1
|
Wang X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress of multi-enzyme complexes based on the design of scaffold protein. BIORESOUR BIOPROCESS 2023; 10:72. [PMID: 38647916 PMCID: PMC10992622 DOI: 10.1186/s40643-023-00695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 04/25/2024] Open
Abstract
Multi-enzyme complexes designed based on scaffold proteins are a current topic in molecular enzyme engineering. They have been gradually applied to increase the production of enzyme cascades, thereby achieving effective biosynthetic pathways. This paper reviews the recent progress in the design strategy and application of multi-enzyme complexes. First, the metabolic channels in the multi-enzyme complex have been introduced, and the construction strategies of the multi-enzyme complex emerging in recent years have been summarized. Then, the discovered enzyme cascades related to scaffold proteins are discussed, emphasizing on the influence of the linker on the fusion enzyme (fusion protein) and its possible mechanism. This review is expected to provide a more theoretical basis for the modification of multi-enzyme complexes and broaden their applications in synthetic biology.
Collapse
Affiliation(s)
- Xiangyi Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Faylo JL, Ronnebaum TA, Christianson DW. Assembly-Line Catalysis in Bifunctional Terpene Synthases. Acc Chem Res 2021; 54:3780-3791. [PMID: 34254507 DOI: 10.1021/acs.accounts.1c00296] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The magnificent chemodiversity of more than 95 000 terpenoid natural products identified to date largely originates from catalysis by two types of terpene synthases, prenyltransferases and cyclases. Prenyltransferases utilize 5-carbon building blocks in processive chain elongation reactions to generate linear C5n isoprenoid diphosphates (n ≥ 2), which in turn serve as substrates for terpene cyclases that convert these linear precursors into structurally complex hydrocarbon products containing multiple rings and stereocenters. Terpene cyclization reactions are the most complex organic transformations found in nature in that more than half of the substrate carbon atoms undergo changes in chemical bonding during a multistep reaction sequence proceeding through several carbocation intermediates. Two general classes of cyclases are established on the basis of the chemistry of initial carbocation formation, and structural studies from our laboratory and others show that three fundamental protein folds designated α, β, and γ govern this chemistry. Catalysis by a class I cyclase occurs in an α domain, where a trinuclear metal cluster activates the substrate diphosphate leaving group to generate an allylic cation. Catalysis by a class II cyclase occurs in a β domain or at the interface of β and γ domains, where an aspartic acid protonates the terminal π bond of the substrate to yield a tertiary carbocation. Crystal structures reveal domain architectures of α, αβ, αβγ, βγ, and β.In some terpene synthases, these domains are combined to yield bifunctional enzymes that catalyze successive biosynthetic steps in assembly line fashion. Structurally characterized examples include bacterial geosmin synthase, an αα domain enzyme that catalyzes a class I cyclization reaction of C15 farnesyl diphosphate in one active site and a transannulation-fragmentation reaction in the other to yield C12 geosmin and C3 acetone products. In comparison, plant abietadiene synthase is an αβγ domain enzyme in which C20 geranylgeranyl diphosphate undergoes tandem class II-class I cyclization reactions to yield the tricyclic product. Recent structural studies from our laboratory show that bifunctional fungal cyclases form oligomeric complexes for assembly line catalysis. Bifunctional (+)-copalyl diphosphate synthase adopts (αβγ)6 architecture in which the α domain generates geranylgeranyl diphosphate, which then undergoes class II cyclization in the βγ domains to yield the bicyclic product. Bifunctional fusicoccadiene synthase adopts (αα)6 or (αα)8 architecture in which one α domain generates geranylgeranyl diphosphate, which then undergoes class I cyclization in the other α domain to yield the tricyclic product. The prenyltransferase α domain mediates oligomerization in these systems. Attached by flexible polypeptide linkers, cyclase domains splay out from oligomeric prenyltransferase cores.In this Account, we review structure-function relationships for these bifunctional terpene synthases, with a focus on the oligomeric systems studied in our laboratory. The observation of substrate channeling for fusicoccadiene synthase suggests a model for dynamic cluster channeling in catalysis by oligomeric assembly line terpenoid synthases. Resulting efficiencies in carbon management suggest that such systems could be particularly attractive for use in synthetic biology approaches to generate high-value terpenoid natural products.
Collapse
Affiliation(s)
- Jacque L. Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Trey A. Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Kummer M, Lee YS, Yuan M, Alkotaini B, Zhao J, Blumenthal E, Minteer SD. Substrate Channeling by a Rationally Designed Fusion Protein in a Biocatalytic Cascade. JACS AU 2021; 1:1187-1197. [PMID: 34467357 PMCID: PMC8397353 DOI: 10.1021/jacsau.1c00180] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 05/31/2023]
Abstract
Substrate channeling, where an intermediate in a multistep reaction is directed toward a reaction center rather than freely diffusing, offers several advantages when employed in catalytic cascades. Here we present a fusion enzyme comprised of an alcohol and aldehyde dehydrogenase, that is computationally designed to facilitate electrostatic substrate channeling using a cationic linker bridging the two structures. Rosetta protein folding software was utilized to determine an optimal linker placement, added to the truncated termini of the proteins, which is as close as possible to the active sites of the enzymes without disrupting critical catalytic residues. With improvements in stability, product selectivity (90%), and catalyst turnover frequency, representing 500-fold increased activity compared to the unbound enzymes and nearly 140-fold for a neutral-linked fusion enzyme, this design strategy holds promise for making other multistep catalytic processes more sustainable and efficient.
Collapse
Affiliation(s)
- Matthew
J. Kummer
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| | - Bassam Alkotaini
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| | - John Zhao
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| | - Emmy Blumenthal
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University
of Utah, 315 S 1400 E, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
4
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Zhang Y, Wang Y, Wang S, Fang B. Engineering bi-functional enzyme complex of formate dehydrogenase and leucine dehydrogenase by peptide linker mediated fusion for accelerating cofactor regeneration. Eng Life Sci 2017; 17:989-996. [PMID: 32624849 DOI: 10.1002/elsc.201600232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
This study reports the application of peptide linker in the construction of bi-functional formate dehydrogenase (FDH) and leucine dehydrogenase (LeuDH) enzymatic complex for efficient cofactor regeneration and L-tert leucine (L-tle) biotransformation. Seven FDH-LeuDH fusion enzymes with different peptide linker were successfully developed and displayed both parental enzyme activities. The incorporation order of FDH and LeuDH was investigated by predicting three-dimensional structures of LeuDH-FDH and FDH-LeuDH models using the I-TASSER server. The enzymatic characterization showed that insertion of rigid peptide linker obtained better activity and thermal stability in comparison with flexible peptide linker. The production rate of fusion enzymatic complex with suitable flexible peptide linker was increased by 1.2 times compared with free enzyme mixture. Moreover, structural analysis of FDH and LeuDH suggested the secondary structure of the N-, C-terminal domain and their relative positions to functional domains was also greatly relevant to the catalytic properties of the fusion enzymatic complex. The results show that rigid peptide linker could ensure the independent folding of moieties and stabilized enzyme structure, while the flexible peptide linker was likely to bring enzyme moieties in close proximity for superior cofactor channeling.
Collapse
Affiliation(s)
- Yonghui Zhang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China.,The Key Lab for Synthetic Biotechnology of Xiamen City Xiamen University Xiamen Fujian P. R. China.,The Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
6
|
Lim SI, Yang B, Jung Y, Cha J, Cho J, Choi ES, Kim YH, Kwon I. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex. Sci Rep 2016; 6:39587. [PMID: 28004799 PMCID: PMC5177890 DOI: 10.1038/srep39587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 11/24/2016] [Indexed: 01/17/2023] Open
Abstract
Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, VA 22904, United States
| | - Byungseop Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Younghan Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jaehyun Cha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jinhwan Cho
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eun-Sil Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, VA 22904, United States.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
7
|
Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. Substrate channelling as an approach to cascade reactions. Nat Chem 2016; 8:299-309. [DOI: 10.1038/nchem.2459] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/15/2016] [Indexed: 12/22/2022]
|
8
|
Affiliation(s)
- Yifei Zhang
- Key Lab for Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Liu
- Key Lab for Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
|
10
|
Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 2014; 99:1545-56. [DOI: 10.1007/s00253-014-6315-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
|
11
|
Kono H, Otaka F, Ozaki M. Preparation and characterization of guar gum hydrogels as carrier materials for controlled protein drug delivery. Carbohydr Polym 2014; 111:830-40. [DOI: 10.1016/j.carbpol.2014.05.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
12
|
Sührer I, Haslbeck M, Castiglione K. Asymmetric synthesis of a fluoxetine precursor with an artificial fusion protein of a ketoreductase and a formate dehydrogenase. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Bioconversion of pinoresinol into matairesinol by use of recombinant Escherichia coli. Appl Environ Microbiol 2014; 80:2687-92. [PMID: 24561584 DOI: 10.1128/aem.03397-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignans, a class of dimeric phenylpropanoid derivative found in plants, such as whole grains and sesame and flax seeds, have anticancer activity and can act as phytoestrogens. The lignans secoisolariciresinol and matairesinol can be converted in the mammalian proximal colon into enterolactone and enterodiol, respectively, which reduce the risk of breast and colon cancer. To establish an efficient bioconversion system to generate matairesinol from pinoresinol, the genes encoding pinoresinol-lariciresinol reductase (PLR) and secoisolariciresinol dehydrogenase (SDH) were cloned from Podophyllum pleianthum Hance, an endangered herb in Taiwan, and the recombinant proteins, rPLR and rSDH, were expressed in Escherichia coli and purified. The two genes, termed plr-PpH and sdh-PpH, were also linked to form two bifunctional fusion genes, plr-sdh and sdh-plr, which were also expressed in E. coli and purified. Bioconversion in vitro at 22°C for 60 min showed that the conversion efficiency of fusion protein PLR-SDH was higher than that of the mixture of rPLR and rSDH. The percent conversion of (+)-pinoresinol to matairesinol was 49.8% using PLR-SDH and only 17.7% using a mixture of rPLR and rSDH. However, conversion of (+)-pinoresinol by fusion protein SDH-PLR stopped at the intermediate product, secoisolariciresinol. In vivo, (+)-pinoresinol was completely converted to matairesinol by living recombinant E. coli expressing PLR-SDH without addition of cofactors.
Collapse
|
14
|
Chen R, Chen Q, Kim H, Siu KH, Sun Q, Tsai SL, Chen W. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol 2013; 28:59-68. [PMID: 24832076 DOI: 10.1016/j.copbio.2013.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/16/2022]
Abstract
Proteins inherently are not designed to be standalone entities. Whether it is a multi-step biochemical reaction or a signaling event that triggers several other cascading events, proteins are naturally designed to function cohesively. Several natural systems have been developed through evolution to co-localize the functional proteins of the same pathway in order to ensure efficient communication of signals or intermediates. This review focuses on some selected examples of where synthetic scaffolds inspired by nature have been used to enhance the overall biological pathway performance. Applications encompass both in vivo and in vitro systems that address two key biological events in cell signaling and biosynthesis will be discussed.
Collapse
Affiliation(s)
- Rebecca Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Heejae Kim
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Qing Sun
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
15
|
Idan O, Hess H. Origins of activity enhancement in enzyme cascades on scaffolds. ACS NANO 2013; 7:8658-65. [PMID: 24007359 DOI: 10.1021/nn402823k] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The concept of "metabolic channeling" as a result of rapid transfer of freely diffusing intermediate substrates between two enzymes on nanoscale scaffolds is examined using simulations and mathematical models. The increase in direct substrate transfer due to the proximity of the two enzymes provides an initial but temporary boost to the throughput of the cascade and loses importance as product molecules of enzyme 1 (substrate molecules of enzyme 2) accumulate in the surrounding container. The characteristic time scale at which this boost is significant is given by the ratio of container volume to the product of substrate diffusion constant and interenzyme distance and is on the order of milliseconds to seconds in some experimental systems. However, the attachment of a large number of enzyme pairs to a scaffold provides an increased number of local "targets", extending the characteristic time. If substrate molecules for enzyme 2 are sequestered by an alternative reaction in the container, a scaffold can result in a permanent boost to cascade throughput with a magnitude given by the ratio of the above-defined time scale to the lifetime of the substrate molecule in the container. Finally, a weak attractive interaction between substrate molecules and the scaffold creates a "virtual compartment" and substantially accelerates initial throughput. If intermediate substrates can diffuse freely, placing individual enzyme pairs on scaffolds is only beneficial in large cells, unconfined extracellular spaces or in systems with sequestering reactions.
Collapse
Affiliation(s)
- Ofer Idan
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | | |
Collapse
|
16
|
Idan O, Hess H. Engineering enzymatic cascades on nanoscale scaffolds. Curr Opin Biotechnol 2013; 24:606-11. [DOI: 10.1016/j.copbio.2013.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/28/2022]
|
17
|
Compartmentalization and metabolic channeling for multienzymatic biosynthesis: practical strategies and modeling approaches. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:41-65. [PMID: 23934361 DOI: 10.1007/10_2013_221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
: The construction of efficient enzyme complexes for multienzymatic biosynthesis is of increasing interest in order to achieve maximum yield and to minimize the interference due to shortcomings that are typical for straightforward one-pot multienzyme catalysis. These include product or intermediate feedback inhibition, degeneration, and diffusive losses of reaction intermediates, consumption of co-factors, and others. The main mechanisms in nature to tackle these effects in transient or stable protein associations are the formation of metabolic channeling and microcompartments, processes that are desirable also for multienzymatic biosynthesis in vitro. This chapter provides an overview over two main aspects. First, numerous recent strategies for establishing compartmentalized multienzyme associations and constructed synthetic enzyme complexes are reviewed. Second, the computational methods at hand to investigate and optimize such associations systematically, especially with focus on large multienzyme complexes and metabolic channeling, are discussed. Perspectives on future studies of multienzymatic biosynthesis concerning compartmentalization and metabolic channeling are presented.
Collapse
|
18
|
Idan O, Hess H. Diffusive transport phenomena in artificial enzyme cascades on scaffolds. NATURE NANOTECHNOLOGY 2012; 7:769-770. [PMID: 23212414 DOI: 10.1038/nnano.2012.222] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
19
|
You C, Myung S, Zhang YHP. Facilitated Substrate Channeling in a Self-Assembled Trifunctional Enzyme Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202441] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
You C, Myung S, Zhang YHP. Facilitated Substrate Channeling in a Self-Assembled Trifunctional Enzyme Complex. Angew Chem Int Ed Engl 2012; 51:8787-90. [DOI: 10.1002/anie.201202441] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/27/2012] [Indexed: 11/09/2022]
|
21
|
Seiboth B, Herold S, Kubicek CP. Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. Subcell Biochem 2012; 64:367-90. [PMID: 23080260 DOI: 10.1007/978-94-007-5055-5_18] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The filamentous fungus T. reeseiis today a paradigm for the commercial scale production of different plant cell wall degrading enzymes mainly cellulases and hemicellulases. Its enzymes have a long history of safe use in industry and well established applications are found within the pulp, paper, food, feed or textile processing industries. However, when these enzymes are to be used for the saccharification of cellulosic plant biomass to simple sugars which can be further converted to biofuels or other biorefinery products, and thus compete with chemicals produced from fossil sources, additional efforts are needed to reduce costs and maximize yield and efficiency of the produced enzyme mixtures. One approach to this end is the use of genetic engineering to manipulate the biochemical and regulatory pathways that operate during enzyme production and control enzyme yield. This review aims at a description of the state of art in this area.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, 166-5, A-1060, Vienna, Austria
| | | | | |
Collapse
|
22
|
Zhang YHP. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 2011; 29:715-25. [PMID: 21672618 DOI: 10.1016/j.biotechadv.2011.05.020] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 12/25/2022]
Abstract
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme-enzyme or enzyme-cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Whitaker WR, Dueber JE. Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding. Methods Enzymol 2011; 497:447-68. [DOI: 10.1016/b978-0-12-385075-1.00019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins. Biotechnol Appl Biochem 2010; 56:131-40. [PMID: 20590527 DOI: 10.1042/ba20100143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NADPH-dependent oxidoreductases are useful catalysts for the production of chiral synthons. However, preparative applications of oxidoreductases require efficient methods for in situ regeneration of the expensive nicotinamide cofactors. An advantageous method for cofactor regeneration is the construction of bifunctional fusion proteins composed of two enzymes, one catalysing the reduction reaction and the other one mediating the recycling of cofactors. Herein, we describe the in-frame fusion between an NADP+-accepting mutant of FDH (formate dehydrogenase) from Mycobacterium vaccae N10 and KR [3-ketoacyl-(acyl-carrier-protein) reductase] from Synechococcus sp. strain PCC 7942. The generation of linker insertion mutants led to a fusion protein exhibiting 100 and 80% of the enzymatic activities of native KR and FDH respectively. Escherichia coli cells expressing the fusion protein showed an approx. 2-fold higher initial reaction rate in the production of chiral alcohols than cells expressing the enzymes separately. The application of the engineered fusion protein in whole-cell bioreduction of pentafluoroacetophenone resulted in a substrate conversion of 99.97% with an excellent enantiomeric excess of 99.9% (S)-1-(pentafluorophenyl)ethanol.
Collapse
|
25
|
Induction of the galactose enzymes in Escherichia coli is independent of the C-1-hydroxyl optical configuration of the inducer D-galactose. J Bacteriol 2008; 190:7932-8. [PMID: 18931131 DOI: 10.1128/jb.01008-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two optical forms of aldohexose galactose differing at the C-1 position, alpha-D-galactose and beta-D-galactose, are widespread in nature. The two anomers also occur in di- and polysaccharides, as well as in glycoconjugates. The anomeric form of D-galactose, when present in complex carbohydrates, e.g., cell wall, glycoproteins, and glycolipids, is specific. Their interconversion occurs as monomers and is effected by the enzyme mutarotase (aldose-1-epimerase). Mutarotase and other D-galactose-metabolizing enzymes are coded by genes that constitute an operon in Escherichia coli. The operon is repressed by the repressor GalR and induced by D-galactose. Since, depending on the carbon source during growth, the cell can make only one of the two anomers of D-galactose, the cell must also convert one anomer to the other for use in specific biosynthetic pathways. Thus, it is imperative that induction of the gal operon, specifically the mutarotase, be achievable by either anomer of D-galactose. Here we report in vivo and in vitro experiments showing that both alpha-D-galactose and beta-D-galactose are capable of inducing transcription of the gal operon with equal efficiency and kinetics. Whereas all substitutions at the C-1 position in the alpha configuration inactivate the induction capacity of the sugar, the effect of substitutions in the beta configuration varies depending upon the nature of the substitution; methyl and phenyl derivatives induce weakly, but the glucosyl derivative does not.
Collapse
|
26
|
Conrado RJ, Varner JD, DeLisa MP. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr Opin Biotechnol 2008; 19:492-9. [DOI: 10.1016/j.copbio.2008.07.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
27
|
Stricker AR, Steiger MG, Mach RL. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 2007; 581:3915-20. [PMID: 17662982 DOI: 10.1016/j.febslet.2007.07.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/01/2007] [Accepted: 07/08/2007] [Indexed: 11/29/2022]
Abstract
This study reports the vital regulatory influence of Xyr1 (xylanase regulator 1) on the transcription of hydrolytic enzyme-encoding genes and hydrolase formation on lactose in Hypocrea jecorina. While the transcription of the xyr1 gene itself is achieved by release of carbon catabolite repression, the transcript formation of xyn1 (xylanase 1) is regulated by an additional induction mechanism mediated by lactose. Xyr1 has an important impact on lactose metabolism by directly activating xyl1 (xylose reductase 1) transcription and indirectly influencing transcription of bga1 (beta-galactosidase 1). The latter is achieved by regulating the conversion of D-galactose to the inducing carbon source galactitol.
Collapse
Affiliation(s)
- Astrid R Stricker
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria
| | | | | |
Collapse
|
28
|
Seiboth B, Pakdaman BS, Hartl L, Kubicek CP. Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. FUNGAL BIOL REV 2007. [DOI: 10.1016/j.fbr.2007.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B. d-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology (Reading) 2006; 152:1507-1514. [PMID: 16622067 DOI: 10.1099/mic.0.28719-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactose (1,4-O-β-d-galactopyranosyl-d-glucose) is a soluble and economic carbon source for the industrial production of cellulases or recombinant proteins by Hypocrea jecorina (anamorph Trichoderma reesei). The mechanism by which lactose induces cellulase formation is not understood. Recent data showed that the galactokinase step is essential for cellulase induction by lactose, but growth on d-galactose alone does not induce cellulases. Consequently, the hypothesis was tested that d-galactose may be an inducer only at a low growth rate, which is typically observed when growing on lactose. Carbon-limited chemostat cultivations of H. jecorina were therefore performed at different dilution rates with d-galactose, lactose, galactitol and d-glucose. Cellulase gene expression was monitored by using a strain carrying a fusion between the cbh2 (encoding cellobiohydrolase 2, Cel6A) promoter region and the Aspergillus niger glucose oxidase gene and by identification of the two major cellobiohydrolases Cel7A and Cel6A. The results show that d-galactose indeed induces cbh2 gene transcription and leads to Cel7A and Cel6A accumulation at a low (D=0·015 h−1) but not at higher dilution rates. At the same dilution rate, growth on d-glucose did not lead to cbh2 promoter activation or Cel6A formation but a basal level, lower than that observed on d-galactose, was detected for the carbon-catabolite-derepressible Cel7A. Lactose induced significantly higher cellulase levels at 0·015 h−1 than d-galactose and induced cellulases even at growth rates up to 0·042 h−1. Results of chemostats with an equimolar mixture of d-galactose and d-glucose essentially mimicked the behaviour on d-galactose alone, whereas an equimolar mixture of d-galactose and galactitol, the first intermediate of a recently described second pathway of d-galactose catabolism, led to cellulase induction at D=0·030 h−1. It is concluded that d-galactose indeed induces cellulases at low growth rate and that the operation of the alternative pathway further increases this induction. However, under those conditions lactose is still a superior inducer for which the mechanism remains to be clarified.
Collapse
Affiliation(s)
- Levente Karaffa
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, H-4010, PO Box 63, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, H-4010, PO Box 63, Debrecen, Hungary
| | - Christian Gamauf
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/1665, A-1060 Wien, Austria
| | - Attila Szentirmai
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, H-4010, PO Box 63, Debrecen, Hungary
| | - Christian P Kubicek
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/1665, A-1060 Wien, Austria
| | - Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/1665, A-1060 Wien, Austria
| |
Collapse
|
30
|
Abstract
Aldose 1-epimerase or mutarotase (EC 5.1.3.3) is a key enzyme of carbohydrate metabolism catalysing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. We identified an open reading frame in the human genome (BC014916) which has high sequence similarity to previously identified bacterial aldose 1-epimerases. This sequence was cloned into a bacterial expression vector, and expressed and purified from this source. Enzyme assays show that the protein has aldose 1-epimerase activity and exhibits a preference for galactose over glucose. Site-directed mutagenesis confirmed the involvement of three residues involved in catalysis and substrate binding.
Collapse
Affiliation(s)
- David J Timson
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK
| | | |
Collapse
|
31
|
Brodelius M, Lundgren A, Mercke P, Brodelius PE. Fusion of farnesyldiphosphate synthase and epi-aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3570-7. [PMID: 12135497 DOI: 10.1046/j.1432-1033.2002.03044.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A clone encoding farnesyl diphosphate synthase (FPPS) was obtained by PCR from a cDNA library made from young leaves of Artemisia annua. A cDNA clone encoding the tobacco epi-aristolochene synthase (eAS) was kindly supplied by J. Chappell (University of Kentucky, Lexington, KY, USA). Two fusions were constructed, i.e. FPPS/eAS and eAS/FPPS. The stop codon of the N-terminal enzyme was removed and replaced by a short peptide (Gly-Ser-Gly) to introduce a linker between the two ORFs. These two fusions and the two single cDNA clones were separately introduced into a bacterial expression vector (pET32). Escherichia coli was transformed with the expression vectors and enzymatically active soluble proteins were obtained after induction with isopropyl thio-beta-d-thiogalactoside. The recombinant enzymes were purified using immobilized metal affinity chromatography on Co2+ columns. The fusion enzymes produced epi-aristolochene from isopentenyl diphosphate through a coupled reaction. The Km values of FPPS and eAS for isopentenyl diphosphate and farnesyl diphosphate, respectively, were essentially the same for the single and fused enzymes. The bifunctional enzymes showed a more efficient conversion of isopentenyl diphosphate to epi-aristolochene than the corresponding amount of single enzymes.
Collapse
Affiliation(s)
- Maria Brodelius
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Sweden
| | | | | | | |
Collapse
|