1
|
Nichols WW, Bradford PA, Lahiri SD, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vitro translational biology. J Antimicrob Chemother 2022; 77:2321-2340. [PMID: 35665807 DOI: 10.1093/jac/dkac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous reviews of ceftazidime/avibactam have focused on in vitro molecular enzymology and microbiology or the clinically associated properties of the combination. Here we take a different approach. We initiate a series of linked reviews that analyse research on the combination that built the primary pharmacology data required to support the clinical and business risk decisions to perform randomized controlled Phase 3 clinical trials, and the additional microbiological research that was added to the above, and the safety and chemical manufacturing and controls data, that constituted successful regulatory licensing applications for ceftazidime/avibactam in multiple countries, including the USA and the EU. The aim of the series is to provide both a source of reference for clinicians and microbiologists to be able to use ceftazidime/avibactam to its best advantage for patients, but also a case study of bringing a novel β-lactamase inhibitor (in combination with an established β-lactam) through the microbiological aspects of clinical development and regulatory applications, updated finally with a review of resistance occurring in patients under treatment. This first article reviews the biochemistry, structural biology and basic microbiology of the combination, showing that avibactam inhibits the great majority of serine-dependent β-lactamases in Enterobacterales and Pseudomonas aeruginosa to restore the in vitro antibacterial activity of ceftazidime. Translation to efficacy against infections in vivo is reviewed in the second co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac172).
Collapse
|
2
|
Hujer AM, Long SW, Olsen RJ, Taracila MA, Rojas LJ, Musser JM, Bonomo RA. Predicting β-lactam resistance using whole genome sequencing in Klebsiella pneumoniae: the challenge of β-lactamase inhibitors. Diagn Microbiol Infect Dis 2020; 98:115149. [PMID: 32858260 DOI: 10.1016/j.diagmicrobio.2020.115149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 07/18/2020] [Indexed: 11/25/2022]
Abstract
Although multiple antimicrobial resistance (AMR) determinants can confer the same in vitro antimicrobial susceptibility testing (AST) phenotype, their differing effect on optimal therapeutic choices is uncertain. Using a large population-based collection of clinical strains spanning a 3.5-year period, we applied WGS to detect inhibitor resistant (IR), extended-spectrum β-lactamase (ESBL), and carbapenem resistant (CR) β-lactamase (bla) genes and compared the genotype to the AST phenotype in select isolates. All blaNDM-1 (9/9) and the majority of blaNDM-1/OXA-48 (3/4) containing isolates were resistant to CAZ/AVI as predicted by WGS. The combination of ATM and CAZ/AVI restored susceptibility by disk diffusion assay. Unexpectedly, clinical Kp isolates bearing blaKPC-8 (V240G) and blaKPC-14 (G242 and T243 deletion) did not test fully resistant to CAZ/AVI. Lastly, despite the complexity of the β-lactamase background, CAZ/AVI retained potency. Presumed phenotypes conferred by AMR determinants need to be tested if therapeutic decisions are being guided by their presence or absence.
Collapse
Affiliation(s)
- Andrea M Hujer
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - Laura J Rojas
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and the Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH; CWRU-Cleveland VAMC, Center, for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH.
| |
Collapse
|
3
|
A Genotype-Phenotype Correlation Study of SHV β-Lactamases Offers New Insight into SHV Resistance Profiles. Antimicrob Agents Chemother 2020; 64:AAC.02293-19. [PMID: 32284385 DOI: 10.1128/aac.02293-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
The SHV β-lactamases (BLs) have undergone strong allele diversification that has changed their substrate specificities. Based on 147 NCBI entries for SHV alleles, in silico mathematical models predicted 5 positions as relevant for the β-lactamase inhibitor (BLI)-resistant (2br) phenotype, 12 positions as relevant for the extended-spectrum BL (ESBL) (2be) phenotype, and 2 positions as related solely to the narrow-spectrum (2b) phenotype. These positions and six additional positions described in other studies (including one promoter mutation) were systematically substituted and investigated for their substrate specificities in a BL-free Escherichia coli background, representing, to our knowledge, the most comprehensive substrate and substitution analysis for SHV alleles to date. An in vitro analysis confirmed the essentiality of positions 238 and 179 for the 2be phenotype and of position 69 for the 2br phenotype. The E240K and E240R substitutions, which do not occur alone in known 2br SHV variants, led to a 2br phenotype, indicating a latent BLI resistance potential of these substitutions. The M129V, A234G, S271I, and R292Q substitutions conferred latent resistance to cefotaxime. In addition, seven positions that were found not always to be associated with the ESBL phenotype resulted in increased resistance to ceftaroline. We also observed that coupling of a strong promoter (IS26) to an A146V mutant with the 2b phenotype resulted in highly increased resistance to BLIs, cefepime, and ceftaroline but not to third-generation cephalosporins, indicating that SHV enzymes represent an underestimated risk for empirical therapies that use piperacillin-tazobactam or cefepime to treat different infectious diseases caused by Gram-negative bacteria.
Collapse
|
4
|
Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M, Berglund F, Kristiansson E, Larsson DGJ. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. ENVIRONMENT INTERNATIONAL 2018; 112:279-286. [PMID: 29316517 DOI: 10.1016/j.envint.2017.12.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 05/28/2023]
Abstract
Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to different antibiotics in E. coli were sequenced using Sanger and PacBio RSII platforms. We recaptured the majority of known antibiotic resistance genes previously identified by open shot-gun metagenomics sequencing of the same samples. In addition, seven novel resistance gene candidates (six beta-lactamases and one amikacin resistance gene) were identified. Two class A beta-lactamases, blaRSA1 and blaRSA2, were phylogenetically close to clinically important ESBLs like blaGES, blaBEL and blaL2, and were further characterized for their substrate spectra. The blaRSA1 protein, encoded as an integron gene cassette, efficiently hydrolysed penicillins, first generation cephalosporins and cefotaxime, while blaRSA2 was an inducible class A beta-lactamase, capable of hydrolyzing carbapenems albeit with limited efficiency, similar to the L2 beta-lactamase from Stenotrophomonas maltophilia. All detected novel genes were associated with plasmid mobilization proteins, integrons, and/or other resistance genes, suggesting a potential for mobility. This study provides insight into a resistome shaped by an exceptionally strong and long-term antibiotic selection pressure. An improved knowledge of mobilized resistance factors in the external environment may make us better prepared for the resistance challenges that we may face in clinics in the future.
Collapse
Affiliation(s)
- Nachiket P Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Anders Janzon
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Stathis D Kotsakis
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
5
|
Knappenberger AJ, Reiss CW, Strobel SA. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. eLife 2018; 7:36381. [PMID: 29877798 PMCID: PMC6031431 DOI: 10.7554/elife.36381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.
Collapse
Affiliation(s)
- Andrew John Knappenberger
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Caroline Wetherington Reiss
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Scott A Strobel
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| |
Collapse
|
6
|
Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM. Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme. Chem Sci 2017; 8:6484-6492. [PMID: 28989673 PMCID: PMC5628580 DOI: 10.1039/c7sc02676e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Allosteric mutations increasing kcat in a beta lactamase act by changing conformational ensembles of active-site residues identified by machine learning.
The CTX-M family of beta lactamases mediate broad-spectrum antibiotic resistance and are present in the majority of drug-resistant Gram-negative bacterial infections worldwide. Allosteric mutations that increase catalytic rates of these drug resistance enzymes have been identified in clinical isolates but are challenging to predict prospectively. We have used molecular dynamics simulations to predict allosteric mutants increasing CTX-M9 drug resistance, experimentally testing top mutants using multiple antibiotics. Purified enzymes show an increase in catalytic rate and efficiency, while mutant crystal structures show no detectable changes from wild-type CTX-M9. We hypothesize that increased drug resistance results from changes in the conformational ensemble of an acyl intermediate in hydrolysis. Machine-learning analyses on the three top mutants identify changes to the binding-pocket conformational ensemble by which these allosteric mutations transmit their effect. These findings show how molecular simulation can predict how allosteric mutations alter active-site conformational equilibria to increase catalytic rates and thus resistance against common clinically used antibiotics.
Collapse
Affiliation(s)
- M J Latallo
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - G A Cortina
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA
| | - S Faham
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - R K Nakamoto
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - P M Kasson
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA.,Science for Life Laboratory , Department of Cell and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|
7
|
attI1-Located Small Open Reading Frames ORF-17 and ORF-11 in a Class 1 Integron Affect Expression of a Gene Cassette Possessing a Canonical Shine-Dalgarno Sequence. Antimicrob Agents Chemother 2017; 61:AAC.02070-16. [PMID: 28031195 DOI: 10.1128/aac.02070-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022] Open
Abstract
By searching the Integrall integron and GenBank databases, a novel open reading frame (ORF) of 51 nucleotides (nts) (ORF-17) overlapping the previously described ORF-11 was identified within the attI1 site in virtually all class 1 integrons. Using a set of isogenic plasmid constructs carrying a single gene cassette (blaGES-1) and possessing a canonical translation initiation region, we found that ORF-17 contributes to GES-1 expression.
Collapse
|
8
|
Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob Agents Chemother 2016; 60:1751-9. [PMID: 26729496 DOI: 10.1128/aac.02641-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
Boronic acid transition state inhibitors (BATSIs) are competitive, reversible β-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A β-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of β-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 β-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤ 600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 10(4) M(-1) s(-1) for KPC-2 and 4.7 ± 0.6 × 10(3) M(-1) s(-1) for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A β-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter.
Collapse
|
9
|
Caselli E, Romagnoli C, Vahabi R, Taracila MA, Bonomo RA, Prati F. Click Chemistry in Lead Optimization of Boronic Acids as β-Lactamase Inhibitors. J Med Chem 2015; 58:5445-58. [PMID: 26102369 DOI: 10.1021/acs.jmedchem.5b00341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Boronic acid transition-state inhibitors (BATSIs) represent one of the most promising classes of β-lactamase inhibitors. Here we describe a new class of BATSIs, namely, 1-amido-2-triazolylethaneboronic acids, which were synthesized by combining the asymmetric homologation of boronates with copper-catalyzed azide-alkyne cycloaddition for the stereoselective insertion of the amido group and the regioselective formation of the 1,4-disubstituted triazole, respectively. This synthetic pathway, which avoids intermediate purifications, proved to be flexible and efficient, affording in good yields a panel of 14 BATSIs bearing three different R1 amide side chains (acetamido, benzylamido, and 2-thienylacetamido) and several R substituents on the triazole. This small library was tested against two clinically relevant class C β-lactamases from Enterobacter spp. and Pseudomonas aeruginosa. The K(i) value of the best compound (13a) was as low as 4 nM with significant reduction of bacterial resistance to the combination of cefotaxime/13a.
Collapse
Affiliation(s)
- Emilia Caselli
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Romagnoli
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Roza Vahabi
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Magdalena A Taracila
- §Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University, , Cleveland, Ohio 44106, United States
| | - Robert A Bonomo
- ‡Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,§Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University, , Cleveland, Ohio 44106, United States
| | - Fabio Prati
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| |
Collapse
|
10
|
Mitchell JM, Clasman JR, June CM, Kaitany KCJ, LaFleur JR, Taracila MA, Klinger NV, Bonomo RA, Wymore T, Szarecka A, Powers RA, Leonard DA. Structural basis of activity against aztreonam and extended spectrum cephalosporins for two carbapenem-hydrolyzing class D β-lactamases from Acinetobacter baumannii. Biochemistry 2015; 54:1976-87. [PMID: 25710192 DOI: 10.1021/bi501547k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The carbapenem-hydrolyzing class D β-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for β-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the β5-β6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the β5-β6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D β-lactamases but may also provide a map for β-lactam improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Magdalena A Taracila
- ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | | | - Robert A Bonomo
- ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Troy Wymore
- ⊥UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | | | |
Collapse
|
11
|
Che T, Rodkey E, Bethel CR, Shanmugam S, Ding Z, Pusztai-Carey M, Nottingham M, Chai W, Buynak JD, Bonomo RA, van den Akker F, Carey PR. Detecting a quasi-stable imine species on the reaction pathway of SHV-1 β-lactamase and 6β-(hydroxymethyl)penicillanic acid sulfone. Biochemistry 2015; 54:734-43. [PMID: 25536850 PMCID: PMC4310624 DOI: 10.1021/bi501197t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/22/2014] [Indexed: 11/30/2022]
Abstract
For the class A β-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6β position by a CH2OH group (6β-(hydroxymethyl)penicillanic acid). The 6β substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a β-aminoacrylate) in 1 h for sulbactam and in 4 h for 6β-(hydroxymethyl) sulbactam. Rapid mix-rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6β-(hydroxymethyl) sulbactam formed longer-lived acyl-enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6β-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6β-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis.
Collapse
Affiliation(s)
- Tao Che
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Elizabeth
A. Rodkey
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christopher R. Bethel
- Research
Service, Louis Stokes Cleveland Veterans
Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Sivaprakash Shanmugam
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zhe Ding
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marianne Pusztai-Carey
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael Nottingham
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Weirui Chai
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - John D. Buynak
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Robert A. Bonomo
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Research
Service, Louis Stokes Cleveland Veterans
Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Focco van den Akker
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul R. Carey
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Heidari Torkabadi H, Bethel CR, Papp-Wallace KM, de Boer PAJ, Bonomo RA, Carey PR. Following drug uptake and reactions inside Escherichia coli cells by Raman microspectroscopy. Biochemistry 2014; 53:4113-21. [PMID: 24901294 PMCID: PMC4082380 DOI: 10.1021/bi500529c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman microspectroscopy combined with Raman difference spectroscopy reveals the details of chemical reactions within bacterial cells. The method provides direct quantitative data on penetration of druglike molecules into Escherichia coli cells in situ along with the details of drug-target reactions. With this label-free technique, clavulanic acid and tazobactam can be observed as they penetrate into E. coli cells and subsequently inhibit β-lactamase enzymes produced within these cells. When E. coli cells contain a β-lactamase that forms a stable complex with an inhibitor, the Raman signature of the known enamine acyl-enzyme complex is detected. From Raman intensities it is facile to measure semiquantitatively the number of clavulanic acid molecules taken up by the lactamase-free cells during growth.
Collapse
Affiliation(s)
- Hossein Heidari Torkabadi
- Departments of Chemistry, §Molecular Biology and Microbiology, ∥Pharmacology, ⊥Medicine, and #Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
13
|
Rodkey EA, Winkler ML, Bethel CR, Pagadala SRR, Buynak JD, Bonomo RA, van den Akker F. Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition. PLoS One 2014; 9:e85892. [PMID: 24454944 PMCID: PMC3894197 DOI: 10.1371/journal.pone.0085892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/03/2013] [Indexed: 02/01/2023] Open
Abstract
β-Lactamases are the major reason β-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, β-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower k(react) than tazobactam. We investigated here the importance of the carboxyl linker length and composition by synthesizing three analogs of SA2-13 (PSR-4-157, PSR-4-155, and PSR-3-226). All SA2-13 analogs yielded higher turnover numbers and k(react) compared to SA2-13. We next demonstrated using protein crystallography that increasing the linker length by one carbon allowed for better capture of a trans-enamine intermediate; in contrast, this trans-enamine intermediate did not occur when the C2 linker length was decreased by one carbon. If the linker was altered by both shortening it and changing the carboxyl moiety into a neutral amide moiety, the stable trans-enamine intermediate in wt SHV-1 did not form; this intermediate could only be observed when a deacylation deficient E166A variant was studied. We subsequently studied SA2-13 against a relatively recently discovered inhibitor-resistant (IR) variant of SHV-1, SHV K234R. Despite the alteration in the mechanism of resistance due to the K→R change in this variant, SA2-13 was effective at inhibiting this IR enzyme and formed a trans-enamine inhibitory intermediate similar to the intermediate seen in the wt SHV-1 structure. Taken together, our data reveals that the C2 side chain linker length and composition profoundly affect the formation of the trans-enamine intermediate of penam sulfones. We also show that the design of SA2-13 derivatives offers promise against IR SHV β-lactamases that possess the K234R substitution.
Collapse
Affiliation(s)
- Elizabeth A. Rodkey
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marisa L. Winkler
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Christopher R. Bethel
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | | | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (RAB); (FVDA)
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (RAB); (FVDA)
| |
Collapse
|
14
|
Structures of the class D Carbapenemases OXA-23 and OXA-146: mechanistic basis of activity against carbapenems, extended-spectrum cephalosporins, and aztreonam. Antimicrob Agents Chemother 2013; 57:4848-55. [PMID: 23877677 DOI: 10.1128/aac.00762-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class D β-lactamases that hydrolyze carbapenems such as imipenem and doripenem are a recognized danger to the efficacy of these "last-resort" β-lactam antibiotics. Like all known class D carbapenemases, OXA-23 cannot hydrolyze the expanded-spectrum cephalosporin ceftazidime. OXA-146 is an OXA-23 subfamily clinical variant that differs from the parent enzyme by a single alanine (A220) inserted in the loop connecting β-strands β5 and β6. We discovered that this insertion enables OXA-146 to bind and hydrolyze ceftazidime with an efficiency comparable to those of other extended-spectrum class D β-lactamases. OXA-146 also binds and hydrolyzes aztreonam, cefotaxime, ceftriaxone, and ampicillin with higher efficiency than OXA-23 and preserves activity against doripenem. In this study, we report the X-ray crystal structures of both the OXA-23 and OXA-146 enzymes at 1.6-Å and 1.2-Å resolution. A comparison of the two structures shows that the extra alanine moves a methionine (M221) out of its normal position, where it forms a bridge over the top of the active site. This single amino acid insertion also lengthens the β5-β6 loop, moving the entire backbone of this region further away from the active site. A model of ceftazidime bound in the active site reveals that these two structural alterations are both likely to relieve steric clashes between the bulky R1 side chain of ceftazidime and OXA-23. With activity against all four classes of β-lactam antibiotics, OXA-146 represents an alarming new threat to the treatment of infections caused by Acinetobacter spp.
Collapse
|
15
|
N152G, -S, and -T substitutions in CMY-2 β-lactamase increase catalytic efficiency for cefoxitin and inactivation rates for tazobactam. Antimicrob Agents Chemother 2013; 57:1596-602. [PMID: 23318801 DOI: 10.1128/aac.01334-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class C cephalosporinases are a growing threat, and clinical inhibitors of these enzymes are currently unavailable. Previous studies have explored the role of Asn152 in the Escherichia coli AmpC and P99 enzymes and have suggested that interactions between C-6' or C-7' substituents on penicillins or cephalosporins and Asn152 are important in determining substrate specificity and enzymatic stability. We sought to characterize the role of Asn152 in the clinically important CMY-2 cephalosporinase with substrates and inhibitors. Mutagenesis of CMY-2 at position 152 yields functional mutants (N152G, -S, and -T) that exhibit improved penicillinase activity and retain cephamycinase activity. We also tested whether the position 152 substitutions would affect the inactivation kinetics of tazobactam, a class A β-lactamase inhibitor with in vitro activity against CMY-2. Using standard assays, we showed that the N152G, -S, and -T variants possessed increased catalytic activity against cefoxitin compared to the wild type. The 50% inhibitory concentration (IC50) for tazobactam improved dramatically, with an 18-fold reduction for the N152S mutant due to higher rates of enzyme inactivation. Modeling studies have shown active-site expansion due to interactions between Y150 and S152 in the apoenzyme and the Michaelis-Menten complex with tazobactam. Substitutions at N152 might become clinically important as new class C β-lactamase inhibitors are developed.
Collapse
|
16
|
Baig MH, Shakil S, Khan AU. Homology modeling and docking study of recent SHV type β-lactamses with traditional and novel inhibitors: an in silico approach to combat problem of multiple drug resistance in various infections. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Substitutions at position 105 in SHV family β-lactamases decrease catalytic efficiency and cause inhibitor resistance. Antimicrob Agents Chemother 2012; 56:5678-86. [PMID: 22908166 DOI: 10.1128/aac.00711-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ambler position 105 in class A β-lactamases is implicated in resistance to clavulanic acid, although no clinical isolates with mutations at this site have been reported. We hypothesized that Y105 is important in resistance to clavulanic acid because changes in positioning of the inhibitor for ring oxygen protonation could occur. In addition, resistance to bicyclic 6-methylidene penems, which are interesting structural probes that inhibit all classes of serine β-lactamases with nanomolar affinity, might emerge with substitutions at position 105, especially with nonaromatic substitutions. All 19 variants of SHV-1 with variations at position 105 were prepared. Antimicrobial susceptibility testing showed that Escherichia coli DH10B expressing Y105 variants retained activity against ampicillin, except for the Y105L variant, which was susceptible to all β-lactams, similar to the case for the host control strain. Several variants had elevated MICs to ampicillin-clavulanate. However, all the variants remained susceptible to piperacillin in combination with a penem inhibitor (MIC, ≤2/4 mg/liter). The Y105E, -F, -M, and -R variants demonstrated reduced catalytic efficiency toward ampicillin compared to the wild-type (WT) enzyme, which was caused by increased K(m). Clavulanic acid and penem K(i) values were also increased for some of the variants, especially Y105E. Mutagenesis at position 105 in SHV yields mutants resistant to clavulanate with reduced catalytic efficiency for ampicillin and nitrocefin, similar to the case for the class A carbapenemase KPC-2. Our modeling analyses suggest that resistance is due to oxyanion hole distortion. Susceptibility to a penem inhibitor is retained although affinity is decreased, especially for the Y105E variant. Residue 105 is important to consider when designing new inhibitors.
Collapse
|
18
|
Ke W, Rodkey EA, Sampson JM, Skalweit MJ, Sheri A, Pagadala SRR, Nottingham MD, Buynak JD, Bonomo RA, van den Akker F. The importance of the trans-enamine intermediate as a β-lactamase inhibition strategy probed in inhibitor-resistant SHV β-lactamase variants. ChemMedChem 2012; 7:1002-8. [PMID: 22438274 DOI: 10.1002/cmdc.201200006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 11/07/2022]
Abstract
The ability of bacteria to express inhibitor-resistant (IR) β-lactamases is stimulating the development of novel inhibitors of these enzymes. The 2'β-glutaroxypenicillinate sulfone, SA2-13, was previously designed to enhance the stabilization of the deacylation-refractory, trans-enamine inhibitory intermediate. To test whether this mode of inhibition can overcome different IR mutations, we determined the binding mode of SA2-13 through X-ray crystallography, obtaining co-crystals of the inhibitor-protein complex by soaking crystals of the IR sulfhydryl variable (SHV) β-lactamase variants S130G and M69V with the inhibitor. The 1.45 Å crystal structure of the S130G SHV:SA2-13 complex reveals that SA2-13 is still able to form the stable trans-enamine intermediate similar to the wild-type complex structure, yet with its carboxyl linker shifted deeper into the active site in the space vacated by the S130G mutation. In contrast, data from crystals of the M69V SHV:SA2-13 complex at 1.3 Å did not reveal clear inhibitor density indicating that this IR variant disfavors the trans-enamine conformation, likely due to a subtle shift in A237.
Collapse
Affiliation(s)
- Wei Ke
- Department of Biochemistry, RT500, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Exploring the inhibition of CTX-M-9 by beta-lactamase inhibitors and carbapenems. Antimicrob Agents Chemother 2011; 55:3465-75. [PMID: 21555770 DOI: 10.1128/aac.00089-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, CTX-M β-lactamases are among the most prevalent and most heterogeneous extended-spectrum β-lactamases (ESBLs). In general, CTX-M enzymes are susceptible to inhibition by β-lactamase inhibitors. However, it is unknown if the pathway to inhibition by β-lactamase inhibitors for CTX-M ESBLs is similar to TEM and SHV β-lactamases and why bacteria possessing only CTX-M ESBLs are so susceptible to carbapenems. Here, we have performed a kinetic analysis and timed electrospray ionization mass spectrometry (ESI-MS) studies to reveal the intermediates of inhibition of CTX-M-9, an ESBL representative of this family of enzymes. CTX-M-9 β-lactamase was inactivated by sulbactam, tazobactam, clavulanate, meropenem, doripenem, ertapenem, and a 6-methylidene penem, penem 1. K(i) values ranged from 1.6 ± 0.3 μM (mean ± standard error) for tazobactam to 0.02 ± 0.01 μM for penem 1. Before and after tryptic digestion of the CTX-M-9 β-lactamase apo-enzyme and CTX-M-9 inactivation by inhibitors (meropenem, clavulanate, sulbactam, tazobactam, and penem 1), ESI-MS and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified different adducts attached to the peptide containing the active site Ser70 (+52, 70, 88, and 156 ± 3 atomic mass units). This study shows that a multistep inhibition pathway results from modification or fragmentation with clavulanate, sulbactam, and tazobactam, while a single acyl enzyme intermediate is detected when meropenem and penem 1 inactivate CTX-M-9 β-lactamase. More generally, we propose that Arg276 in CTX-M-9 plays an essential role in the recognition of the C(3) carboxylate of inhibitors and that the localization of this positive charge to a "region of the active site" rather than a specific residue represents an important evolutionary strategy used by β-lactamases.
Collapse
|
20
|
Ligand-dependent disorder of the Omega loop observed in extended-spectrum SHV-type beta-lactamase. Antimicrob Agents Chemother 2011; 55:2303-9. [PMID: 21357298 DOI: 10.1128/aac.01360-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among Gram-negative bacteria, resistance to β-lactams is mediated primarily by β-lactamases (EC 3.2.6.5), periplasmic enzymes that inactivate β-lactam antibiotics. Substitutions at critical amino acid positions in the class A β-lactamase families result in enzymes that can hydrolyze extended-spectrum cephalosporins, thus demonstrating an "extended-spectrum" β-lactamase (ESBL) phenotype. Using SHV ESBLs with substitutions in the Ω loop (R164H and R164S) as target enzymes to understand this enhanced biochemical capability and to serve as a basis for novel β-lactamase inhibitor development, we determined the spectra of activity and crystal structures of these variants. We also studied the inactivation of the R164H and R164S mutants with tazobactam and SA2-13, a unique β-lactamase inhibitor that undergoes a distinctive reaction chemistry in the active site. We noted that the reduced Ki values for the R164H and R164S mutants with SA2-13 are comparable to those with tazobactam (submicromolar). The apo enzyme crystal structures of the R164H and R164S SHV variants revealed an ordered Ω loop architecture that became disordered when SA2-13 was bound. Important structural alterations that result from the binding of SA2-13 explain the enhanced susceptibility of these ESBL enzymes to this inhibitor and highlight ligand-dependent Ω loop flexibility as a mechanism for accommodating and hydrolyzing β-lactam substrates.
Collapse
|
21
|
Khan AU, Baig MH, Wadhwa G. Molecular docking analysis of new generation cephalosporins interactions with recently known SHV-variants. Bioinformation 2011; 5:331-5. [PMID: 21383920 PMCID: PMC3046037 DOI: 10.6026/97320630005331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/22/2010] [Indexed: 11/23/2022] Open
Abstract
Extended-spectrum-β-lactamases (ESBLs), constitutes the growing class of betalactamses, these are enzymes produced by bacteria which impart
resistance against advanced-generation-cephalosporins. SHV enzymes are among the most prevalent ESBLs. The mode of molecular interactions of recent
SHV-variants to advanced generation cephalosporins has not been reported yet. This is the first time we are reporting the insilico study of these recent
variants with new generation cephaosporins. Homology models for SHV-105, SHV-95, SHV-89, SHV-61 and SHV-48 were generated using
MODELLER9v3. New generation Cephalosporins were selected to target the active site amino acid residues of these modeled SHV enzymes for
predicting comparative efficacies of these inhibitors against the said enzymes on the basis of interaction energies of docking. The docked complexes were
analyzed by using DISCOVERY STUDIO 2.5. In this study A237, S70, K234, R275, N132, R244 and S130 were found crucial to the correct positioning
of drugs within the binding site of SHV enzymes in 11, 6, 6, 6, 5, 5 and 5 instances, respectively. On the basis of interaction energy and Ki calculations
cefatoxime emerged as the most efficient among the other advanced cephalosporins against all the studied SHV variants, excluding SHV-48 where
ceftazidime was found to be most effective drug. Furthermore, this study identified amino acid residues crucial to ‘SHV-Cephalosporins’ interactions and
this information will be useful in designing effective and versatile drug candidates.
Collapse
Affiliation(s)
- Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh- 202002, India
- Asad Ullah Khan:
| | - Mohd Hassan Baig
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh- 202002, India
| | - Gulshan Wadhwa
- Department of Biotechnology, Ministry of Science & Technology, New Delhi – 110003, Indi
| |
Collapse
|
22
|
Endimiani A, Doi Y, Bethel CR, Taracila M, Adams-Haduch JM, O'Keefe A, Hujer AM, Paterson DL, Skalweit MJ, Page MGP, Drawz SM, Bonomo RA. Enhancing resistance to cephalosporins in class C beta-lactamases: impact of Gly214Glu in CMY-2. Biochemistry 2010; 49:1014-23. [PMID: 19938877 DOI: 10.1021/bi9015549] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biochemical properties of CMY-32, a class C enzyme possessing a single-amino acid substitution in the Omega loop (Gly214Glu), were compared to those of the parent enzyme, CMY-2, a widespread class C beta-lactamase. In parallel with our microbiological characterization, the Gly214Glu substitution in CMY-32 reduced catalytic efficiency (k(cat)/K(m)) by 50-70% against "good" substrates (i.e., cephalothin) while increasing k(cat)/K(m) against "poor" substrates (i.e., cefotaxime). Additionally, CMY-32 was more susceptible to inactivation by sulfone beta-lactamase inhibitors (i.e., sulbactam and tazobactam) than CMY-2. Timed electrospray ionization mass spectrometry (ESI-MS) analysis of the reaction of CMY-2 and CMY-32 with different substrates and inhibitors suggested that both beta-lactamases formed similar intermediates during catalysis and inactivation. We next showed that the carbapenems (imipenem, meropenem, and doripenem) form long-lived acyl-enzyme intermediates and present evidence that there is beta-lactamase-catalyzed elimination of the C(6) hydroxyethyl substituent. Furthermore, we discovered that the monobactam aztreonam and BAL29880, a new beta-lactamase inhibitor of the monobactam class, inactivate CMY-2 and CMY-32 by forming an acyl-enzyme intermediate that undergoes elimination of SO(3)(2-). Molecular modeling and dynamics simulations suggest that the Omega loop is more constrained in CMY-32 than CMY-2. Our model also proposes that Gln120 adopts a novel conformation in the active site while new interactions form between Glu214 and Tyr221, thus explaining the increased level of cefotaxime hydrolysis. When it is docked in the active site, we observe that BAL29880 exploits contacts with highly conserved residues Lys67 and Asn152 in CMY-2 and CMY-32. These findings highlight (i) the impact of single-amino acid substitutions on protein evolution in clinically important AmpC enzymes and (ii) the novel insights into the mechanisms by which carbapenems and monobactams interact with CMY-2 and CMY-32 beta-lactamases.
Collapse
Affiliation(s)
- Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.
Collapse
|
24
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
25
|
Kalp M, Bethel CR, Bonomo RA, Carey PR. Why the extended-spectrum beta-lactamases SHV-2 and SHV-5 are "hypersusceptible" to mechanism-based inhibitors. Biochemistry 2009; 48:9912-20. [PMID: 19736945 DOI: 10.1021/bi9012098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extended-spectrum beta-lactamases (ESBLs) are derivatives of enzymes such as SHV-1 and TEM-1 that have undergone site-specific mutations that enable them to hydrolyze, and thus inactivate, oxyimino-cephalosporins, such as cefotaxime and ceftazidime. X-ray crystallographic data provide an explanation for this in that the mutations bring about an expansion of the binding pocket by moving a beta-strand that forms part of the active site wall. Another characteristic of ESBLs that has remained enigmatic is the fact that they are "hypersusceptible" to inhibition by the mechanism-based inactivators tazobactam, sulbactam, and clavulanic acid. Here, we provide a rationale for this "hypersusceptibility" based on a comparative analysis of the intermediates formed by these compounds with wild-type (WT) SHV-1 beta-lactamase and its ESBL variants SHV-2 and SHV-5, which carry the G238S and G238S/E240K substitutions, respectively. A Raman spectroscopic analysis of the reactions in single crystals shows that, compared to WT, the SHV-2 and SHV-5 variants have relatively higher populations of the stable trans-enamine intermediate over the less stable and more easily hydrolyzable cis-enamine and imine co-intermediates. In solution, SHV-2 and SHV-5 also form larger populations of an enamine species compared to SHV-1 as detected by stopped-flow kinetic experiments under single-turnover conditions. Moreover, a simple Raman band shape analysis predicts that the trans-enamine intermediates themselves in SHV-2 and SHV-5 are held in more stable, rigid conformations compared to their trans-enamine analogues in WT SHV-1. As a result of this stabilization, more of the trans-enamine intermediate is formed, which subsequently lowers the K(I) values of the mechanism-based inhibitors up to 50-fold in SHV-2 and SHV-5.
Collapse
Affiliation(s)
- Matthew Kalp
- Department of Biochemistry, Molecular Biology and Microbiology, and Medicine,Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
26
|
Kalp M, Totir MA, Buynak JD, Carey PR. Different intermediate populations formed by tazobactam, sulbactam, and clavulanate reacting with SHV-1 beta-lactamases: Raman crystallographic evidence. J Am Chem Soc 2009; 131:2338-47. [PMID: 19161282 PMCID: PMC2661619 DOI: 10.1021/ja808311s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tazobactam, sulbactam, and clavulanic acid are the only beta-lactamase inhibitors in clinical use. Comparative inhibitory activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases conclude that tazobactam is superior to both clavulanic acid and sulbactam. Thus far, the majority of explanations for this phenomenon have relied on kinetic studies, which report differences in the ligands' apparent dissociation constants and number of turnovers before inactivation. Due their innate limitations, these investigations do not examine the identity of intermediates on the reaction pathway and relate them to the efficacy of the inhibitors. In the present study, the reactions between the three inhibitors and SHV-1 beta-lactamase have been examined in single crystals using a Raman microscope. The results show that tazobactam forms a predominant population of trans-enamine, a chemically inert species, with SHV-1, while clavulanate and sulbactam form a mixture of trans-enamine and two labile species, the cis-enamine and imine. The same reactions are then reexamined using a deacylation-deficient variant, SHV E166A, that has been used to trap acyl-enzyme intermediates for X-ray crystallographic analysis. Our Raman data show that significant differences exist between the wild-type and SHV E166A acyl-enzyme populations. Namely, compared to SHV-1, sulbactam shows significantly smaller populations of cis-enamine and imine in the E166A variant, while clavulanate exists almost exclusively as trans-enamine in the E166A active site. Using clavulanate as an example, we also show that Raman crystallography can provide novel information on the presence of multiple conformers or tautomers for intermediates within a complex reaction pathway. These insights caution against the interpretation of experimental data obtained with deacylation-deficient beta-lactamases to make mechanistic conclusions about inhibitors within the enzyme.
Collapse
Affiliation(s)
- Matthew Kalp
- Contribution from Case Western Reserve University, Department of Biochemistry, 10900 Euclid Avenue, Cleveland, OH 44106 and Southern Methodist University, Department of Chemistry, PO Box 750314, Dallas, TX 75275-0314
| | - Monica A. Totir
- Contribution from Case Western Reserve University, Department of Biochemistry, 10900 Euclid Avenue, Cleveland, OH 44106 and Southern Methodist University, Department of Chemistry, PO Box 750314, Dallas, TX 75275-0314
| | - John D. Buynak
- Contribution from Case Western Reserve University, Department of Biochemistry, 10900 Euclid Avenue, Cleveland, OH 44106 and Southern Methodist University, Department of Chemistry, PO Box 750314, Dallas, TX 75275-0314
| | - Paul R. Carey
- Contribution from Case Western Reserve University, Department of Biochemistry, 10900 Euclid Avenue, Cleveland, OH 44106 and Southern Methodist University, Department of Chemistry, PO Box 750314, Dallas, TX 75275-0314
| |
Collapse
|
27
|
Pattanaik P, Bethel CR, Hujer AM, Hujer KM, Distler AM, Taracila M, Anderson VE, Fritsche TR, Jones RN, Pagadala SRR, van den Akker F, Buynak JD, Bonomo RA. Strategic design of an effective beta-lactamase inhibitor: LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone. J Biol Chem 2009; 284:945-53. [PMID: 18955486 PMCID: PMC2613614 DOI: 10.1074/jbc.m806833200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/22/2008] [Indexed: 11/06/2022] Open
Abstract
In an effort to devise strategies for overcoming bacterial beta-lactamases, we studied LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone inhibitor. By possessing a catecholic functionality that resembles a natural bacterial siderophore, LN-1-255 is unique among beta-lactamase inhibitors. LN-1-255 combined with piperacillin was more potent against Escherichia coli DH10B strains bearing bla(SHV) extended-spectrum and inhibitor-resistant beta-lactamases than an equivalent amount of tazobactam and piperacillin. In addition, LN-1-255 significantly enhanced the activity of ceftazidime and cefpirome against extended-spectrum cephalosporin and Sme-1 containing carbapenem-resistant clinical strains. LN-1-255 inhibited SHV-1 and SHV-2 beta-lactamases with nm affinity (K(I) = 110 +/- 10 and 100 +/- 10 nm, respectively). When LN-1-255 inactivated SHV beta-lactamases, a single intermediate was detected by mass spectrometry. The crystal structure of LN-1-255 in complex with SHV-1 was determined at 1.55A resolution. Interestingly, this novel inhibitor forms a bicyclic aromatic intermediate with its carbonyl oxygen pointing out of the oxyanion hole and forming hydrogen bonds with Lys-234 and Ser-130 in the active site. Electron density for the "tail" of LN-1-255 is less ordered and modeled in two conformations. Both conformations have the LN-1-255 carboxyl group interacting with Arg-244, yet the remaining tails of the two conformations diverge. The observed presence of the bicyclic aromatic intermediate with its carbonyl oxygen positioned outside of the oxyanion hole provides a rationale for the stability of this inhibitory intermediate. The 2'-substituted penicillin sulfone, LN-1-255, is proving to be an important lead compound for novel beta-lactamase inhibitor design.
Collapse
Affiliation(s)
- Priyaranjan Pattanaik
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reynolds KA, Hanes MS, Thomson JM, Antczak AJ, Berger JM, Bonomo RA, Kirsch JF, Handel TM. Computational redesign of the SHV-1 beta-lactamase/beta-lactamase inhibitor protein interface. J Mol Biol 2008; 382:1265-75. [PMID: 18775544 PMCID: PMC4085744 DOI: 10.1016/j.jmb.2008.05.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/20/2008] [Accepted: 05/15/2008] [Indexed: 01/07/2023]
Abstract
Beta-lactamases are enzymes that catalyze the hydrolysis of beta-lactam antibiotics. beta-lactamase/beta-lactamase inhibitor protein (BLIP) complexes are emerging as a well characterized experimental model system for studying protein-protein interactions. BLIP is a 165 amino acid protein that inhibits several class A beta-lactamases with a wide range of affinities: picomolar affinity for K1; nanomolar affinity for TEM-1, SME-1, and BlaI; but only micromolar affinity for SHV-1 beta-lactamase. The large differences in affinity coupled with the availability of extensive mutagenesis data and high-resolution crystal structures for the TEM-1/BLIP and SHV-1/BLIP complexes make them attractive systems for the further development of computational design methodology. We used EGAD, a physics-based computational design program, to redesign BLIP in an attempt to increase affinity for SHV-1. Characterization of several of designs and point mutants revealed that in all cases, the mutations stabilize the interface by 10- to 1000-fold relative to wild type BLIP. The calculated changes in binding affinity for the mutants were within a mean absolute error of 0.87 kcal/mol from the experimental values, and comparison of the calculated and experimental values for a set of 30 SHV-1/BLIP complexes yielded a correlation coefficient of 0.77. Structures of the two complexes with the highest affinity, SHV-1/BLIP (E73M) and SHV-1/BLIP (E73M, S130K, S146M), are presented at 1.7 A resolution. While the predicted structures have much in common with the experimentally determined structures, they do not coincide perfectly; in particular a salt bridge between SHV-1 D104 and BLIP K74 is observed in the experimental structures, but not in the predicted design conformations. This discrepancy highlights the difficulty of modeling salt bridge interactions with a protein design algorithm that approximates side chains as discrete rotamers. Nevertheless, while local structural features of the interface were sometimes miscalculated, EGAD is globally successful in designing complexes with increased affinity.
Collapse
Affiliation(s)
- Kimberly A. Reynolds
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0684
| | - Melinda S. Hanes
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0684
| | - Jodi M. Thomson
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center and the Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, 44106
| | - Andrew J. Antczak
- Department of Molecular and Cell Biology and QB3 institute, University of California, Berkeley, Berkeley, CA 94720
| | - James M. Berger
- Department of Molecular and Cell Biology and QB3 institute, University of California, Berkeley, Berkeley, CA 94720
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center and the Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, 44106
| | - Jack F. Kirsch
- Department of Molecular and Cell Biology and QB3 institute, University of California, Berkeley, Berkeley, CA 94720
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0684,Address Correspondence to: Dr. Tracy M. Handel, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Dr. Mail Code 0684, La Jolla, CA 92093-0684; Tel: 858-822-6656; Fax: 858-822-6655;
| |
Collapse
|
29
|
Nukaga M, Bethel CR, Thomson JM, Hujer AM, Distler A, Anderson VE, Knox JR, Bonomo RA. Inhibition of class A beta-lactamases by carbapenems: crystallographic observation of two conformations of meropenem in SHV-1. J Am Chem Soc 2008; 130:12656-62. [PMID: 18761444 DOI: 10.1021/ja7111146] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbapenem antibiotics are often the "last resort" in the treatment of infections caused by bacteria resistant to penicillins and cephalosporins. To understand why meropenem is resistant to hydrolysis by the SHV-1 class A beta-lactamase, the atomic structure of meropenem inactivated SHV-1 was solved to 1.05 A resolution. Two conformations of the Ser70 acylated intermediate are observed in the SHV-1-meropenem complex; the meropenem carbonyl oxygen atom of the acyl-enzyme is in the oxyanion hole in one conformation, while in the other conformation it is not. Although the structures of the SHV-1 apoenzyme and the SHV-1-meropenem complex are very similar (0.29 A rmsd for Calpha atoms), the orientation of the conserved Ser130 is different. Notably, the Ser130-OH group of the SHV-1-meropenem complex is directed toward Lys234Nz, while the Ser130-OH of the apo enzyme is oriented toward the Lys73 amino group. This altered position may affect proton transfer via Ser130 and the rate of hydrolysis. A most intriguing finding is the crystallographic detection of protonation of the Glu166 known to be involved in the deacylation mechanism. The critical deacylation water molecule has an additional hydrogen-bonding interaction with the OH group of meropenem's 6alpha-1 R-hydroxyethyl substituent. This interaction may weaken the nucleophilicity and/or change the direction of the lone pair of electrons of the water molecule and result in poor turnover of meropenem by the SHV-1 beta-lactamase. Using timed mass spectrometry, we further show that meropenem is covalently attached to SHV-1 beta-lactamase for at least 60 min. These observations explain key properties of meropenem's ability to resist hydrolysis by SHV-1 and lead to important insights regarding future carbapenem and beta-lactamase inhibitor design.
Collapse
Affiliation(s)
- Michiyosi Nukaga
- Faculty of Pharmaceutical Sciences, Josai International University, Togane City, Chiba 283-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The partnering of a beta-lactam with a beta-lactamase inhibitor is a highly effective strategy that can be used to combat bacterial resistance to beta-lactam antibiotics mediated by serine beta-lactamases (EC 3.2.5.6). To this end, we tested two novel penem inhibitors against OXA-1, a class D beta-lactamase that is resistant to inactivation by tazobactam. The K(i) of each penem inhibitor for OXA-1 was in the nM range (K(i) of penem 1, 45 +/- 8 nM; K(i) of penem 2, 12 +/- 2 nM). The first-order rate constant for enzyme and inhibitor complex inactivation of penems 1 and 2 for OXA-1 beta-lactamase were 0.13 +/- 0.01 s(-1) and 0.11 +/- 0.01 s(-1), respectively. By using an inhibitor-to-enzyme ratio of 1:1, 100% inactivation was achieved in <or=900 s and the recovery of OXA-1 beta-lactamase activity was not detected at 24 h. Covalent adducts of penems 1 and 2 (changes in molecular masses, +306 +/- 3 and +321 +/- 3 Da, respectively) were identified by electrospray ionization mass spectrometry (ESI-MS). After tryptic digestion of OXA-1 inactivated by penems 1 and 2, ESI-MS and matrix-assisted laser desorption ionization-time-of-flight MS identified the adducts of 306 +/- 3 and 321 +/- 3 Da attached to the peptide containing the active-site Ser67. The base hydrolysis of penem 2, monitored by serial (1)H nuclear magnetic resonance analysis, suggested that penem 2 formed a linear imine species that underwent 7-endo-trig cyclization to ultimately form a cyclic enamine, the 1,4-thiazepine derivative. Susceptibility testing demonstrated that the penem inhibitors at 4 mg/liter effectively restored susceptibility to piperacillin. Penem beta-lactamase inhibitors which demonstrate high affinities and which form long-lived acyl intermediates may prove to be extremely useful against the broad range of inhibitor-resistant serine beta-lactamases present in gram-negative bacteria.
Collapse
|
31
|
The role of OXA-1 beta-lactamase Asp(66) in the stabilization of the active-site carbamate group and in substrate turnover. Biochem J 2008; 410:455-62. [PMID: 18031291 DOI: 10.1042/bj20070573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The OXA-1 beta-lactamase is one of the few class D enzymes that has an aspartate residue at position 66, a position that is proximal to the active-site residue Ser(67). In class A beta-lactamases, such as TEM-1 and SHV-1, residues adjacent to the active-site serine residue play a crucial role in inhibitor resistance and substrate selectivity. To probe the role of Asp(66) in substrate affinity and catalysis, we performed site-saturation mutagenesis at this position. Ampicillin MIC (minimum inhibitory concentration) values for the full set of Asp(66) mutants expressed in Escherichia coli DH10B ranged from < or =8 microg/ml for cysteine, proline and the basic amino acids to > or =256 microg/ml for asparagine, leucine and the wild-type aspartate. Replacement of aspartic acid by asparagine at position 66 also led to a moderate enhancement of extended-spectrum cephalosporin resistance. OXA-1 shares with other class D enzymes a carboxylated residue, Lys(70), that acts as a general base in the catalytic mechanism. The addition of 25 mM bicarbonate to Luria-Bertani-broth agar resulted in a > or =16-fold increase in MICs for most OXA-1 variants with amino acid replacements at position 66 when expressed in E. coli. Because Asp(66) forms hydrogen bonds with several other residues in the OXA-1 active site, we propose that this residue plays a role in stabilizing the CO2 bound to Lys(70) and thereby profoundly affects substrate turnover.
Collapse
|
32
|
Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr Opin Pharmacol 2007; 7:459-69. [PMID: 17875405 PMCID: PMC2235939 DOI: 10.1016/j.coph.2007.08.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/09/2007] [Indexed: 11/27/2022]
Abstract
Since their first description more than 20 years ago, Escherichia coli and Klebsiella pneumoniae possessing extended-spectrum class A beta-lactamases (ESBLs) continue to thwart our best clinical efforts. In the 'early years' the most common beta-lactamases were of the TEM and SHV varieties. Now, CTX-M enzymes are being discovered throughout the world and are becoming the most prevalent beta-lactamases found in clinical isolates. The K. pneumoniae carbapenemases (KPC) (ESBL-type enzymes that confer resistance to extended-spectrum cephalosporins and carbapenems) present the most significant challenge to date. Structural studies of ESBLs indicate that active site expansion and remodeling are responsible for this extended hydrolytic activity. Continuing questions still exist regarding the optimal detection method for ESBLs. Most relevant are the increasing concerns regarding the status of carbapenems as 'best therapy' for ESBL-producing bacteria in light of the emergence of carbapenemases.
Collapse
Affiliation(s)
- Federico Perez
- Division of Infectious Diseases and HIV Medicine University Hospitals Case Medical Center, Cleveland, OH 44106
- Research Service, Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, School of Medicine, Cleveland, OH 44118, USA
| | - Andrea Endimiani
- University of Pittsburgh Medical Center, Pittsburgh, PA 15212
- Research Service, Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, School of Medicine, Cleveland, OH 44118, USA
| | - Kristine M. Hujer
- Research Service, Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, School of Medicine, Cleveland, OH 44118, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, School of Medicine, Cleveland, OH 44118, USA
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44118, USA
| |
Collapse
|
33
|
Thomson JM, Distler AM, Bonomo RA. Overcoming Resistance to β-Lactamase Inhibitors: Comparing Sulbactam to Novel Inhibitors against Clavulanate Resistant SHV Enzymes with Substitutions at Ambler Position 244. Biochemistry 2007; 46:11361-8. [PMID: 17848099 DOI: 10.1021/bi700792a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amino acid changes at Ambler position R244 in class A TEM and SHV beta-lactamases confer resistance to ampicillin/clavulanate, a beta-lactam/beta-lactamase inhibitor combination used to treat serious infections. To gain a deeper understanding of this resistance phenotype, we investigated the activities of sulbactam and two novel penem beta-lactamase inhibitors with sp2 hybridized C3 carboxylates and bicyclic R1 side chains against a library of SHV beta-lactamase variants at the 244 position. Compared to SHV-1 expressed in Escherichia coli, all 19 R244 variants exhibited increased susceptibility to ampicillin/sulbactam, an important difference compared to ampicillin/clavulanate. Kinetic analyses of SHV-1 and three SHV R244 (-S, -Q, and -L) variants revealed the Ki for sulbactam was significantly elevated for the R244 variants, but the partition ratios, kcat/kinact, were markedly reduced (13 000 --> <or=500). A timed inactivation-mass spectrometry analysis of SHV inhibited by sulbactam showed that SHV-1 beta-lactamase was unmodified at 15 min. A parallel experiment with R244S demonstrated 70 and 88 +/- 3 Da fragments of sulbactam covalently attached to the beta-lactamase. We also observed that the Ki values of penems 1 and 2 were increased for R244 variants compared to those for SHV; however, these inhibitors effectively restored ampicillin susceptibility in vitro. Compared to that of sulbactam, the kcat/kinact values of penems for SHV-1 and R244S were low (<or=2), and unfragmented adducts of each penem were covalently attached to SHV-1 and R244S when studied using the timed inactivation-mass spectrometry method. The R244S mutation affects beta-lactamase inactivators differently, but resistance can be overcome by designing penem inhibitors with strategic chemical properties that improve affinity and impair turnover.
Collapse
Affiliation(s)
- Jodi M Thomson
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
34
|
Totir MA, Helfand MS, Carey MP, Sheri A, Buynak JD, Bonomo RA, Carey PR. Sulbactam forms only minimal amounts of irreversible acrylate-enzyme with SHV-1 beta-lactamase. Biochemistry 2007; 46:8980-7. [PMID: 17630699 PMCID: PMC2596720 DOI: 10.1021/bi7006146] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulbactam is a mechanism-based inhibitor of beta-lactamase enzymes used in clinical practice. It undergoes a complex series of chemical reactions in the active site that have been studied extensively in the past three decades. However, the actual species that gives rise to inhibition in a clinical setting has not been established. Recent studies by our group, using Raman microscopy and X-ray crystallography, have found that large quantities of enamine-based acyl-enzyme species are present within minutes in single crystals of SHV-1 beta-lactamases which can lead to significant inhibition. The enamines are formed by breakdown of the cyclic beta-lactam structures with further transformations leading to imine formation and subsequent isomerization to cis and/or trans enamines. Another favored form of inhibition arises from attack on the imine by a second nucleophilic amino acid side chain, e.g., from serine 130, to form a cross-linked species in the active site that can degrade to an acrylate-like species irreversibly bound to the enzyme. Thus, the imine is at a branch point on the reaction pathway. Using sulbactam and 6,6-dideuterated sulbactam we follow these alternate paths in WT and E166A SHV-1 beta-lactamase by means of Raman microscopic studies on single enzyme crystals. For the unlabeled sulbactam, the Raman data show the presence of an acrylate-like species, probably 3-serine acrylate, several hours after the reaction is started in the crystal. However, for the 6,6-dideutero analogue the acrylate signature appears on the time scale of minutes. The Raman signatures, principally an intense feature near 1530 cm-1, are assigned based on quantum mechanical calculations on model compounds that mimic acrylate species in the active site. The different time scales observed for acrylate-like product formation are ascribed to different rates of reaction involving the imine intermediate. It is proposed that for the unsubstituted sulbactam the conversion from imine to enamine, which involves breaking a C-H bond, is aided by quantum mechanical tunneling. For the 6,6-dideutero-sulbactam the same step involves breaking a C-D bond, which has little or no assistance from tunneling. Consequently the conversion to enamines is slower, and a higher population of imine results, presenting the opportunity for the competing reaction with the second nucleophile, serine 130 being the prime candidate. The hydrolysis of the resulting cross-linked intermediate leads to the observed rapid buildup of the acrylate product in the Raman spectra from the dideutero analogue. The protocol used here, essentially running the reactions with the two forms of sulbactam in parallel, provides an element of control and enables us to conclude that, for the unsubstituted sulbactam, the formation of the cross-linked intermediate and the final irreversible acrylate product is not a significant route to inhibition of SHV-1.
Collapse
Affiliation(s)
- Monica A. Totir
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Marion S. Helfand
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Marianne P. Carey
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anjaneyulu Sheri
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
35
|
Helfand MS, Taracila MA, Totir MA, Bonomo RA, Buynak JD, van den Akker F, Carey PR. Raman crystallographic studies of the intermediates formed by Ser130Gly SHV, a beta-lactamase that confers resistance to clinical inhibitors. Biochemistry 2007; 46:8689-99. [PMID: 17595114 DOI: 10.1021/bi700581q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance to beta-lactam compounds in Gram-negative bacteria such as Escherichia coli and Klebsiella pneumoniae is often mediated by beta-lactamase enzymes like TEM and SHV. Previously, a limited number of inhibitors have shown efficacy in combating such bacterial drug resistance. However, many Gram-negative pathogens have evolved inhibitor resistant forms of these hydrolytic enzymes. A single point mutation of the active site residue Ser130 to a Gly in either TEM or SHV results in resistance to amoxicillin and clavulanic acid, an important clinical beta-lactam-beta-lactamase inhibitor combination antibiotic. Previous structural and modeling studies of the S130G mutants of TEM and SHV have shown differences in how these two distinct but closely related enzymes compensate for the loss of the Ser130 residue. In the case of S130G SHV, a structure of tazobactam in the active site has suggested that the inhibitor preferentially assumes a cis-enamine intermediate form when the Ser130 hydroxyl is absent. Raman crystallographic studies of S130G SHV inhibited with tazobactam, sulbactam, clavulanic acid, and 2'-glutaroxy penem sulfone (SA2-13) were performed with the aim of identifying the type and amount of intermediate formed with each drug to understand the role of the S130G mutation in formation of the important enamine intermediates. It is demonstrated that with the exception of sulbactam, each compound forms observable trans-enamine intermediates. For S130G reacted with tazobactam, identical steady state levels of enamine are achieved when compared to those of wild-type (WT) or even deacylation deficient forms of the enzyme. With clavulanic acid, slightly smaller amounts of enamine are observed within the first 30 min of the reaction but are not significantly different than those for tazobactam. Thus, the resistance mutation does not substantially affect the amount of trans-enamine formed with clavulanic acid during the critical early time period of inhibition. This finding has important implications in the design of beta-lactamase inhibitors for drug resistant variants like S130G SHV.
Collapse
Affiliation(s)
- Marion S Helfand
- Research Service and Infectious Diseases Section, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ke W, Bethel CR, Thomson JM, Bonomo RA, van den Akker F. Crystal structure of KPC-2: insights into carbapenemase activity in class A beta-lactamases. Biochemistry 2007; 46:5732-40. [PMID: 17441734 PMCID: PMC2596071 DOI: 10.1021/bi700300u] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beta-lactamases inactivate beta-lactam antibiotics and are a major cause of antibiotic resistance. The recent outbreaks of Klebsiella pneumoniae carbapenem resistant (KPC) infections mediated by KPC type beta-lactamases are creating a serious threat to our "last resort" antibiotics, the carbapenems. KPC beta-lactamases are serine carbapenemases and are a subclass of class A beta-lactamases that have evolved to efficiently hydrolyze carbapenems and cephamycins which contain substitutions at the alpha-position proximal to the carbonyl group that normally render these beta-lactams resistant to hydrolysis. To investigate the molecular basis of this carbapenemase activity, we have determined the structure of KPC-2 at 1.85 A resolution. The active site of KPC-2 reveals the presence of a bicine buffer molecule which interacts via its carboxyl group with conserved active site residues S130, K234, T235, and T237; these likely resemble the interactions the beta-lactam carboxyl moiety makes in the Michaelis-Menten complex. Comparison of the KPC-2 structure with non-carbapenemases and previously determined NMC-A and SME-1 carbapenemase structures shows several active site alterations that are unique among carbapenemases. An outward shift of the catalytic S70 residue renders the active sites of the carbapenemases more shallow, likely allowing easier access of the bulkier substrates. Further space for the alpha-substituents is potentially provided by shifts in N132 and N170 in addition to concerted movements in the postulated carboxyl binding pocket that might allow the substrates to bind at a slightly different angle to accommodate these alpha-substituents. The structure of KPC-2 provides key insights into the carbapenemase activity of emerging class A beta-lactamases.
Collapse
Affiliation(s)
- Wei Ke
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | |
Collapse
|
37
|
Thomson JM, Prati F, Bethel CR, Bonomo RA. Use of novel boronic acid transition state inhibitors to probe substrate affinity in SHV-type extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2007; 51:1577-9. [PMID: 17220410 PMCID: PMC1855462 DOI: 10.1128/aac.01293-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Boronic acid transition state inhibitors (BATSIs) with R1 side chains of cefotaxime and ceftazidime were assayed against SHV-1, SHV-2, SHV-5, D104K, and D104K G238S beta-lactamases. The D104K variant was the most susceptible to inhibition by the ceftazidime BATSI (Ki, 730+/-80 nM), while the D104K G238S variant was the most susceptible to the cefotaxime BATSI (Ki, 1.1+/-0.2 microM).
Collapse
Affiliation(s)
- Jodi M Thomson
- Department of Pharmacology, Case Western Reserve University School of Medicine, and Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
38
|
Totir MA, Padayatti PS, Helfand MS, Carey MP, Bonomo RA, Carey PR, van den Akker F. Effect of the inhibitor-resistant M69V substitution on the structures and populations of trans-enamine beta-lactamase intermediates. Biochemistry 2006; 45:11895-904. [PMID: 17002290 PMCID: PMC2596060 DOI: 10.1021/bi060990m] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine the molecular factors that lead to beta-lactamase inhibitor resistance for the M69V variant in SHV-1 beta-lactamase. With mechanism-based inhibitors, the beta-lactamase forms an acyl-enzyme intermediate that consists of a trans-enamine derivative in the active site. This study focuses on these intermediates by introducing the E166A mutation that greatly retards deacylation. Thus, by comparing the properties of the E166A and M69V/E166A forms, we can explore the consequences of the resistance mutation at the level of the enamine acyl-enzyme forms. The reactions between the beta-lactamase and the inhibitors tazobactam, sulbactam, and clavulanic acid are followed in single crystals of the enzymes by using a Raman microscope. The resulting Raman difference spectroscopic data provide detailed information about conformational events involving the enamine species as well as an estimate of their populations. The Raman difference spectra for each of the inhibitors in the E166A and M69V/E166A variants are very similar. In particular, detailed analysis of the main enamine Raman vibration near 1595 cm(-1) reveals that the structure and flexibility of the enamine fragments are essentially identical for each of the three inhibitors in E166A and in the M69V/E166A double mutant. This finding is in accord with the X-ray-derived structures, presented herein at 1.6-1.75 A resolution, of the trans-enamine intermediates formed by the three inhibitors in M69V/E166A. However, a comparison of Raman results for M69V/E166A and E166A shows that the M69V mutation results in a 40%, 25%, and negligible reductions in the enamine population when the beta-lactamase crystals are soaked in 5 mM tazobactam, clavulanic acid, and sulbactam solutions, respectively. The levels of enamine from tazobactam and clavulanic acid can be increased by increasing the concentrations of inhibitor in the mother liquor. Thus, the sensitivity of population levels to the inhibitor concentration in the mother liquor focuses attention on the properties of the encounter complex preceding acylation. It is proposed that for small ligands, such as tazobactam, sulbactam, and clavulanic acid, the positioning of the lactam ring in the active site in the correct orientation for acylation is only one of a number of poorly defined conformations. For tazobactam and clavulanic acid, the correctly oriented encounter complex is even less likely in the M69V variant, leading to a reduction in the level of inhibition of the enzyme via formation of the acyl-enzyme intermediate and the onset of resistance. Analysis of the X-ray structures of the three intermediates in M69V/E166A demonstrates that, compared to the structures for the E166A form, the oxyanion hole becomes smaller, providing one explanation for why acylation may be less efficient following the M69V substitution.
Collapse
Affiliation(s)
- Monica A Totir
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, Ecker DJ, Massire C, Eshoo MW, Sampath R, Thomson JM, Rather PN, Craft DW, Fishbain JT, Ewell AJ, Jacobs MR, Paterson DL, Bonomo RA. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 2006; 50:4114-23. [PMID: 17000742 PMCID: PMC1694013 DOI: 10.1128/aac.00778-06] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Military medical facilities treating patients injured in Iraq and Afghanistan have identified a large number of multidrug-resistant (MDR) Acinetobacter baumannii isolates. In order to anticipate the impact of these pathogens on patient care, we analyzed the antibiotic resistance genes responsible for the MDR phenotype in Acinetobacter sp. isolates collected from patients at the Walter Reed Army Medical Center (WRAMC). Susceptibility testing, PCR amplification of the genetic determinants of resistance, and clonality were determined. Seventy-five unique patient isolates were included in this study: 53% were from bloodstream infections, 89% were resistant to at least three classes of antibiotics, and 15% were resistant to all nine antibiotics tested. Thirty-seven percent of the isolates were recovered from patients nosocomially infected or colonized at the WRAMC. Sixteen unique resistance genes or gene families and four mobile genetic elements were detected. In addition, this is the first report of bla(OXA-58)-like and bla(PER)-like genes in the U.S. MDR A. baumannii isolates with at least eight identified resistance determinants were recovered from 49 of the 75 patients. Molecular typing revealed multiple clones, with eight major clonal types being nosocomially acquired and with more than 60% of the isolates being related to three pan-European types. This report gives a "snapshot" of the complex genetic background responsible for antimicrobial resistance in Acinetobacter spp. from the WRAMC. Identifying genes associated with the MDR phenotype and defining patterns of transmission serve as a starting point for devising strategies to limit the clinical impact of these serious infections.
Collapse
Affiliation(s)
- Kristine M. Hujer
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Edward A. Hulten
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Saralee Bajaksouzian
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer M. Adams
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Curtis J. Donskey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - David J. Ecker
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Christian Massire
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Mark W. Eshoo
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Rangarajan Sampath
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jodi M. Thomson
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Philip N. Rather
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - David W. Craft
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Joel T. Fishbain
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Allesa J. Ewell
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Michael R. Jacobs
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - David L. Paterson
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, Department of Internal Medicine, Department of Pathology, Walter Reed Army Medical Center, Washington, D.C., Department of Pathology, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, Ibis, Division of Isis Pharmaceuticals, Carlsbad, California, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Corresponding author. Mailing address: Infectious Diseases Section, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106. Phone: (216) 791-3800, ext. 4399. Fax: (216) 229-8509. E-mail:
| |
Collapse
|
40
|
Bethel CR, Hujer AM, Hujer KM, Thomson JM, Ruszczycky MW, Anderson VE, Pusztai-Carey M, Taracila M, Helfand MS, Bonomo RA. Role of Asp104 in the SHV beta-lactamase. Antimicrob Agents Chemother 2006; 50:4124-31. [PMID: 16982784 PMCID: PMC1694000 DOI: 10.1128/aac.00848-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Among the TEM-type extended-spectrum beta-lactamases (ESBLs), an amino acid change at Ambler position 104 (Glu to Lys) results in increased resistance to ceftazidime and cefotaxime when found with other substitutions (e.g., Gly238Ser and Arg164Ser). To examine the role of Asp104 in SHV beta-lactamases, site saturation mutagenesis was performed. Our goal was to investigate the properties of amino acid residues at this position that affect resistance to penicillins and oxyimino-cephalosporins. Unexpectedly, 58% of amino acid variants at position 104 in SHV expressed in Escherichia coli DH10B resulted in beta-lactamases with lowered resistance to ampicillin. In contrast, increased resistance to cefotaxime was demonstrated only for the Asp104Arg and Asp104Lys beta-lactamases. When all 19 substitutions were introduced into the SHV-2 (Gly238Ser) ESBL, the most significant increases in cefotaxime and ceftazidime resistance were noted for both the doubly substituted Asp104Lys Gly238Ser and the doubly substituted Asp104Arg Gly238Ser beta-lactamases. Correspondingly, the overall catalytic efficiency (kcat/Km) of hydrolysis for cefotaxime was increased from 0.60 +/- 0.07 microM(-1) s(-1) (mean +/- standard deviation) for Gly238Ser to 1.70 +/- 0.01 microM(-1) s(-1) for the Asp104Lys and Gly238Ser beta-lactamase (threefold increase). We also showed that (i) k3 was the rate-limiting step for the hydrolysis of cefotaxime by Asp104Lys, (ii) the Km for cefotaxime of the doubly substituted Asp104Lys Gly238Ser variant approached that of the Gly238Ser beta-lactamase as pH increased, and (iii) Lys at position 104 functions in an energetically additive manner with the Gly238Ser substitution to enhance catalysis of cephalothin. Based on this analysis, we propose that the amino acid at Ambler position 104 in SHV-1 beta-lactamase plays a major role in substrate binding and recognition of oxyimino-cephalosporins and influences the interactions of Tyr105 with penicillins.
Collapse
Affiliation(s)
- Christopher R Bethel
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Reynolds KA, Thomson JM, Corbett KD, Bethel CR, Berger JM, Kirsch JF, Bonomo RA, Handel TM. Structural and computational characterization of the SHV-1 beta-lactamase-beta-lactamase inhibitor protein interface. J Biol Chem 2006; 281:26745-53. [PMID: 16809340 DOI: 10.1074/jbc.m603878200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-lactamase inhibitor protein (BLIP) binds a variety of class A beta-lactamases with affinities ranging from micromolar to picomolar. Whereas the TEM-1 and SHV-1 beta-lactamases are almost structurally identical, BLIP binds TEM-1 approximately 1000-fold tighter than SHV-1. Determining the underlying source of this affinity difference is important for understanding the molecular basis of beta-lactamase inhibition and mechanisms of protein-protein interface specificity and affinity. Here we present the 1.6A resolution crystal structure of SHV-1.BLIP. In addition, a point mutation was identified, SHV D104E, that increases SHV.BLIP binding affinity from micromolar to nanomolar. Comparison of the SHV-1.BLIP structure with the published TEM-1.BLIP structure suggests that the increased volume of Glu-104 stabilizes a key binding loop in the interface. Solution of the 1.8A SHV D104K.BLIP crystal structure identifies a novel conformation in which this binding loop is removed from the interface. Using these structural data, we evaluated the ability of EGAD, a program developed for computational protein design, to calculate changes in the stability of mutant beta-lactamase.BLIP complexes. Changes in binding affinity were calculated within an error of 1.6 kcal/mol of the experimental values for 112 mutations at the TEM-1.BLIP interface and within an error of 2.2 kcal/mol for 24 mutations at the SHV-1.BLIP interface. The reasonable success of EGAD in predicting changes in interface stability is a promising step toward understanding the stability of the beta-lactamase.BLIP complexes and computationally assisted design of tight binding BLIP variants.
Collapse
Affiliation(s)
- Kimberly A Reynolds
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0684, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hujer KM, Hamza NS, Hujer AM, Perez F, Helfand MS, Bethel CR, Thomson JM, Anderson VE, Barlow M, Rice LB, Tenover FC, Bonomo RA. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 beta-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother 2005; 49:2941-8. [PMID: 15980372 PMCID: PMC1168656 DOI: 10.1128/aac.49.7.2941-2948.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter spp. are emerging as opportunistic hospital pathogens that demonstrate resistance to many classes of antibiotics. In a metropolitan hospital in Cleveland, a clinical isolate of Acinetobacter baumannii that tested resistant to cefepime and ceftazidime (MIC = 32 microg/ml) was identified. Herein, we sought to determine the molecular basis for the extended-spectrum-cephalosporin resistance. Using analytical isoelectric focusing, a beta-lactamase with a pI of > or = 9.2 was detected. PCR amplification with specific A. baumannii cephalosporinase primers yielded a 1,152-bp product which, when sequenced, identified a novel 383-amino-acid class C enzyme. Expressed in Escherichia coli DH10B, this beta-lactamase demonstrated greater resistance against ceftazidime and cefotaxime than cefepime (4.0 microg/ml versus 0.06 microg/ml). The kinetic characteristics of this beta-lactamase were similar to other cephalosporinases found in Acinetobacter spp. In addition, this cephalosporinase was inhibited by meropenem, imipenem, ertapenem, and sulopenem (K(i) < 40 microM). The amino acid compositions of this novel enzyme and other class C beta-lactamases thus far described for A. baumannii, Acinetobacter genomic species 3, and Oligella urethralis in Europe and South Africa suggest that this cephalosporinase defines a unique family of class C enzymes. We propose a uniform designation for this family of cephalosporinases (Acinetobacter-derived cephalosporinases [ADC]) found in Acinetobacter spp. and identify this enzyme as ADC-7 beta-lactamase. The coalescence of Acinetobacter ampC beta-lactamases into a single common ancestor and the substantial phylogenetic distance separating them from other ampC genes support the logical value of developing a system of nomenclature for these Acinetobacter cephalosporinase genes.
Collapse
Affiliation(s)
- Kristine M Hujer
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Case School of Medicine, 10701 East Blvd., Cleveland, Ohio 44016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sulton D, Pagan-Rodriguez D, Zhou X, Liu Y, Hujer AM, Bethel CR, Helfand MS, Thomson JM, Anderson VE, Buynak JD, Ng LM, Bonomo RA. Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant S130G SHV-1 beta-lactamase. Insights into the mechanism of inhibition. J Biol Chem 2005; 280:35528-36. [PMID: 15987690 DOI: 10.1074/jbc.m501251200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clavulanic acid is a potent mechanism-based inhibitor of TEM-1 and SHV-1beta-lactamases, enzymes that confer resistance to beta-lactams in many gram-negative pathogens. This compound has enjoyed widespread clinical use as part of beta-lactam beta-lactamase inhibitor therapy directed against penicillin-resistant pathogens. Unfortunately, the emergence of clavulanic acid-resistant variants of TEM-1 and SHV-1 beta-lactamase significantly compromise the efficacy of this combination. A single amino acid change at Ambler position Ser130 (Ser --> Gly) results in resistance to inactivation by clavulanate in the SHV-1 and TEM-1beta-lactamases. Herein, we investigated the inactivation of SHV-1 and the inhibitor-resistant S130G variant beta-lactamases by clavulanate. Using liquid chromatography electrospray ionization mass spectrometry, we detected multiple modified proteins when SHV-1 beta-lactamase is inactivated by clavulanate. Matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to study tryptic digests of SHV-1 and S130Gbeta-lactamases (+/- inactivation with clavulanate) and identified peptides modified at the active site Ser70. Ultraviolet (UV) difference spectral studies comparing SHV-1 and S130Gbeta-lactamases inactivated by clavulanate showed that the formation of reaction intermediates with absorption maxima at 227 and 280 nm are diminished and delayed when S130Gbeta-lactamase is inactivated. We conclude that the clavulanic acid inhibition of the S130G beta-lactamase must follow a branch of the normal inactivation pathway. These findings highlight the importance of understanding the intermediates formed in the inactivation process of inhibitor-resistant beta-lactamases and suggest how strategic chemical design can lead to novel ways to inhibit beta-lactamases.
Collapse
Affiliation(s)
- Deley Sulton
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 704] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
45
|
Ma L, Alba J, Chang FY, Ishiguro M, Yamaguchi K, Siu LK, Ishii Y. Novel SHV-derived extended-spectrum beta-lactamase, SHV-57, that confers resistance to ceftazidime but not cefazolin. Antimicrob Agents Chemother 2005; 49:600-5. [PMID: 15673739 PMCID: PMC547208 DOI: 10.1128/aac.49.2.600-605.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new SHV-derived extended-spectrum beta-lactamase, SHV-57, that confers high-level resistance to ceftazidime but not cefotaxime or cefazolin was identified from a national surveillance study conducted in Taiwan in 1998. An Escherichia coli isolate resistant to ampicillin, cephalothin, and ceftazidime but sensitive to cefoxitin, ceftriaxone, cefotaxime, imipenem, and a narrow-spectrum cephem (cefazolin) was isolated from the urine of a patient treated with beta-lactam antibiotics. Resistance to beta-lactams was conjugatively transferred with a plasmid of about 50 kbp. The pI of this enzyme was 8.3. The sequence of the gene was determined, and the open reading frame of the gene was found to consist of 861 bases (GenBank accession number AY223863). Kinetic parameters showed that SHV-57 had a poor affinity to cefazolin. The K(m) value toward cefazolin (5.57 x 10(3) muM) was extremely high in comparison to those toward ceftazidime (30.9 muM) and penicillin G (67 muM), indicating its low affinity to cefazolin. Although the K(m) value of the beta-lactamase inhibitor was too high for the study of catalytic activity (k(cat)), indicating the low k(cat) of SHV-57, the SHV-57 carrier was highly susceptible to a beta-lactam-beta-lactamase inhibitor combination. Comparison of the three-dimensional molecular model of SHV-57 with that of the SHV-1 beta-lactamase suggests that the substitution of arginine for leucine-169 in the Omega loop is important for the substrate specificity.
Collapse
Affiliation(s)
- Ling Ma
- Division of Clinical Research, National Health Research Institutes (99), 128, Yen-Chiu-Yuan Rd., Sec. 2., Taipei, 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Hujer AM, Bethel CR, Bonomo RA. Antibody mapping of the linear epitopes of CMY-2 and SHV-1 beta-lactamases. Antimicrob Agents Chemother 2004; 48:3980-8. [PMID: 15388462 PMCID: PMC521864 DOI: 10.1128/aac.48.10.3980-3988.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the amino acids that define recognition of anti-beta-lactamase antibodies is critical to the interpretation of sensitivity and specificity of these antibodies when they are used in a clinical or research setting. To this end, we mapped the epitopes of the CMY-2 and SHV-1 beta-lactamases by using the SPOT synthesis method. Eight linear epitopes in SHV-1 and seven linear epitopes in CMY-2 were identified by using anti-SHV-1 and anti-CMY-2 polyclonal antibodies, respectively. The epitopes of SHV-1 were mapped to amino acids at the Ambler positions ABL 28 to 38, 42 to 54, 88 to 100, 102 to 114, 170 to 182, 186 to 194, 202 to 210, and 276 to 288. In the epitope spanning amino acids 102 to 114, alanine and X-Scan analysis demonstrated that D104, Y105, P107, and S109 are essential residues for antibody recognition. In the epitope containing amino acids 170 to 182, N170, L173, P174, G175, and D176 were immunodominant. In CMY-2 beta-lactamase, amino acids 4 to 16, 70 to 79, 211 to 223, 274 to 286, 289 to 298, 322 to 334, and 343 to 358 of the mature enzyme defined the major linear epitopes. A detailed analysis of the recognition sites that are located in an area analogous to the omega loop of class A beta-lactamases (V211 to V223) showed that the amino acids Q215 to E219 are important in antibody binding. Incubation of CMY-2 beta-lactamase with a 10-fold molar excess of anti-CMY-2 antibody for 60 min resulted in greater than 80% inhibition of nitrocefin hydrolysis. A 10-fold molar excess of anti-SHV-1 antibody reduced the activity of SHV-1 by 69%. Analysis of the CMY-2 and SHV-1 structures suggest that this reduction of hydrolytic activity may be due in part to the direct binding of antibodies to the omega loop, thereby hindering access of substrate to the active site.
Collapse
Affiliation(s)
- Andrea M Hujer
- Infectious Disease Section, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
47
|
Diversity and evolution of the class A chromosomal beta-lactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004. [PMID: 15215087 DOI: 10.1128/aac.48.7.2400-2408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigated the diversity of the chromosomal class A beta-lactamase gene in Klebsiella pneumoniae in order to study the evolution of the gene. A 789-bp portion was sequenced in a panel of 28 strains, representative of three phylogenetic groups, KpI, KpII, and KpIII, recently identified in K. pneumoniae and of different chromosomal beta-lactamase variants previously identified. Three groups of sequences were found, two of them corresponding to the families SHV (pI 7.6) and LEN (pI 7.1), respectively, and one, more heterogeneous, corresponding to a new family that we named OKP (for other K. pneumoniae beta-lactamase). Levels of susceptibility to ampicillin, cefuroxime, cefotaxime, ceftazidime, and aztreonam and inhibition by clavulanic acid were similar in the three groups. One new SHV variant, seven new LEN variants, and four OKP variants were identified. The OKP variants formed two subgroups based on nucleotide sequences, one with pIs of 7.8 and 8.1 and the other with pIs of 6.5 and 7.0. The nucleotide sequences of the housekeeping genes gyrA, coding for subunit A of gyrase, and mdh, coding for malate dehydrogenase, were also determined. Phylogenetic analysis of the three genes studied revealed parallel evolution, with the SHV, OKP, and LEN beta-lactamase families corresponding to the phylogenetic groups KpI, KpII, and KpIII, respectively. This correspondence was fully confirmed for 34 additional strains in PCR assays specific for the three beta-lactamase families. We estimated the time since divergence of the phylogenetic groups KpI and KpIII at between 6 and 28 million years, confirming the ancient presence of the beta-lactamase gene in the genome of K. pneumoniae.
Collapse
|
48
|
Haeggman S, Löfdahl S, Paauw A, Verhoef J, Brisse S. Diversity and evolution of the class A chromosomal beta-lactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48:2400-8. [PMID: 15215087 PMCID: PMC434173 DOI: 10.1128/aac.48.7.2400-2408.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the diversity of the chromosomal class A beta-lactamase gene in Klebsiella pneumoniae in order to study the evolution of the gene. A 789-bp portion was sequenced in a panel of 28 strains, representative of three phylogenetic groups, KpI, KpII, and KpIII, recently identified in K. pneumoniae and of different chromosomal beta-lactamase variants previously identified. Three groups of sequences were found, two of them corresponding to the families SHV (pI 7.6) and LEN (pI 7.1), respectively, and one, more heterogeneous, corresponding to a new family that we named OKP (for other K. pneumoniae beta-lactamase). Levels of susceptibility to ampicillin, cefuroxime, cefotaxime, ceftazidime, and aztreonam and inhibition by clavulanic acid were similar in the three groups. One new SHV variant, seven new LEN variants, and four OKP variants were identified. The OKP variants formed two subgroups based on nucleotide sequences, one with pIs of 7.8 and 8.1 and the other with pIs of 6.5 and 7.0. The nucleotide sequences of the housekeeping genes gyrA, coding for subunit A of gyrase, and mdh, coding for malate dehydrogenase, were also determined. Phylogenetic analysis of the three genes studied revealed parallel evolution, with the SHV, OKP, and LEN beta-lactamase families corresponding to the phylogenetic groups KpI, KpII, and KpIII, respectively. This correspondence was fully confirmed for 34 additional strains in PCR assays specific for the three beta-lactamase families. We estimated the time since divergence of the phylogenetic groups KpI and KpIII at between 6 and 28 million years, confirming the ancient presence of the beta-lactamase gene in the genome of K. pneumoniae.
Collapse
Affiliation(s)
- S Haeggman
- Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | | | | | | | | |
Collapse
|
49
|
Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother 2004; 47:3554-60. [PMID: 14576117 PMCID: PMC253771 DOI: 10.1128/aac.47.11.3554-3560.2003] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A huge variety of extended-spectrum beta-lactamases (ESBLs) have been detected during the last 20 years. The majority of these have been of the TEM or SHV lineage. We have assessed ESBLs occurring among a collection of 455 bloodstream isolates of Klebsiella pneumoniae, collected from 12 hospitals in seven countries. Multiple beta-lactamases were produced by isolates with phenotypic evidence of ESBL production (mean of 2.7 beta-lactamases per isolate; range, 1 to 5). SHV-type ESBLs were the most common ESBL, occurring in 67.1% (49 of 73) of isolates with phenotypic evidence of ESBL production. In contrast, TEM-type ESBLs (TEM-10 type, -12 type, -26 type, and -63 type) were found in just 16.4% (12 of 73) of isolates. The finding of TEM-10 type and TEM-12 type represents the first detection of a TEM-type ESBL in South America. PER (for Pseudomonas extended resistance)-type beta-lactamases were detected in five of the nine isolates from Turkey and were found with SHV-2-type and SHV-5-type ESBLs in two of the isolates. CTX-M-type ESBLs (bla(CTX-M-2) type and bla(CTX-M-3) type) were found in 23.3% (17 of 73) of isolates and were found in all study countries except for the United States. We also detected CTX-M-type ESBLs in four countries where they have previously not been described-Australia, Belgium, Turkey, and South Africa. The widespread emergence and proliferation of CTX-M-type ESBLs is particularly noteworthy and may have important implications for clinical microbiology laboratories and for physicians treating patients with serious K. pneumoniae infections.
Collapse
Affiliation(s)
- David L Paterson
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pagan-Rodriguez D, Zhou X, Simmons R, Bethel CR, Hujer AM, Helfand MS, Jin Z, Guo B, Anderson VE, Ng LM, Bonomo RA. Tazobactam Inactivation of SHV-1 and the Inhibitor-resistant Ser130 → Gly SHV-1 β-Lactamase. J Biol Chem 2004; 279:19494-501. [PMID: 14757767 DOI: 10.1074/jbc.m311669200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing number of bacteria resistant to combinations of beta-lactam and beta-lactamase inhibitors is creating great difficulties in the treatment of serious hospital-acquired infections. Understanding the mechanisms and structural basis for the inactivation of these inhibitor-resistant beta-lactamases provides a rationale for the design of novel compounds. In the present work, SHV-1 and the Ser(130) --> Gly inhibitor-resistant variant of SHV-1 beta-lactamase were inactivated with tazobactam, a potent class A beta-lactamase inhibitor. Apoenzymes and inhibited beta-lactamases were analyzed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS), digested with trypsin, and the products resolved using LC-ESI/MS and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The mass increases observed for SHV-1 and Ser(130) --> Gly (+ Delta 88 Da and + Delta 70 Da, respectively) suggest that fragmentation of tazobactam readily occurs in the inhibitor-resistant variant to yield an inactive beta-lactamase. These two mass increments are consistent with the formation of an aldehyde (+ Delta 70 Da) and a hydrated aldehyde (+ Delta 88 Da) as stable products of inhibition. Our results reveal that the Ser --> Gly substitution at amino acid position 130 is not essential for enzyme inactivation. By examining the inhibitor-resistant Ser(130) --> Gly beta-lactamase, our data are the first to show that tazobactam undergoes fragmentation while still attached to the active site Ser(70) in this enzyme. After acylation of tazobactam by Ser(130) --> Gly, inactivation proceeds independent of any additional covalent interactions.
Collapse
Affiliation(s)
- Doritza Pagan-Rodriguez
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|