the deduced amino acid sequence of the lipase indicated that it had high similarity with lipases of subfamily Ι.3 of bacterial lipases. Recombinant lipase was purified in denatured form as inclusion bodies, which were then renatured by urea followed by dialysis. Lipase activity was determined titrimetrically using olive oil as substrate. The enzyme showed optimal activity at 25 °C, pH 8.5 and was highly stable in the presence of various metal ions and organic solvents. Low optimal temperature and high activity in the presence of methanol and ethanol make this lipase a potential candidate for transesterification reactions and biodiesel production.
Collapse
|
6
|
Eddehech A, Zarai Z, Aloui F, Smichi N, Noiriel A, Abousalham A, Gargouri Y. Production, purification and biochemical characterization of a thermoactive, alkaline lipase from a newly isolated Serratia sp. W3 Tunisian strain. Int J Biol Macromol 2019; 123:792-800. [DOI: 10.1016/j.ijbiomac.2018.11.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/29/2022]
|
7
|
Park JY, Park KM, Yoo Y, Yu H, Lee CJ, Jung HS, Kim K, Chang PS. Catalytic characteristics of a sn-1(3) regioselective lipase from Cordyceps militaris. Biotechnol Prog 2018; 35:e2744. [PMID: 30421587 DOI: 10.1002/btpr.2744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Indexed: 11/06/2022]
Abstract
A total of 39 agricultural products were screened for natural sources of lipases with distinctive positional specificity. Based on this, Cordyceps militaris lipase (CML) was selected and subsequently purified by sequential chromatography involving anion-exchange, hydrophobic-interaction, and gel-permeation columns. As a result of the overall purification procedure, a remarkable increase in the specific activity of the CML (4.733 U/mg protein) was achieved, with a yield of 2.47% (purification fold of 94.54). The purified CML has a monomeric structure with a molecular mass of approximately 62 kDa. It was further identified as a putative extracellular lipase from C. militaris by the partial sequence analysis using ESI-Q-TOF MS. In a kinetic study of the CML-catalyzed hydrolysis, the values of Vmax , Km , and kcat were determined to be 4.86 μmol·min-1 ·mg-1 , 0.07 mM, and 0.29 min-1 , respectively. In particular, the relatively low Km value indicated that CML has a high affinity for its substrate. With regard to positional specificity, CML selectively cleaved triolein at the sn-1 or 3 positions of glycerol backbone, releasing 1,2(2,3)-diolein as the major products. Therefore, CML can be considered a distinctive biocatalyst with sn-1(3) regioselectivity. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2744, 2019.
Collapse
Affiliation(s)
- Jun-Young Park
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Dept. of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yoonjung Yoo
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjong Yu
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Joo Lee
- Dept. of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keesung Kim
- Research Inst. of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pahn-Shick Chang
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.,Research Inst. of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Impact of signal peptide and transmembrane segments on expression and biochemical properties of a lipase from Bacillus sphaericus 205y. J Biotechnol 2017; 264:51-62. [PMID: 29107669 DOI: 10.1016/j.jbiotec.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022]
Abstract
A total of 97 amino acids, considered as the signal peptide and transmembrane segments were removed from 205y lipase gene using polymerase chain reaction technique that abolished the low activity of this enzyme. The mature enzyme was expressed in Escherichia coli using pBAD expression vector, which gave up to a 13-fold increase in lipase activity. The mature 205y lipase (without signal peptide and transmembrane; -SP/TM) was purified to homogeneity using the isoelectric focusing technique with 53% recovery. Removing of the signal peptide and transmembrane segments had resulted in the shift of optimal pH, an increase in optimal temperature and tolerance towards more water-miscible organic solvents as compared to the characteristics of open reading frame (ORF) of 205y lipase. Also, in the presence of 1mM inhibitors, less decrease in the activity of mature 205y lipase was observed compared to the ORF of the enzyme. Protein structure modeling showed that 205y lipase consisted of an α/β hydrolase fold without lid domain. However, the transmembrane segment could effect on the enzyme activity by covering the active site or aggregation the protein.
Collapse
|
9
|
Murata D, Okano H, Angkawidjaja C, Akutsu M, Tanaka SI, Kitahara K, Yoshizawa T, Matsumura H, Kado Y, Mizohata E, Inoue T, Sano S, Koga Y, Kanaya S, Takano K. Structural Basis for the Serratia marcescens Lipase Secretion System: Crystal Structures of the Membrane Fusion Protein and Nucleotide-Binding Domain. Biochemistry 2017; 56:6281-6291. [PMID: 29094929 DOI: 10.1021/acs.biochem.7b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.
Collapse
Affiliation(s)
- Daichi Murata
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroyuki Okano
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Clement Angkawidjaja
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt , Max-von-Laue-Straße, 60438 Frankfurt am Main, Germany
| | - Shun-Ichi Tanaka
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Kenyu Kitahara
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Yuji Kado
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Eiichi Mizohata
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Tsuyoshi Inoue
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Satoshi Sano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Shigenori Kanaya
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
10
|
Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme Microb Technol 2016; 93-94:18-28. [DOI: 10.1016/j.enzmictec.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/20/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
|
11
|
Characterization of Novel Family IV Esterase and Family I.3 Lipase from an Oil-Polluted Mud Flat Metagenome. Mol Biotechnol 2016; 57:781-92. [PMID: 25943044 DOI: 10.1007/s12033-015-9871-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two genes encoding lipolytic enzymes were isolated from a metagenomic library constructed from oil-polluted mud flats. An esterase gene, est3K, encoded a protein of 299 amino acids (ca. 32,364 Da). Est3K was a family IV esterase with typical motifs, HGGG, and HGF. Although est3K showed high identity to many genes with no information on their enzymatic properties, Est3K showed the highest identity (36 %) to SBLip5.1 from forest soil metagenome when compared to the enzymes with reported properties. A lipase gene, lip3K, encoded a protein of 616 amino acids (ca. 64,408 Da). Lip3K belonged to family I.3 lipase with a C-terminal secretion signal and showed the highest identity (93 %) to the lipase of Pseudomonas sp. MIS38. The presence of several newly identified conserved motifs in Est3K and Lip3K are suggested. Both Est3K and Lip3K exerted their maximal activity at pH 9.0 and 50 °C. The activity of Lip3K was significantly increased by the presence of 30 % methanol. The ability of the enzymes to retain activities in the presence of methanol and the substrates may offer a merit to the biotechnological applications of the enzymes such as transesterification. The activity and the thermostability of Lip3K were increased by Ca(2+). Est3K and Lip3K preferred p-nitrophenyl butyrate (C4) and octanoate (C8), respectively, as the substrate and acted independently on the substrates with no synergistic effect.
Collapse
|
12
|
Yang W, Cao H, Xu L, Zhang H, Yan Y. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnol 2015; 15:94. [PMID: 26463643 PMCID: PMC4604771 DOI: 10.1186/s12896-015-0214-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/07/2015] [Indexed: 11/29/2022] Open
Abstract
Background Lipases are regularly used in biotechnology to catalyse the hydrolysis of triglycerides and the synthesis of esters. Microbial lipases in particular have been widely used in a variety of industrial applications. However, the current commercial microbial lipases cannot meet industrial demand due to rapid inactivation under harsh conditions. Therefore, in order to identify more stable enzymes, we isolated novel eurythermic and thermostable lipase(s) from Pseudomonas moraviensis M9. Methods Cloning of lipM was based on Touchdown PCR and genome walking, and then recombinant LipM was purified by guanidine hydrochloride and the nickel-nitrilotriacetic acid resins affinity chromatography. Finally, the hydrolysis of algal oil by LipM was analyzed by gas chromatograph-mass spectrometer, thin layer chromatography and gas chromatograph. Results The lipM gene was first cloned from Pseudomonas moraviensis M9 via Touchdown PCR and genome walking. Sequence analysis reveals that LipM is a member of subfamily I.3 of lipases, and the predicted amino acid sequences of LipM has 82 % identity to lipase LipT from Pseudomonas mandelii JR-1, and 54 % identity to lipase PML from Pseudomonas sp. MIS38 and lipase Lip I.3 from Pseudomonas sp. CR-611. LipM was expressed in Escherichia coli, purified from inclusion bodies, and further biochemically characterized. Purified LipM differed significantly from previously reported subfamily I.3 lipases, and was eurythermic between 10 °C–95 °C. LipM activity was enhanced by Ca2+, Sr2+, Mn2+, and Ba2+, but sharply inhibited by Cu2+, Zn2+, Co2+, Ni2+, and EDTA. Compared with other lipases, LipM exhibited medium tolerance to methanol, ethanol, and isopropanol. When applied for hydrolysis of algal oil, LipM could enrich 65.88 % polyunsaturated fatty acids, which include 1.25 % eicosapentaenoic acid, 17.61 % docosapentaenoic acid, and 47.02 % docosahexaenoic acid with derivative glycerides containing 32.46 % diacylglycerols. Conclusions A novel eurythermic I.3 subfamily lipase with high tolerance and stability was identified from Pseudomonas moraviensis and biochemically characterized. It will not only improve our understanding of subfamily I.3 lipases, but also provides an ideal biocatalyst for the enrichment of polyunsaturated fatty acids. Pseudomonas moraviensis have been investigated as a potential resource of lipases.
Collapse
Affiliation(s)
- Wenjuan Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Hai Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Houjin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
13
|
Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, Reza Shahverdi A, Ali Faramarzi M, Setayesh N. Bacterial expression and characterization of an active recombinant lipase A from Serratia marcescens with truncated C-terminal region. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Panizza P, Cesarini S, Diaz P, Rodríguez Giordano S. Saturation mutagenesis in selected amino acids to shift Pseudomonas sp. acidic lipase Lip I.3 substrate specificity and activity. Chem Commun (Camb) 2015; 51:1330-3. [PMID: 25482450 DOI: 10.1039/c4cc08477b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several Pseudomonas sp. CR611 Lip I.3 mutants with overall increased activity and a shift towards longer chain substrates were constructed. Substitution of residues Y29 and W310 by smaller amino acids provided increased activity on C18-substrates. Residues G152 and S154, modified to study their influence on interfacial activation, displayed a five and eleven fold increased activity.
Collapse
Affiliation(s)
- Paola Panizza
- Bioscience Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | | | | | | |
Collapse
|
15
|
Cheng M, Angkawidjaja C, Koga Y, Kanaya S. Calcium-independent opening of lid1 of a family I.3 lipase by a single Asp to Arg mutation at the calcium-binding site. Protein Eng Des Sel 2014; 27:169-76. [DOI: 10.1093/protein/gzu009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Li XL, Zhang WH, Wang YD, Dai YJ, Zhang HT, Wang Y, Wang HK, Lu FP. A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Li SX, Ma Q, Lin K, Wu JJ, Wu YX, Xu JH. Essential Role of Gly33 in a Novel Organic Solvent-Tolerant Lipase from Serratia marcescens ECU1010 as Determined by Site-Directed Mutagenesis. Appl Biochem Biotechnol 2014; 172:2945-54. [DOI: 10.1007/s12010-013-0690-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 12/25/2013] [Indexed: 11/30/2022]
|
18
|
A cold-adapted and organic solvent-tolerant lipase from a psychrotrophic bacterium Pseudomonas sp. strain YY31: identification, cloning, and characterization. Appl Biochem Biotechnol 2013; 171:989-1000. [PMID: 23918082 DOI: 10.1007/s12010-013-0406-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
A novel cold-adapted lipase (designated as LipYY31) was obtained from a psychrotrophic Pseudomonas sp. YY31. The strain YY31 was gram-negative, rod shaped, motile by means of one polar flagellum, and exhibited chemotaxis toward oil droplets under a microscope. The strain displayed remarkable degradation of edible oil and fat even at 5 °C. The LipYY31 DNA fragment contains an open reading frame of 1,410 bp which encoded a protein of 470 amino acids with an estimated molecular mass of 49,584 Da. LipYY31 showed high sequence similarity to those of subfamily Ι.3 lipase and had a conserved GXSXG motif around the catalytic Ser residue. Its optimal temperature was 25-30 °C, and it retained 20-40 % of its activity at 0-5 °C. The optimal pH value was 8.0. The activity was strongly inhibited by Cd(2+), Zn(2+), EDTA and was highly dependent on Ca(2+). Tricaprin and p-nitrophenyl caprate were the most favorable substrates among the triglycerides and p-nitrophenyl esters, respectively. LipYY31 also had high activity towards natural substrates including edible vegetable oils and animal fat. Furthermore, LipYY31 was very active and stable in the presence of several detergents and organic solvents. In particular, the lipase exhibited high stability against organic solvents such as methanol, ethanol, and isopropanol.
Collapse
|
19
|
Panizza P, Syfantou N, Pastor FIJ, Rodríguez S, Díaz P. Acidic lipase Lip I.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols. J Appl Microbiol 2012. [PMID: 23190193 DOI: 10.1111/jam.12089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Identification, cloning, expression and characterization of a novel lipase--Lip I.3--from strain Pseudomonas CR-611. METHODS AND RESULTS The corresponding gene was identified and isolated by PCR-amplification, cloned and expressed in Escherichia coli, and purified by refolding from inclusion bodies. Analysis of the deduced amino acid sequence revealed high homology with members of the bacterial lipase family I.3, showing 97% identity to a putative lipase from Pseudomonas fluorescens Pf0-1, and 93% identity to a crystallized extracellular lipase from Pseudomonas sp. MIS38. A typical C-terminal type I secretion signal and several putative Ca(2+) binding sites were also identified. Experimental data confirmed that Lip I.3 requires Ca(2+) ions for correct folding and activity. The enzyme differs from the previously reported family I.3 lipases in optimal pH, being the first acidophilic lipase reported in this family. Furthermore, Lip I.3 shows a strong preference for medium chain fatty acid esters and does not display interfacial activation. When tested for activity on secondary alcohol hydrolysis, Lip I.3 displayed higher efficiency on aromatic alcohols rather than on alkyl alcohols. CONCLUSIONS A new family I.3 lipase with unusual properties has been isolated, cloned and described. This will contribute to a better knowledge of family I.3 lipases, a family that has been scarcely explored, and that might provide a novel source of biocatalysts. SIGNIFICANCE AND IMPACT OF THE STUDY The unusual properties shown by Lip I.3 and the finding of activity and enantioselectivity on secondary alcohol esters may contribute to the development of new enzymatic tools for applied biocatalysis.
Collapse
Affiliation(s)
- P Panizza
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
20
|
Production, Characterization, and Application of an Organic Solvent-Tolerant Lipase Present in Active Inclusion Bodies. Appl Biochem Biotechnol 2012; 169:612-23. [DOI: 10.1007/s12010-012-0028-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
21
|
Cheng M, Angkawidjaja C, Koga Y, Kanaya S. Requirement of lid2 for interfacial activation of a family I.3 lipase with unique two lid structures. FEBS J 2012; 279:3727-3737. [DOI: 10.1111/j.1742-4658.2012.08734.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/28/2012] [Accepted: 07/30/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Cheng
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
| | - Clement Angkawidjaja
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
- International College; Osaka University; Japan
| | - Yuichi Koga
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
| | - Shigenori Kanaya
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
| |
Collapse
|
22
|
The accessory Sec protein Asp2 modulates GlcNAc deposition onto the serine-rich repeat glycoprotein GspB. J Bacteriol 2012; 194:5564-75. [PMID: 22885294 DOI: 10.1128/jb.01000-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accessory Sec system is a specialized transport system that exports serine-rich repeat (SRR) glycoproteins of Gram-positive bacteria. This system contains two homologues of the general secretory (Sec) pathway (SecA2 and SecY2) and several other essential proteins (Asp1 to Asp5) that share no homology to proteins of known function. In Streptococcus gordonii, Asp2 is required for the transport of the SRR adhesin GspB, but its role in export is unknown. Tertiary structure predictions suggest that the carboxyl terminus of Asp2 resembles the catalytic region of numerous enzymes that function through a Ser-Asp-His catalytic triad. Sequence alignment of all Asp2 homologues identified a highly conserved pentapeptide motif (Gly-X-Ser(362)-X-Gly) typical of most Ser-Asp-His catalytic triads, where Ser forms the reactive residue. Site-directed mutagenesis of residues comprising the predicted catalytic triad of Asp2 of S. gordonii had no effect upon GspB transport but did result in a marked change in the electrophoretic mobility of the protein. Lectin-binding studies and monosaccharide content analysis of this altered glycoform revealed an increase in glucosamine deposition. Random mutagenesis of the Asp2 region containing this catalytic domain also disrupted GspB transport. Collectively, our findings suggest that Asp2 is a bifunctional protein that is essential for both GspB transport and correct glycosylation. The catalytic domain may be responsible for controlling the glycosylation of GspB, while other surrounding regions are functionally required for glycoprotein transport.
Collapse
|
23
|
Angkawidjaja C, Koga Y, Takano K, Kanaya S. Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. FEBS J 2012; 279:3071-84. [PMID: 22748144 DOI: 10.1111/j.1742-4658.2012.08687.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hormone-sensitive lipase (HSL) family is comprised of carboxylesterases and lipases with similarity to mammalian HSL. Thermophilic enzymes of this family have a high potential for use in biocatalysis. We prepared and crystallized a carboxylesterase of the HSL family from Sulfolobus tokodaii (Sto-Est), and determined its structures in the presence and absence of an inhibitor. Sto-Est forms a dimer in solution and the crystal structure suggests the presence of a stable biological dimer. We identified a residue close to the dimer interface, R267, which is conserved in archaeal enzymes of HSL family and is in close proximity to the same residue from the other monomer. Mutations of R267 to Glu, Gly and Lys were conducted and the resultant R267 mutants were characterized and crystallized. The structures of R267E, R267G and R267K are highly similar to that of Sto-Est with only slight differences in atomic coordinates. The dimerized states of R267E and R267G are unstable under denaturing conditions or at high temperature, as shown by a urea-induced dimer dissociation experiment and molecular dynamics simulation. R267E is the most unstable mutant protein, followed by R267G and R267K, as shown by the thermal denaturation curve and optimum temperature for activity. From the data, we discuss the importance of R267 in maintaining the dimer integrity of Sto-Est.
Collapse
Affiliation(s)
- Clement Angkawidjaja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan.
| | | | | | | |
Collapse
|
24
|
Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K, Nakamura S. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 2012; 168:327-38. [PMID: 22870801 DOI: 10.1007/s12010-012-9776-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
A psychrotrophic Pseudomonas sp. TK-3 was isolated from dirty and cool stream water in Toyama, Japan from which we cloned and characterized the bacterial lipase LipTK-3. The sequenced DNA fragment contains an open reading frame of 1,428 bp that encoded a protein of 476 amino acids with an estimated molecular mass of 50,132 Da. The lipase showed high sequence similarity to those of subfamily Ι.3 lipase and had a conserved GXSXG motif around the catalytic Ser residue. Its optimal temperature was 20-25 °C, lower than in most other subfamily Ι.3 lipases. The lipase exhibited about 30 % of maximal activity at 5 °C. The optimal pH value was 8.0. The activity was strongly inhibited by EDTA and was highly dependent on Ca(2+). Tricaprylin and p-nitrophenyl caprylate were the most favorable substrates among the triglycerides and p-nitrophenyl esters, respectively. LipTK-3 also showed high activity towards natural substrates including edible vegetable oils and animal fats. Furthermore, LipTK-3 was very active and stable in the presence of several detergents, metal ions, and organic solvents. This cold-adapted lipase may prove useful for future applications.
Collapse
Affiliation(s)
- Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Expression and purification of organic solvent stable lipase from soil metagenomic library. World J Microbiol Biotechnol 2012; 28:2417-24. [DOI: 10.1007/s11274-012-1051-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
26
|
Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 2011; 78:1556-62. [PMID: 22194294 DOI: 10.1128/aem.06725-11] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a cutinase homolog, LC-cutinase, was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. LC-cutinase shows the highest amino acid sequence identity of 59.7% to Thermomonospora curvata lipase. It also shows the 57.4% identity to Thermobifida fusca cutinase. When LC-cutinase without a putative signal peptide was secreted to the periplasm of Escherichia coli cells with the assistance of the pelB leader sequence, more than 50% of the recombinant protein, termed LC-cutinase*, was excreted into the extracellular medium. It was purified and characterized. LC-cutinase* hydrolyzed various fatty acid monoesters with acyl chain lengths of 2 to 18, with a preference for short-chain substrates (C(4) substrate at most) most optimally at pH 8.5 and 50°C, but could not hydrolyze olive oil. It lost activity with half-lives of 40 min at 70°C and 7 min at 80°C. LC-cutinase* had an ability to degrade poly(ε-caprolactone) and polyethylene terephthalate (PET). The specific PET-degrading activity of LC-cutinase* was determined to be 12 mg/h/mg of enzyme (2.7 mg/h/μkat of pNP-butyrate-degrading activity) at pH 8.0 and 50°C. This activity is higher than those of the bacterial and fungal cutinases reported thus far, suggesting that LC-cutinase* not only serves as a good model for understanding the molecular mechanism of PET-degrading enzyme but also is potentially applicable for surface modification and degradation of PET.
Collapse
|
27
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kuwahara K, Angkawidjaja C, Koga Y, Takano K, Kanaya S. Importance of an extreme C-terminal motif of a family I.3 lipase for stability. Protein Eng Des Sel 2011; 24:411-8. [DOI: 10.1093/protein/gzq122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Angkawidjaja C, Matsumura H, Koga Y, Takano K, Kanaya S. X-ray Crystallographic and MD Simulation Studies on the Mechanism of Interfacial Activation of a Family I.3 Lipase with Two Lids. J Mol Biol 2010; 400:82-95. [DOI: 10.1016/j.jmb.2010.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/08/2010] [Accepted: 04/26/2010] [Indexed: 11/16/2022]
|
30
|
Akbari N, Khajeh K, Rezaie S, Mirdamadi S, Shavandi M, Ghaemi N. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr Purif 2010; 70:75-80. [DOI: 10.1016/j.pep.2009.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 11/24/2022]
|
31
|
Madan B, Mishra P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl Microbiol Biotechnol 2009; 85:597-604. [PMID: 19629472 DOI: 10.1007/s00253-009-2131-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022]
Abstract
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99-100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37 degrees C, though it was active between pH 5.0 and pH 9.0 and up to 45 degrees C. K (m) and V (max) values for recombinant P. aeruginosa lipase were found to be 151.5 +/- 29 microM and 217 +/- 22.5 micromol min(-1) mg(-1) protein, respectively.
Collapse
Affiliation(s)
- Bhawna Madan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | |
Collapse
|
32
|
Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl Biochem Biotechnol 2008; 159:355-65. [PMID: 19005622 DOI: 10.1007/s12010-008-8419-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Pseudomonas lipases are important biocatalysts widely used in a variety of industrial fields. An extracellular lipase gene lipA with 1,854-bp open reading frame was cloned from Pseudomonas fluorescens 26-2. The multialignment assay of the putative amino acid and the secondary structure prediction revealed this enzyme could be classified into the lipolytic subfamily I.3 and secreted via adenosine-triphosphate-binding cassette pathway. The lipA gene was integrated into Pichia pastoris GS115, and the methanol-inducible recombinants with Mut(S) and Mut(+) phenotypes were acquired. The characteristics and the transesterification capacity shown by this enzyme suggested it is a useful biocatalyst for biodiesel preparation.
Collapse
|
33
|
WANG CH, GUO RF, YU HW, JIA YM. Cloning and Sequence Analysis of a Novel Cold-Adapted Lipase Gene from Strain lip35 (Pseudomonas sp.). ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1671-2927(08)60167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Kuwahara K, Angkawidjaja C, Matsumura H, Koga Y, Takano K, Kanaya S. Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability. Protein Eng Des Sel 2008; 21:737-44. [DOI: 10.1093/protein/gzn057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Zhang JW, Zeng RY. Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:612-621. [PMID: 18461394 DOI: 10.1007/s10126-008-9099-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/25/2007] [Accepted: 03/17/2008] [Indexed: 02/05/2023]
Abstract
A psychrotrophic bacterium producing a cold-adapted lipase was isolated from the deep-sea sediment of Prydz Bay, Antarctic and identified as a Pseudomonas strain. Determination of the nucleotide sequence of the gene encoding a lipase from Pseudomonas sp. 7323 (lipA) revealed that LipA is composed of 617 amino acid residues with a calculated molecular weight of 64,466 Da. LipA has a GXSXG motif, which is conserved in lipases/esterases and generally contains the active-site serine. The lipase purified from the Escherichia coli transformant (rLipA) by metal-chelating chromatography exhibited the same electrophoretic mobility as did the wild-type lipase (wLipA) purified from strain 7323, and both enzymes were quite similar in physicochemical properties. The optimal temperature and pH value for the lipases activity were 30 degrees C and 9.0, respectively. They were unstable at temperatures above 25 degrees C and only retained half of their highest activity after incubation at 60 degrees C for 5 min. These results indicated that the enzymes were typical alkaline cold-adapted enzymes. Both enzymes were particularly activated by Ca2+. Additionally, the enzymes hydrolyzed p-nitrophenyl caprate and tributyrin at the highest velocity among the other p-nitrophenyl esters and triglycerides.
Collapse
Affiliation(s)
- Jin-Wei Zhang
- Institute for Biomedical Research, Xiamen University, Xiamen, People's Republic of China.
| | | |
Collapse
|
36
|
Jiang Z, Gao B, Ren R, Tao X, Ma Y, Wei D. Efficient display of active lipase LipB52 with a Pichia pastoris cell surface display system and comparison with the LipB52 displayed on Saccharomyces cerevisiae cell surface. BMC Biotechnol 2008; 8:4. [PMID: 18221563 PMCID: PMC2267459 DOI: 10.1186/1472-6750-8-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 01/28/2008] [Indexed: 11/21/2022] Open
Abstract
Background For industrial bioconversion processes, the utilization of surface-displayed lipase in the form of whole-cell biocatalysts is more advantageous, because the enzymes are displayed on the cell surface spontaneously, regarded as immobilized enzymes. Results Two Pichia pastoris cell surface display vectors based on the flocculation functional domain of FLO with its own secretion signal sequence or the α-factor secretion signal sequence were constructed respectively. The lipase gene lipB52 fused with the FLO gene was successfully transformed into Pichia pastoris KM71. The lipase LipB52 was expressed under the control of the AOX1 promoter and displayed on Pichia pastoris KM71 cell surface with the two Pichia pastoris cell surface display vectors. Localization of the displayed LipB52 on the cell surface was confirmed by the confocal laser scanning microscopy (CLSM). The LipB52 displayed on the Pichia pastoris cell surface exhibited activity toward p-nitrophenol ester with carbon chain length ranging from C10 to C18, and the optimum substrate was p-nitrophenol-caprate (C10), which was consistent with it displayed on the Saccharomyces cerevisiae EBY100 cell surface. The hydrolysis activity of lipase LipB52 displayed on Pichia pastoris KM71-pLHJ047 and KM71-pLHJ048 cell surface reached 94 and 91 U/g dry cell, respectively. The optimum temperature of the displayed lipases was 40°C at pH8.0, they retained over 90% activity after incubation at 60°C for 2 hours at pH 7.0, and still retained 85% activity after incubation for 3 hours. Conclusion The LipB52 displayed on the Pichia pastoris cell surface exhibited better stability than the lipase LipB52 displayed on Saccharomyces cerevisiae cell surface. The displayed lipases exhibited similar transesterification activity. But the Pichia pastoris dry cell weight per liter (DCW/L) ferment culture was about 5 times than Saccharomyces cerevisiae, the lipase displayed on Pichia pastoris are more suitable for whole-cell biocatalysts than that displayed on Saccharomyces cerevisiae cell surface.
Collapse
Affiliation(s)
- Zhengbing Jiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China.
| | | | | | | | | | | |
Collapse
|
37
|
Angkawidjaja C, You DJ, Matsumura H, Kuwahara K, Koga Y, Takano K, Kanaya S. Crystal structure of a family I.3 lipase fromPseudomonassp. MIS38 in a closed conformation. FEBS Lett 2007; 581:5060-4. [DOI: 10.1016/j.febslet.2007.09.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
38
|
Angkawidjaja C, You DJ, Matsumura H, Koga Y, Takano K, Kanaya S. Extracellular overproduction and preliminary crystallographic analysis of a family I.3 lipase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:187-9. [PMID: 17329810 PMCID: PMC2330184 DOI: 10.1107/s1744309107004575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/29/2007] [Indexed: 11/10/2022]
Abstract
A family I.3 lipase from Pseudomonas sp. MIS38 was secreted from Escherichia coli cells to the external medium, purified and crystallized and preliminary crystallographic studies were performed. The crystal was grown at 277 K by the hanging-drop vapour-diffusion method. Native X-ray diffraction data were collected to 1.7 A resolution using synchrotron radiation at station BL38B1, SPring-8. The crystal belongs to space group P2(1), with unit-cell parameters a = 48.79, b = 84.06, c = 87.04 A. Assuming the presence of one molecule per asymmetric unit, the Matthews coefficient V(M) was calculated to be 2.73 A3 Da(-1) and the solvent content was 55%.
Collapse
Affiliation(s)
- Clement Angkawidjaja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dong-Ju You
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST (Sosho Project), JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST (Sosho Project), JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Radjasa OK, Salasia SIO, Sabdono A, Weise J, Imhoff JF, Lammler C, Risk MJ. Antibacterial Activity of Marine Bacterium Pseudomonas sp. Associated with Soft Coral Sinularia polydactyla against Streptococcus equi Subsp. zooepidemicus. INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2007.170.174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Jiang Z, Zheng Y, Luo Y, Wang G, Wang H, Ma Y, Wei D. Cloning and expression of a novel lipase gene from Pseudomonas fluorescens B52. Mol Biotechnol 2006; 31:95-101. [PMID: 16170209 DOI: 10.1385/mb:31:2:095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel lipase gene (lipB52) was isolated directly from the genomic DNA of Pseudomonas fluorescens B52 with the genome-walking method, an effective method for isolating lipase gene from bacteria. There was an open reading frame (ORF) of 1854 bp, which encoded 617 amino acids. The lipase gene (lipB52) was cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host, Pichia pastoris KM71, and the recombinant Pichia pastoris were screened with a high throughput method. The recombinant was induced by methanol to secrete active lipase into the culture medium. The recombinant lipase LipB52 was also purified and characterized. The optimum temperature for the purified lipase LipB52 was 40 degrees C at pH 8.0. It exhibited better thermostability and pH stability than its homologs.
Collapse
Affiliation(s)
- Zhengbing Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Luo Y, Zheng Y, Jiang Z, Ma Y, Wei D. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 2006; 73:349-55. [PMID: 16724189 DOI: 10.1007/s00253-006-0478-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/08/2006] [Accepted: 04/18/2006] [Indexed: 11/26/2022]
Abstract
A lipase-producing bacterium strain B68 screened from soil samples of China was identified as Pseudomonas fluorescens. With GenomeWalker, the open reading frame of lipase gene lipB68, encoding 476 amino acids, was cloned and expressed in Escherichia coli BL21 (DE3). By affinity chromatography, the recombinant LipB68 protein was purified to the purity of 95%. As a member of lipase subfamily I.3, LipB68 has a unique optimum temperature of 20 degrees C, which was the lowest in this subfamily. In chiral resolution, LipB68 effectively catalyzed the transesterification of both alpha-phenylethanol and alpha-phenylpropanol at 20 degrees C, achieving E values greater than 100 and 60 after 120 h, respectively. Among all the known catalysts in biodiesel production, LipB68 produced biodiesel with a yield of 92% after 12 h, at the lowest temperature of 20 degrees C, and is the first one of the I.3 lipase subfamily reported to be capable of catalyzing the transesterification reaction of biodiesel production. Since lipase-mediated biodiesel production is normally carried out at 35-50 degrees C, the availability of a highly active lipase with a low optimal temperature can provide substantial savings in energy consumption. Thus, this novel psychrophilic lipase (LipB68) may represent a highly competitive energy-saving biocatalyst.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 311# P.O. Box, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Enantioselective properties of extracellular lipase from Serratia marcescens ES-2 for kinetic resolution of (S)-flurbiprofen. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Jiang Z, Wang H, Ma Y, Wei D. Characterization of two novel lipase genes isolated directly from environmental sample. Appl Microbiol Biotechnol 2006; 70:327-32. [PMID: 16003556 DOI: 10.1007/s00253-005-0065-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 06/13/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
Two novel lipase genes (lipJ02, lipJ03) were isolated directly from environmental DNA via genome-walking method. Lipase gene lipJ02 contained an open reading frame (ORF) of 1,425 bp and encoded a 474-amino acids lipase protein, while lipase gene lipJ03 contained an ORF of 1,413 bp and encoded a 470-amino acids lipase protein. The lipase genes were cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host, Pichia pastoris KM71, and the recombinant P. pastoris were screened via a high-throughput method. The recombinants were induced by methanol to secrete active lipases into cultural medium. The recombinant lipases were also purified and characterized. The optimum temperature for the purified lipase LipJ02 and LipJ03 was 30 and 35 degrees C, respectively, at pH 8.0. They exhibited similar thermostability, but LipJ02 exhibited better pH stability than LipJ03.
Collapse
Affiliation(s)
- Zhengbing Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Aachmann FL, Svanem BIG, Güntert P, Petersen SB, Valla S, Wimmer R. NMR Structure of the R-module. J Biol Chem 2006; 281:7350-6. [PMID: 16407237 DOI: 10.1074/jbc.m510069200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacterium Azotobacter vinelandii, a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1-7) has been identified. These epimerases are responsible for the epimerization of beta-d-mannuronic acid to alpha-l-guluronic acid in alginate polymers. The epimerases consist of two types of structural modules, designated A (one or two copies) and R (one to seven copies). The structure of the catalytically active A-module from the smallest epimerase AlgE4 (consisting of AR) has been solved recently. This paper describes the NMR structure of the R-module from AlgE4 and its titration with a substrate analogue and paramagnetic thulium ions. The R-module folds into a right-handed parallel beta-roll. The overall shape of the R-module is an elongated molecule with a positively charged patch that interacts with the substrate. Titration of the R-module with thulium indicated possible calcium binding sites in the loops formed by the nonarepeat sequences in the N-terminal part of the molecule and the importance of calcium binding for the stability of the R-module. Structure calculations showed that calcium ions can be incorporated in these loops without structural violations and changes. Based on the structure and the electrostatic surface potential of both the A- and R-module from AlgE4, a model for the appearance of the whole protein is proposed.
Collapse
Affiliation(s)
- Finn L Aachmann
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|
45
|
Angkawidjaja C, Paul A, Koga Y, Takano K, Kanaya S. Importance of a repetitive nine-residue sequence motif for intracellular stability and functional structure of a family I.3 lipase. FEBS Lett 2005; 579:4707-12. [PMID: 16098975 DOI: 10.1016/j.febslet.2005.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/06/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
PML5 is a functional derivative of a family I.3 lipase from Pseudomonas sp. MIS38 and contains five repeats of a nine-residue sequence motif. Two aspartate residues within the second and third repetitive sequences of PML5 were replaced by Ala. The secretion level, intracellular accumulation level, and stability of the resultant mutant protein were greatly reduced as compared to those of PML5. In addition, this mutant protein was inactive and did not bind Ca2+ ion. We propose that the repetitive sequences of PML5 form a beta-roll structure in the cells and thereby contribute to the intracellular stability and secretion efficiency of the protein.
Collapse
Affiliation(s)
- Clement Angkawidjaja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
46
|
Bendikien≐ V, Surin≐nait≐ B, Juodka B, Safarikova M. Insights into catalytic action mechanism of Pseudomonas mendocina 3121-1 lipase. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Roongsawang N, Hase KI, Haruki M, Imanaka T, Morikawa M, Kanaya S. Cloning and Characterization of the Gene Cluster Encoding Arthrofactin Synthetase from Pseudomonas sp. MIS38. ACTA ACUST UNITED AC 2003; 10:869-80. [PMID: 14522057 DOI: 10.1016/j.chembiol.2003.09.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arthrofactin is a potent cyclic lipopeptide-type biosurfactant produced by Pseudomonas sp. MIS38. In this work, an arthrofactin synthetase gene cluster (arf) spanning 38.7 kb was cloned and characterized. Three genes termed arfA, arfB, and arfC encode ArfA, ArfB, and ArfC, containing two, four, and five functional modules, respectively. Each module bears condensation, adenylation, and thiolation domains, like other nonribosomal peptide synthetases. However, unlike most of them, none of the 11 modules possess the epimerization domain responsible for the conversion of amino acid residues from L to D form. Possible L- and D-Leu adenylation domains specifically recognized only L-Leu. Moreover, two thioesterase domains are tandemly located at the C-terminal end of ArfC. These results suggest that ArfA, ArfB, and ArfC assemble to form a unique structure. Gene disruption of arfB impaired arthrofactin production, reduced swarming activity, and enhanced biofilm formation.
Collapse
Affiliation(s)
- Niran Roongsawang
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Kwon HJ, Haruki M, Morikawa M, Omori K, Kanaya S. Role of repetitive nine-residue sequence motifs in secretion, enzymatic activity, and protein conformation of a family I.3 lipase. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80008-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Amada K, Kwon HJ, Haruki M, Morikawa M, Kanaya S. Ca(2+)-induced folding of a family I.3 lipase with repetitive Ca(2+) binding motifs at the C-terminus. FEBS Lett 2001; 509:17-21. [PMID: 11734198 DOI: 10.1016/s0014-5793(01)03108-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to understand a role of the Ca(2+) ion on the structure and function of a Ca(2+)-dependent family I.3 lipase from Pseudomonas sp. MIS38, apo-PML, holo-PML, holo-PML*, and the N-terminal domain alone (N-fragment) were prepared and biochemically characterized. Apo-PML and holo-PML represent refolded proteins in the absence and presence of the Ca(2+) ion, respectively. Holo-PML* represents a holo-PML dialyzed against 20 mM Tris-HCl (pH 7.5). The results suggest that the C-terminal domain of PML is almost fully unfolded in the apo-form and its folding is induced by Ca(2+) binding. The folding of this C-terminal domain may be required to make a conformation of the N-terminal catalytic domain functional.
Collapse
Affiliation(s)
- K Amada
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | |
Collapse
|
50
|
Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 2001; 67:4064-9. [PMID: 11526006 PMCID: PMC93130 DOI: 10.1128/aem.67.9.4064-4069.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that a psychrotrophic bacterium, Pseudomonas sp. strain KB700A, which displays sigmoidal growth even at -5 degrees C, produced a lipase. A genomic DNA library of strain KB700A was introduced into Escherichia coli TG1, and screening on tributyrin-containing agar plates led to the isolation of the lipase gene. Sequence analysis revealed an open reading frame (KB-lip) consisting of 1,422 nucleotides that encoded a protein (KB-Lip) of 474 amino acids with a molecular mass of 49,924 Da. KB-Lip showed 90% identity with the lipase from Pseudomonas fluorescens and was found to be a member of Subfamily I.3 lipase. Gene expression and purification of the recombinant protein were performed. KB-Lip displayed high lipase activity in the presence of Ca2+. Addition of EDTA completely abolished lipase activity, indicating that KB-Lip was a Ca2+-dependent lipase. Addition of Mn2+ and Sr2+ also led to enhancement of lipase activity but to a much lower extent than that produced by Ca2+. The optimal pH of KB-Lip was 8 to 8.5. The addition of detergents enhanced the enzyme activity. When p-nitrophenyl esters and triglyceride substrates of various chain-lengths were examined, the lipase displayed highest activity towards C10 acyl groups. We also determined the positional specificity and found that the activity was 20-fold higher toward the 1(3) position than toward the 2 position. The optimal temperature for KB-Lip was 35 degrees C, lower than that for any previously reported Subfamily I.3 lipase. The enzyme was also thermolabile compared to these lipases. Furthermore, KB-Lip displayed higher levels of activity at low temperatures than did other enzymes from Subfamily I.3, indicating that KB-Lip has evolved to function in cold environments, in accordance with the temperature range for growth of its psychrotrophic host, strain KB700A.
Collapse
Affiliation(s)
- N Rashid
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|