1
|
Stachelska-Wierzchowska A, Wierzchowski J. Non-typical nucleoside analogs as fluorescent and fluorogenic indicators of purine-nucleoside phosphorylase activity in biological samples. Anal Chim Acta 2020; 1139:119-128. [PMID: 33190694 DOI: 10.1016/j.aca.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-710, Olsztyn, Poland.
| | - J Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-710, Olsztyn, Poland.
| |
Collapse
|
2
|
Stachelska-Wierzchowska A, Wierzchowski J, Górka M, Bzowska A, Stolarski R, Wielgus-Kutrowska B. Tricyclic Nucleobase Analogs and Their Ribosides as Substrates and Inhibitors of Purine-Nucleoside Phosphorylases III. Aminopurine Derivatives. Molecules 2020; 25:E681. [PMID: 32033464 PMCID: PMC7037862 DOI: 10.3390/molecules25030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Etheno-derivatives of 2-aminopurine, 2-aminopurine riboside, and 7-deazaadenosine (tubercidine) were prepared and purified using standard methods. 2-Aminopurine reacted with aqueous chloroacetaldehyde to give two products, both exhibiting substrate activity towards bacterial (E. coli) purine-nucleoside phosphorylase (PNP) in the reverse (synthetic) pathway. The major product of the chemical synthesis, identified as 1,N2-etheno-2-aminopurine, reacted slowly, while the second, minor, but highly fluorescent product, reacted rapidly. NMR analysis allowed identification of the minor product as N2,3-etheno-2-aminopurine, and its ribosylation product as N2,3-etheno-2-aminopurine-N2--D-riboside. Ribosylation of 1,N2-etheno-2-aminopurine led to analogous N2--d-riboside of this base. Both enzymatically produced ribosides were readily phosphorolysed by bacterial PNP to the respective bases. The reaction of 2-aminopurine-N9- -D-riboside with chloroacetaldehyde gave one major product, clearly distinct from that obtained from the enzymatic synthesis, which was not a substrate for PNP. A tri-cyclic 7-deazaadenosine (tubercidine) derivative was prepared in an analogous way and shown to be an effective inhibitor of the E. coli, but not of the mammalian enzyme. Fluorescent complexes of amino-purine analogs with E. coli PNP were observed.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Górka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-089 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Ryszard Stolarski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| |
Collapse
|
3
|
Use of nucleoside phosphorylases for the preparation of 5-modified pyrimidine ribonucleosides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140292. [PMID: 31676450 DOI: 10.1016/j.bbapap.2019.140292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Enzymatic transglycosylation, a transfer of the carbohydrate moiety from one heterocyclic base to another, is catalyzed by nucleoside phosphorylases (NPs) and is being actively developed and applied for the synthesis of biologically important nucleosides. Here, we report an efficient one-step synthesis of 5-substitited pyrimidine ribonucleosides starting from 7-methylguanosine hydroiodide in the presence of nucleoside phosphorylases (NPs).
Collapse
|
4
|
Synthesis of nucleoside phosphonate analogs having phosphonodifluoromethylene moieties and their biological activities. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Isaksen GV, Åqvist J, Brandsdal BO. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations. Biochemistry 2016; 56:306-312. [DOI: 10.1021/acs.biochem.6b00967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geir Villy Isaksen
- The
Centre for Theoretical and Computational Chemistry, Department of
Chemistry, University of Tromsø, NO-9037 Tromsø, Norway
| | - Johan Åqvist
- Department
of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Bjørn Olav Brandsdal
- The
Centre for Theoretical and Computational Chemistry, Department of
Chemistry, University of Tromsø, NO-9037 Tromsø, Norway
| |
Collapse
|
6
|
Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5'-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway. PLoS Negl Trop Dis 2016; 10:e0005178. [PMID: 27935959 PMCID: PMC5147791 DOI: 10.1371/journal.pntd.0005178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022] Open
Abstract
Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. The huge challenge in parasitic chemotherapy development is finding a specific compound to attack the parasite organisms without damaging their host. Schistosoma mansoni, which is the causative agent of schistosomiasis, is one of the major health concerns in the developing world. Purine bases are essential for organisms that make DNA, RNA and energetic molecules during parasitic growth and egg laying. The parasites depend entirely on re-utilizing existing purines, not being able to synthesize them from more simple molecules. The adenosine phosphorylase is an important activity for this process and kinetic assays we performed with this S. mansoni MTAP confirm that it displays this specific activity that is not present in the human metabolism. Therefore, understanding the properties of this enzyme is an important step in achieving an efficient anti-schistosomiasis drug with minimal collateral effects to humans.
Collapse
|
7
|
Isaksen GV, Hopmann KH, Åqvist J, Brandsdal BO. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase. Biochemistry 2016; 55:2153-62. [PMID: 26985580 DOI: 10.1021/acs.biochem.5b01347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity.
Collapse
Affiliation(s)
- Geir Villy Isaksen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, Faculty of Science and Technology, University of Tromsø , N9037 Tromsø, Norway
| | - Kathrin Helen Hopmann
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, Faculty of Science and Technology, University of Tromsø , N9037 Tromsø, Norway
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University , SE-75124 Uppsala, Sweden
| | - Bjørn Olav Brandsdal
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, Faculty of Science and Technology, University of Tromsø , N9037 Tromsø, Norway
| |
Collapse
|
8
|
Purine nucleoside phosphorylase activity decline is linked to the decay of the trimeric form of the enzyme. Arch Biochem Biophys 2014; 549:40-8. [DOI: 10.1016/j.abb.2014.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
|
9
|
Wielgus-Kutrowska B, Breer K, Hashimoto M, Hikishima S, Yokomatsu T, Narczyk M, Dyzma A, Girstun A, Staroń K, Bzowska A. Trimeric purine nucleoside phosphorylase: Exploring postulated one-third-of-the-sites binding in the transition state. Bioorg Med Chem 2012; 20:6758-69. [DOI: 10.1016/j.bmc.2012.08.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/24/2012] [Indexed: 11/28/2022]
|
10
|
Mikleušević G, Štefanić Z, Narczyk M, Wielgus-Kutrowska B, Bzowska A, Luić M. Validation of the catalytic mechanism of Escherichia coli purine nucleoside phosphorylase by structural and kinetic studies. Biochimie 2011; 93:1610-22. [DOI: 10.1016/j.biochi.2011.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/26/2011] [Indexed: 11/17/2022]
|
11
|
High-sensitivity capillary electrophoresis method for monitoring purine nucleoside phosphorylase and adenosine deaminase reactions by a reversed electrode polarity switching mode. J Chromatogr A 2011; 1218:4764-71. [PMID: 21664618 DOI: 10.1016/j.chroma.2011.04.085] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 11/22/2022]
Abstract
A simple, efficient, and highly sensitive in-line CE method was developed for the characterization and for inhibition studies of the nucleoside-metabolizing enzymes purine nucleoside phosphorylase (PNP) and adenosine deaminase (ADA) present in membrane preparations of human 1539 melanoma cells. After filling the running buffer (50 mM borate buffer, 100 mM SDS, pH 9.10) into a fused-silica capillary (50 cm effective length × 75 μm), a large sample volume was loaded by hydrodynamic injection (5 psi, 36 s), followed by the removal of the large plug of sample matrix from the capillary using polarity switching (-20 kV). The current was monitored and the polarity was reversed when 95% of the current had been recovered. The separation of the neutral analytes (nucleosides and nucleobases) was performed by applying a voltage of 15 kV. An about 10-fold improvement of sensitivity for the five investigated analytes (adenosine, inosine, adenine, hypoxanthine, xanthine) was achieved by large-volume stacking with polarity switching when compared with CE without stacking. For inosine and adenine detection limits as low as 60 nM were achieved. To the best of our knowledge, this represents the highest sensitivity for nucleoside and nucleobase analysis using CE with UV detection reported so far. The Michaelis-Menten constants (K(m)) for PNP and ADA and the inhibition constants (K(i)) for standard inhibitors determined with the new method were consistent with literature data.
Collapse
|
12
|
Breer K, Glavas-Obrovac L, Suver M, Hikishima S, Hashimoto M, Yokomatsu T, Wielgus-Kutrowska B, Magnowska L, Bzowska A. 9-Deazaguanine derivatives connected by a linker to difluoromethylene phosphonic acid are slow-binding picomolar inhibitors of trimeric purine nucleoside phosphorylase. FEBS J 2010; 277:1747-60. [PMID: 20193043 DOI: 10.1111/j.1742-4658.2010.07598.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic deficiency of purine nucleoside phosphorylase (PNP; EC 2.4.2.1) activity leads to a severe selective disorder of T-cell function. Therefore, potent inhibitors of mammalian PNP are expected to act as selective immunosuppressive agents against, for example, T-cell cancers and some autoimmune diseases. 9-(5',5'-difluoro-5'-phosphonopentyl)-9-deazaguanine (DFPP-DG) was found to be a slow- and tight-binding inhibitor of mammalian PNP. The inhibition constant at equilibrium (1 mm phosphate concentration) with calf spleen PNP was shown to be = 85 +/- 13 pm (pH 7.0, 25 degrees C), whereas the apparent inhibition constant determined by classical methods was two orders of magnitude higher ( = 4.4 +/- 0.6 nm). The rate constant for formation of the enzyme/inhibitor reversible complex is (8.4 +/- 0.5) x 10(5) m(-1).s(-1), which is a value that is too low to be diffusion-controlled. The picomolar binding of DFPP-DG was confirmed by fluorimetric titration, which led to a dissociation constant of 254 pm (68% confidence interval is 147-389 pm). Stopped-flow experiments, together with the above data, are most consistent with a two-step binding mechanism: E + I <--> (EI) <--> (EI)*. The rate constants for reversible enzyme/inhibitor complex formation (EI), and for the conformational change (EI) <--> (EI)*, are k(on1) = (17.46 +/- 0.05) x 10(5) m(-1).s(-1), k(off1) = (0.021 +/- 0.003) s(-1), k(on2) = (1.22 +/- 0.08) s(-1) and k(off2) = (0.024 +/- 0.005) s(-1), respectively. This leads to inhibition constants for the first (EI) and second (EI)* complexes of K(i) = 12.1 nM (68% confidence interval is 8.7-15.5 nm) and = 237 pm (68% confidence interval is 123-401 pm), respectively. At a concentration of 10(-4) m, DFPP-DG exhibits weak, but statistically significant, inhibition of the growth of cell lines sensible to inhibition of PNP activity, such as human adult T-cell leukaemia and lymphoma (Jurkat, HuT78 and CCRF-CEM). Similar inhibitory activities of the tested compound were noted on the growth of lymphocytes collected from patients with Hashimoto's thyroiditis and Graves' disease. The observed weak cytotoxicity may be a result of poor membrane permeability.
Collapse
Affiliation(s)
- Katarzyna Breer
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hikishima S, Hashimoto M, Magnowska L, Bzowska A, Yokomatsu T. Structural-based design and synthesis of novel 9-deazaguanine derivatives having a phosphate mimic as multi-substrate analogue inhibitors for mammalian PNPs. Bioorg Med Chem 2010; 18:2275-2284. [PMID: 20189401 DOI: 10.1016/j.bmc.2010.01.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
9-(5',5'-Difluoro-5'-phosphonopentyl)-9-deazaguanine (DFPP-DG) was designed as a multi-substrate analogue inhibitor against purine nucleoside phosphorylase (PNP) on the basis of X-ray crystallographic data obtained for a binary complex of 9-(5',5'-difluoro-5'-phosphonopentyl)guanine (DFPP-G) with calf-spleen PNP. DFPP-DG and its analogous compounds were synthesized by the Sonogashira coupling reaction between a 9-deaza-9-iodoguanine derivative and omega-alkynyldifluoromethylene phosphonates as a key reaction. The experimental details focused on the synthetic chemistry along with some insights into the physical and biological properties of newly synthesized DFPP-DG derivatives are disclosed.
Collapse
Affiliation(s)
- Sadao Hikishima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mariko Hashimoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Lucyna Magnowska
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Zwirki i Wigury 93, 02 089 Warsaw, Poland
| | - Agnieszka Bzowska
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Zwirki i Wigury 93, 02 089 Warsaw, Poland
| | - Tsutomu Yokomatsu
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
14
|
Glavas-Obrovac L, Suver M, Hikishima S, Hashimoto M, Yokomatsu T, Magnowska L, Bzowska A. Antiproliferative activity of purine nucleoside phosphorylase multisubstrate analogue inhibitors containing difluoromethylene phosphonic acid against leukaemia and lymphoma cells. Chem Biol Drug Des 2010; 75:392-9. [PMID: 20102369 DOI: 10.1111/j.1747-0285.2009.00939.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potent inhibitors of purine nucleoside phosphorylase (PNP) are expected to act as selective agents against T-cell tumours. Five compounds with guanine, three with hypoxanthine, and five with 9-deazaguanine, all connected by a linker with difluoromethylene phosphonic acid, were studied on their inhibitory potential against human and calf PNPs. Antiproliferative activity of these analogues against lymphocytes as well as lymphoma and leukaemia cells has been also investigated. All tested compounds act as multisubstrate analogue inhibitors of PNP with the apparent inhibition constants in the range 5-100 nm, and also show a slight antiproliferative activity. Analogues with 9-deazaguanine aglycone have better anti-leukaemic and anti-lymphoma activities compared to the guanine and hypoxanthine analogues, and applied in the concentration of 100 mum, caused a statistically significant decrease in the cell viability in all human leukaemia and lymphoma cells used. Despite the high PNP inhibitory potential of tested analogues, no differences were observed between the effects on the growth of tumour cells sensible to the inhibition of PNP, such as human adult T-cell leukaemia and lymphoma cells, and other investigated cells. Obtained poor effects on cell proliferation could be explained probably by a poor ability of tested compounds to penetrate cell membranes.
Collapse
Affiliation(s)
- Ljubica Glavas-Obrovac
- School of Medicine, J.J. Strossmayer University of Osijek and University Hospital Osijek J. Huttlera 4, Osijek, HR-31000, Croatia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chojnowski G, Breer K, Narczyk M, Wielgus-Kutrowska B, Czapinska H, Hashimoto M, Hikishima S, Yokomatsu T, Bochtler M, Girstun A, Staroń K, Bzowska A. 1.45Å resolution crystal structure of recombinant PNP in complex with a pM multisubstrate analogue inhibitor bearing one feature of the postulated transition state. Biochem Biophys Res Commun 2010; 391:703-8. [DOI: 10.1016/j.bbrc.2009.11.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
16
|
Breer K, Wielgus-Kutrowska B, Girstun A, Staroń K, Hashimoto M, Hikishima S, Yokomatsu T, Bzowska A. Overexpressed proteins may act as mops removing their ligands from the host cells: a case study of calf PNP. Biochem Biophys Res Commun 2009; 391:1203-9. [PMID: 20005207 DOI: 10.1016/j.bbrc.2009.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Calf purine nucleoside phosphorylase (PNP) was overexpressed in Escherichia coli. The basic kinetic parameters of recombinant PNP were found to be similar to the values published previously for non-recombinant PNP from calf spleen. However, upon titration of the recombinant enzyme with the tight-binding multisubstrate analogue inhibitor DFPP-DG, endothermic as well as exothermic signals were obtained. This was not the case for PNP isolated from calf spleen for which only the endothermic process was observed. Further calorimetric titrations of the recombinant and non-recombinant enzyme with its potent and moderate ligands, and studied involving partial inactivation of the enzyme, lead to the conclusion that a part of the recombinant enzyme forms a complex with its product, hypoxanthine, although hypoxanthine was not present at any purification stage except for its natural occurrence in E. coli cells. Binding of hypoxanthine is accompanied with a large negative change of the free enthalpy, and therefore the replacement of this compound by DFPP-DG yields positive heat signal. Our data obtained with calf PNP indicate that similar processes--moping of ligands from the host cells--may take place in the case of other proteins with high overexpression yield.
Collapse
Affiliation(s)
- Katarzyna Breer
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Todorova NA, Schwarz FP. Effect of the phosphate substrate on drug-inhibitor binding to human purine nucleoside phosphorylase. Arch Biochem Biophys 2008; 480:122-31. [DOI: 10.1016/j.abb.2008.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/26/2008] [Accepted: 10/07/2008] [Indexed: 11/30/2022]
|
19
|
Overexpression, purification and characterization of functional calf purine nucleoside phosphorylase (PNP). Protein Expr Purif 2008; 61:122-30. [DOI: 10.1016/j.pep.2008.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/21/2022]
|
20
|
Glavas-Obrovac L, Suver M, Hikishima S, Yokomatsu T, Bzowska A. Inhibitory properties of nucleotides with difluoromethylenephosphonic acid as a phosphate mimic versus calf spleen purine nucleoside phosphorylase and effect of these analogues on the viability of human blood lymphocytes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:989-93. [PMID: 18058523 DOI: 10.1080/15257770701508513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several cyclic and acyclic 6-keto purine nucleotides with difluoromethylenephosphonic acid as phosphate mimic are proved to be potent inhibitors of mammalian purine nucleoside phosphorylase (PNP). Antiproliferative activity of these analogues on the growth of human blood lymphocytes was tested by MTT assay. Compared to inhibitory effects on the growth of human blood T-lymphocytes isolated from healthy donors, all analogues significantly slow down proliferation of T-lymphocytes isolated from patients with autoimmune thyroid disease--Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Ljubica Glavas-Obrovac
- Clinical Hospital Osijek and School of Medicine, University of J. J. Strossmayer in Osijek, Osijek, Croatia
| | | | | | | | | |
Collapse
|
21
|
Antosiewicz J, Wielgus-Kutrowska B, Długosz M, Holy A, Bzowska A. Kinetics of binding of multisubstrate analogue inhibitor (2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine) with trimeric purine nucleoside phosphorylase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:969-74. [PMID: 18058519 DOI: 10.1080/15257770701508323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Complex formation of multisubstrate analogue inhibitor--2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine (PME-6-thio-Gua) with trimeric purine nucleoside phosphorylase from Cellulomonas sp. was investigated using a stopped-flow spectrofluorimetric approach. Results obtained indicate that, in contrast to binding of guanine, i.e., the transition-state conformation trapping ligand, for which binding at each active site is followed by the enzyme conformational change, association of the ground-state analogue PME-6-thio-Gua is a one-step process.
Collapse
Affiliation(s)
- Jan Antosiewicz
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
22
|
Stepniak K, Zinić B, Wierzchowski J, Bzowska A. Fluorescence studies of calf spleen purine nucleoside phosphorylase (PNP) complexes with guanine and 9-deazaguanine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:841-7. [PMID: 18066911 DOI: 10.1080/15257770701503985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interactions of trimeric calf spleen purine nucleoside phosphorylase (PNP) with guanine (Gua) and its analogue, 9-deazaguanine (9-deaza-Gua), were studied by means of the steady-state fluorescence. The aim was to test the hypothesis that the enzyme stabilizes the anionic form of purine, inferred previously from the unusual increase of fluorescence observed after binding of guanine by calf spleen PNP. We have found that the dissociation constants obtained form titration experiments are in fact pH-independent in the range 7.0-10.25 for both PNP/Gua and PNP/9-deaza-Gua complexes. In particular, at pH 7.0 we found Kd = 0.12 +/- 0.02 micro M for Gua and 0.16 +/- 0.01 micro M for 9-deaza-Gua, while at the conditions where there is more than 40% of the anionic form the respective values were Kd = 0.15 +/- 0.01 micro M for Gua (pH 9.0) and 0.25 +/- 0.02 micro M for 9-deaza-Gua (pH 10.25). Hence, the enzyme does not prefer binding of anionic forms of these ligands in respect to the neutral ones. This result questions the involvement of the anionic forms in the reaction catalyzed by trimeric PNPs, and contradicts the hypothesis of a strong hydrogen bond formation between the enzyme Asn 243 residue and the purine N7 position.
Collapse
Affiliation(s)
- Katarzyna Stepniak
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Warsaw, Poland
| | | | | | | |
Collapse
|
23
|
Stepniak K, Girstun A, Wielgus-Kutrowska B, Staroń K, Bzowska A. Cloning, expression, purification, and some properties of calf purine nucleoside phosphorylase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:855-9. [PMID: 18066913 DOI: 10.1080/15257770701504009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calf spleen purine nucleoside phosphorylase (PNP) is considered a model enzyme for the trimeric PNPs subfamily. PCR amplification of the calf phosphorylase from the calf spleen library, cloning, overexpression of the recombinant PNP, its enzymatic activity and interactions with typical ligands of mammalian wild type PNP are described. Relative activity of the recombinant phosphorylase versus several substrates is similar to the respective values obtained for the enzyme isolated from calf spleen. As for the nonrecombinant calf PNP, the unusual fluorescence properties of the PNP/guanine complex were observed and characterized.
Collapse
Affiliation(s)
- Katarzyna Stepniak
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
24
|
Wierzchowski J, Iwanska B, Bzowska A, Shugar D. Interactions of calf spleen purine nucleoside phosphorylase with formycin B and its aglycone - spectroscopic and kinetic studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:849-54. [PMID: 18066912 DOI: 10.1080/15257770701503993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phosphorolysis of 7-methylguanosine by calf spleen purine nucleoside phosphorylase (PNP) is weakly inhibited, uncompetitively, by Formycin B (FB) with Ki = 100 micro M and more effectively by its aglycone (7KPP), IC50 35-100 micro M. In striking contrast, 7KPP inhibits the reverse reaction (synthesis of 8-azaguanosine from 8-azaguanine) competitively, with Ki approximately 2-4 micro M. Formycin B forms only a weakly fluorescent complex with PNP, and 7KPP even less so, indicating that both ligands bind as the neutral, not anionic, forms. 7KPP is a rare example of a PNP non-substrate inhibitor of both the phosphorolytic and reverse synthetic pathways.
Collapse
Affiliation(s)
- Jacek Wierzchowski
- Department of Biophysics, University of Warmia and Mazury, Olsztyn, Poland.
| | | | | | | |
Collapse
|
25
|
Taylor EA, Rinaldo-Matthis A, Li L, Ghanem M, Hazleton KZ, Cassera MB, Almo SC, Schramm VL. Anopheles gambiae purine nucleoside phosphorylase: catalysis, structure, and inhibition. Biochemistry 2007; 46:12405-15. [PMID: 17918964 DOI: 10.1021/bi7010256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 10(7), and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 A to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP.DADMe-ImmH.PO4 complex than in HsPNP.DADMe-ImmH.SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.
Collapse
Affiliation(s)
- Erika A Taylor
- Department of Biochemistry, Albert Einstein College of Medicine at Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Modrak-Wójcik A, Kirilenko A, Shugar D, Kierdaszuk B. Role of ionization of the phosphate cosubstrate on phosphorolysis by purine nucleoside phosphorylase (PNP) of bacterial (E. coli) and mammalian (human) origin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:153-64. [PMID: 17639373 DOI: 10.1007/s00249-007-0205-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/31/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Kinetics of the reactions of purine nucleoside phosphorylases (PNP) from E. coli (PNP-I, the product of the deoD gene) and human erythrocytes with their natural substrates guanosine (Guo), inosine (Ino), a substrate analogue N(7)-methylguanosine (m(7)Guo), and orthophosphate (P(i), natural cosubstrate) and its thiophosphate analogue (SP(i)), found to be a weak cosubstrate, have been studied in the pH range 5-8. In this pH range Guo and Ino exist predominantly in the neutral forms (pK(a) 9.2 and 8.8); m(7)Guo consists of an equilibrium mixture of the cationic and zwitterionic forms (pK(a) 7.0); and P(i) and SP(i) exhibit equilibria between monoanionic and dianionic forms (pK(a) 6.7 and 5.4, respectively). The phosphorolysis of m(7)Guo (at saturated concentration) with both enzymes exhibits Michaelis kinetics with SP(i), independently of pH. With P(i), the human enzyme shows Michaelis kinetics only at pH approximately 5. However, in the pH range 5-8 for the bacterial enzyme, and 6-8 for the human enzyme, enzyme kinetics with P(i) are best described by a model with high- and low-affinity states of the enzymes, denoted as enzyme-substrate complexes with one or two active sites occupied by P(i), characterized by two sets of enzyme-substrate dissociation constants (apparent Michaelis constants, K (m1) and K (m2)) and apparent maximal velocities (V (max1) and V (max2)). Their values, obtained from non-linear least-squares fittings of the Adair equation, were typical for negative cooperativity of both substrate binding (K (m1) < K (m2)) and enzyme kinetics (V (max1)/K (m1) > V (max2)/K (m2)). Comparison of the pH-dependence of the substrate properties of P(i) versus SP(i) points to both monoanionic and dianionic forms of P(i) as substrates, with a marked preference for the dianionic species in the pH range 5-8, where the population of the P(i) dianion varies from 2 to 95%, reflected by enzyme efficiency three orders of magnitude higher at pH 8 than that at pH 5. This is accompanied by an increase in negative cooperativity, characterized by a decrease in the Hill coefficient from n (H) approximately 1 to n (H) approximately 0.7 for Guo with the human enzyme, and to n (H) approximately 0.7 and 0.5 for m(7)Guo with the E. coli and human enzymes, respectively. Possible mechanisms of cooperativity are proposed. Attention is drawn to the substrate properties of SP(i) in relation to its structure.
Collapse
Affiliation(s)
- Anna Modrak-Wójcik
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
27
|
Hikishima S, Hashimoto M, Magnowska L, Bzowska A, Yokomatsu T. Synthesis and biological evaluation of 9-deazaguanine derivatives connected by a linker to difluoromethylene phosphonic acid as multi-substrate analogue inhibitors of PNP. Bioorg Med Chem Lett 2007; 17:4173-7. [PMID: 17544667 DOI: 10.1016/j.bmcl.2007.05.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 04/25/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
9-(5',5'-difluoro-5'-phosphonopentyl)-9-deazaguanine (DFPP-DG) was designed as a multi-substrate analogue inhibitor against purine nucleoside phosphorylase (PNP) on the basis of X-ray crystallographic data obtained for a binary complex of 9-(5',5'-difluoro-5'-phosphonopentyl)guanine (DFPP-G) with calf spleen PNP. DFPP-DG and its analogous compounds were adjusted by length of the linker achieved by the Sonogashira-coupling reaction between a 9-deaza-9-iodoguanine derivative and omega-alkynyldifluoromethylene phosphonates as a key reaction. DFPP-DG is a very potent PNP inhibitor with apparent inhibition constants (in the presence of 1 mM phosphate) of 4.4 and 8.1 nM versus calf spleen and human erythrocyte PNPs, respectively. One of its analogues, homo-DFPP-DG, with longer chain linking phosphonate and 9-deazaguanine is even more potent versus human enzyme, with an apparent inhibition constant of 5.3 nM (in the presence of 1mM phosphate).
Collapse
Affiliation(s)
- Sadao Hikishima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
28
|
Wielgus-Kutrowska B, Antosiewicz JM, Długosz M, Holý A, Bzowska A. Towards the mechanism of trimeric purine nucleoside phosphorylases: Stopped-flow studies of binding of multisubstrate analogue inhibitor — 2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine. Biophys Chem 2007; 125:260-8. [PMID: 16989940 DOI: 10.1016/j.bpc.2006.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/18/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
The binding of multisubstrate analogue inhibitor - 2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine (PME-6-thio-Gua) to purine nucleoside phosphorylase from Cellulomonas sp. at 20 degrees C, in 20 mM Hepes buffer with ionic strength adjusted to 50 mM using KCl, at several pH values between 6.5 and 8.2, was investigated using a stopped-flow spectrofluorimeter. The kinetic transients registered after mixing a protein solution with ligand solutions of different concentrations were simultaneously fitted by several association reaction models using nonlinear least-squares procedure based on numerical integration of the chemical kinetic equations appropriate for given model. It is concluded that binding of a PME-6-thio-Gua molecule by each of the binding sites is sufficiently well described by one-step process, with a model assuming interacting binding sites being more probable than a model assuming independent sites. The association rate constants derived from experimental data, assuming one step binding and independent sites, are decreasing with an increase in pH, changing from 30 to 6 microM(-1)s(-1) per binding site. The dissociation rate constants are in the range of 1-3 s(-1), and they are rather insensitive of changes in pH. Interestingly, for each pH value, the one-step binding model with interacting sites results in the association rate constant per site 1.5-4 times smaller for the binding of the first ligand molecule than that for the binding of the second one. Decrease of association constants with pH indicate that the enzyme does not prefer binding of the naturally occurring anionic form of the 6-thioguanine ring (pK(a) 8.7) resulting from a dissociation of N(1)-H. This finding supports the mechanism in which hydrogen bond interaction of N(1)-H with Glu204 (Glu 201 in mammalian PNPs) is crucial in the catalytic process. Results obtained also indicate that, in contrast to transition-state analogues, for which binding is followed by a conformational change, binding of multisubstrate analogue inhibitors to trimeric PNPs is a one-step process.
Collapse
|
29
|
Modrak-Wójcik A, Stepniak K, Akoev V, Zółkiewski M, Bzowska A. Molecular architecture of E. coli purine nucleoside phosphorylase studied by analytical ultracentrifugation and CD spectroscopy. Protein Sci 2006; 15:1794-800. [PMID: 16751611 PMCID: PMC2242567 DOI: 10.1110/ps.062183206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purine nucleoside phosphorylase (PNP) is a key enzyme of the nucleoside salvage pathway and is characterized by complex kinetics. It was suggested that this is due to coexistence of various oligomeric forms that differ in specific activity. In this work, the molecular architecture of Escherichia coli PNP in solution was studied by analytical ultracentrifugation and CD spectroscopy. Sedimentation equilibrium analysis revealed a homohexameric molecule with molecular mass 150+/-10 kDa, regardless of the conditions investigated-protein concentration, 0.18-1.7 mg/mL; presence of up to 10 mM phosphate and up to 100 mM KCl; temperature, 4-20 degrees C. The parameters obtained from the self-associating model also describe the hexameric form. Sedimentation velocity experiments conducted for broad protein concentration range (1 microg/mL-1.3 mg/mL) with boundary (classical) and band (active enzyme) approaches gave s(0)20,w=7.7+/-0.3 and 8.3+/-0.4 S, respectively. The molecular mass of the sedimenting particle (146+/-30 kDa), calculated using the Svedberg equation, corresponds to the mass of the hexamer. Relative values of the CD signal at 220 nm and the catalytic activity of PNP as a function of GdnHCl concentration were found to be correlated. The transition from the native state to the random coil is a single-step process. The sedimentation coefficient determined at 1 M GdnHCl (at which the enzyme is still fully active) is 7.7 S, showing that also under these conditions the hexamer is the only catalytically active form. Hence, in solution similar to the crystal, E. coli PNP is a hexameric molecule and previous suggestions for coexistence of two oligomeric forms are incorrect.
Collapse
Affiliation(s)
- Anna Modrak-Wójcik
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Poland
| | | | | | | | | |
Collapse
|
30
|
Wielgus-Kutrowska B, Bzowska A. Probing the mechanism of purine nucleoside phosphorylase by steady-state kinetic studies and ligand binding characterization determined by fluorimetric titrations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:887-902. [PMID: 16631420 DOI: 10.1016/j.bbapap.2006.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 03/03/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Reversible reaction catalyzed by trimeric purine nucleoside phosphorylase (PNP) from Cellulomonas sp. with typical and non-typical substrates, including product inhibition patterns of both reaction directions, and interactions of the enzyme with bisubstrate analogue inhibitors, were investigated by the steady-state kinetic methods and fluorimetric titrations. The ligand chromophores exist most probably as neutral species, and not N(1)-H monoanions, in the complex with PNP, as shown by determination of inhibition constants vs. pH. This supports the mechanism in which hydrogen bond interaction of N(1)-H with Glu204 is crucial in the catalytic process. Stoichiometry of ligand binding, with possible exception of hypoxanthine, is three molecules per enzyme trimer. Kinetic experiments show that in principle the Michaelis-Menten model could not properly describe the reaction. However, this model seems to hold for certain experimental conditions. Data presented here are supported by earlier findings obtained by means of fluorimetric titrations and protective effects of ligands on thermal inactivation of the enzyme. All results are consistent with the following mechanism for trimeric PNPs: (i) random binding of substrates, (ii) potent binding and slow release of some reaction products leading to the circumstances that the chemical step is not the slowest one and that rapid-equilibrium assumptions do not hold, (iii) a dual role of phosphate--a substrate and also a reaction modifier.
Collapse
Affiliation(s)
- Beata Wielgus-Kutrowska
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | |
Collapse
|
31
|
Wielgus-Kutrowska B, Bzowska A. Kinetic properties of Cellulomonas sp. purine nucleoside phosphorylase with typical and non-typical substrates: implications for the reaction mechanism. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:471-6. [PMID: 16247973 DOI: 10.1081/ncn-200060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phosphorolysis catalyzed by Cellulomonas sp. PNP with typical nucleoside substrate, inosine (Ino), and non-typical 7-methylguanosine (m7Guo), with either nucleoside or phosphate (Pd) as the varied substrate, kinetics of the reverse synthetic reaction with guanine (Gua) and ribose-1-phosphate (R1P) as the varied substrates, and product inhibition patterns of synthetic and phosphorolytic reaction pathways were studied by steady-state kinetic methods. It is concluded that, like for mammalian trimeric PNP, complex kinetic characteristics observed for Cellulomonas enzyme results from simultaneous occurrence of three phenomena. These are sequential but random, not ordered binding of substrates, tight binding of one substrate purine bases, leading to the circumstances that for such substrates (products) rapid-equilibrium assumptions do not hold, and a dual role of Pi, a substrate, and also a reaction modifier that helps to release a tightly bound purine base.
Collapse
Affiliation(s)
- Beata Wielgus-Kutrowska
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
32
|
Wierzchowski J, Stepniak K, Bzowska A, Shugar D. Spectroscopic and kinetic studies of interactions of calf spleen purine nucleoside phosphorylase with 8-azaguanine, and its 9-(2-phosphonylmethoxyethyl) derivative. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:459-64. [PMID: 16247971 DOI: 10.1081/ncn-200060004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Spectroscopic and kinetic studies of interactions of calf spleen purine nucleoside phosphorylase with 8-azaguanine, an excellent fluorescent/fluorogenic substrate for the synthetic pathway of the reaction, and its 9-(2-phosphonylmethoxyethyl) derivative, a bisubstrate analogue inhibitor, were carried out. The goal was to clarify the catalytic mechanism of the enzymatic reaction by identification of ionic/tautomeric forms of these ligands in the complex with PNP.
Collapse
Affiliation(s)
- Jacek Wierzchowski
- Department of Biophysics, University of Warmia and Mazury, 4 Oczapowskiego St., Olsztyn 10-719, Poland.
| | | | | | | |
Collapse
|
33
|
Silva RG, Pereira JH, Canduri F, de Azevedo WF, Basso LA, Santos DS. Kinetics and crystal structure of human purine nucleoside phosphorylase in complex with 7-methyl-6-thio-guanosine. Arch Biochem Biophys 2005; 442:49-58. [PMID: 16154528 DOI: 10.1016/j.abb.2005.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 11/26/2022]
Abstract
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors.
Collapse
Affiliation(s)
- Rafael G Silva
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, PUCRS, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Cacciapuoti G, Moretti MA, Forte S, Brio A, Camardella L, Zappia V, Porcelli M. Methylthioadenosine phosphorylase from the archaeon Pyrococcus furiosus. Mechanism of the reaction and assignment of disulfide bonds. ACTA ACUST UNITED AC 2005; 271:4834-44. [PMID: 15606771 DOI: 10.1111/j.1432-1033.2004.04449.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extremely heat-stable 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and affinity chromatography. The recombinant enzyme was subjected to a kinetic analysis including initial velocity and product inhibition studies. The reaction follows an ordered Bi-Bi mechanism and phosphate binding precedes nucleoside binding in the phosphorolytic direction. 5'-Methylthioadenosine phosphorylase from Pyrococcus furiosus is a hexameric protein with five cysteine residues per subunit. Analysis of the fragments obtained after digestion of the protein alkylated without previous reduction identified two intrasubunit disulfide bridges. The enzyme is very resistant to chemical denaturation and the transition midpoint for guanidinium chloride-induced unfolding was determined to be 3.0 M after 22 h incubation. This value decreases to 2.0 M in the presence of 30 mM dithiothreitol, furnishing evidence that disulfide bonds are needed for protein stability. The guanidinium chloride-induced unfolding is completely reversible as demonstrated by the analysis of the refolding process by activity assays, fluorescence measurements and SDS/PAGE. The finding of multiple disulfide bridges in 5'-methylthioadenosine phosphorylase from Pyrococcus furiosus argues strongly that disulfide bond formation may be a significant molecular strategy for stabilizing intracellular hyperthermophilic proteins.
Collapse
Affiliation(s)
- Giovanna Cacciapuoti
- Dipartimento di Biochimica e Biofisica F. Cedrangolo, Seconda Università di Napoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Długosz M, Bzowska A, Antosiewicz JM. Stopped-flow studies of guanine binding by calf spleen purine nucleoside phosphorylase. Biophys Chem 2005; 115:67-76. [PMID: 15848286 DOI: 10.1016/j.bpc.2005.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/07/2005] [Accepted: 01/14/2005] [Indexed: 11/21/2022]
Abstract
The binding of guanine to calf spleen purine nucleoside phosphorylase at 20 degrees C, in 20 mM Hepes-NaOH buffer, pH 7.0, at several ionic strength between 5 and 150 mM was investigated using a stopped-flow spectrofluorimeter. The kinetic transients registered after mixing a protein solution with ligand solutions of different concentrations were simultaneously fitted by several association reaction models using nonlinear least-squares procedure based on numerical integration of the chemical kinetic equations appropriate for given model. It is concluded that binding of a guanine molecule by each of the binding sites is a two-step process and that symmetrical trimeric calf spleen purine nucleoside phosphorylase represents a system of (identical) interacting binding sites. The interaction is visible through relations between the rate constants and non-additivity of changes in "molar" fluorescence for different forms of PNP-guanine complexes. It is also probable that electrostatic effects in guanine binding are weak, which indicates that it is the neutral form of the ligand which is bound and dissociated by PNP molecule.
Collapse
Affiliation(s)
- M Długosz
- Department of Biophysics, Warsaw University, Poland
| | | | | |
Collapse
|
36
|
Bzowska A, Koellner G, Wielgus-Kutrowska B, Stroh A, Raszewski G, Holý A, Steiner T, Frank J. Crystal Structure of Calf Spleen Purine Nucleoside Phosphorylase with Two Full Trimers in the Asymmetric Unit: Important Implications for the Mechanism of Catalysis. J Mol Biol 2004; 342:1015-32. [PMID: 15342253 DOI: 10.1016/j.jmb.2004.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/05/2004] [Accepted: 07/09/2004] [Indexed: 11/19/2022]
Abstract
The crystal structure of the binary complex of trimeric purine nucleoside phosphorylase (PNP) from calf spleen with the acyclic nucleoside phosphonate inhibitor 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine ((S)-PMPDAP) is determined at 2.3A resolution in space group P2(1)2(1)2(1). Crystallization in this space group, which is observed for the first time with a calf spleen PNP crystal structure, is obtained in the presence of calcium atoms. In contrast to the previously described cubic space group P2(1)3, two independent trimers are observed in the asymmetric unit, hence possible differences between monomers forming the biologically active trimer could be detected, if present. Such differences would be expected due to third-of-the-sites binding documented for transition-state events and inhibitors. However, no differences are noted, and binding stoichiometry of three inhibitor molecules per enzyme trimer is observed in the crystal structure, and in the parallel solution studies using isothermal titration calorimetry and spectrofluorimetric titrations. Presence of phosphate was shown to modify binding stoichiometry of hypoxanthine. Therefore, the enzyme was also crystallized in space group P2(1)2(1)2(1) in the presence of (S)-PMPDAP and phosphate, and the resulting structure of the binary PNP/(S)-PMPDAP complex was refined at 2.05A resolution. No qualitative differences between complexes obtained with and without the presence of phosphate were detected, except for the hydrogen bond contact of Arg84 and a phosphonate group, which is observed only in the former complex in three out of six independent monomers. Possible hydrogen bonds observed in the enzyme complexed with (S)-PMPDAP, in particular a putative hydrogen bonding contact N(1)-H cdots, three dots, centered Glu201, indicate that the inhibitor binds in a tautomeric or ionic form in which position N(1) acts as a hydrogen bond donor. This points to a crucial role of this hydrogen bond in defining specificity of trimeric PNPs and is in line with the proposed mechanism of catalysis in which this contact helps to stabilize the negative charge that accumulates on O(6) of the purine base in the transition state. In the present crystal structure the loop between Thr60 and Ala65 was found in a different conformation than that observed in crystal structures of trimeric PNPs up to now. Due to this change a new wide entrance is opened into the active site pocket, which is otherwise buried in the interior of the protein. Hence, our present crystal structure provides no obvious indication for obligatory binding of one of the substrates before binding of a second one; it is rather consistent with random binding of substrates. All these results provide new data for clarifying the mechanism of catalysis and give reasons for the non-Michaelis kinetics of trimeric PNPs.
Collapse
Affiliation(s)
- Agnieszka Bzowska
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Iwanow M, Magnowska L, Yokomatsu T, Shibuya S, Bzowska A. Interactions of potent multisubstrate analogue inhibitors with purine nucleoside phosphorylase from calf spleen--kinetic and spectrofluorimetric studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1567-70. [PMID: 14565467 DOI: 10.1081/ncn-120023035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dissociation constants and stoichiometry of binding for interaction of trimeric calf spleen purine nucleoside phosphorylase with potent multisubstrate analogue inhibitors were studied by kinetic and spectrofluorimetric methods.
Collapse
Affiliation(s)
- Monika Iwanow
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
38
|
Koellner G, Stroh A, Raszewski G, Holý A, Bzowska A. Crystal structure of calf spleen purine nucleoside phosphorylase in a complex with multisubstrate analogue inhibitor with 2,6-diaminopurine aglycone. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1699-702. [PMID: 14565499 DOI: 10.1081/ncn-120023117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The crystal structure at 2.05 A resolution of calf spleen PNP complexed with stoichiometric concentration of acyclic nucleoside phosphonate inhibitor, 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine, in a new space group P2(1)2(1)2(1) which contains two full trimers in the asymmetric crystal unit is described.
Collapse
Affiliation(s)
- Gertraud Koellner
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
39
|
Wielgus-Kutrowska B, Frank J, Holý A, Koellner G, Bzowska A. Interactions of trimeric purine nucleoside phosphorylases with ground state analogues--calorimetric and fluorimetric studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1695-8. [PMID: 14565498 DOI: 10.1081/ncn-120023116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Binding enthalpies, dissociation constants and stoichiometry of binding for interaction of trimeric calf spleen and Cellulomonas sp. purine nucleoside phosphorylases with their ground state analogues (substrates and inhibitors) were studied by calorimetric and spectrofluorimetric methods. Data for all ligands, with possible exception of hypoxanthine, are consistent with three identical non-interacting binding sites.
Collapse
Affiliation(s)
- Beata Wielgus-Kutrowska
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
40
|
Bennett EM, Li C, Allan PW, Parker WB, Ealick SE. Structural basis for substrate specificity of Escherichia coli purine nucleoside phosphorylase. J Biol Chem 2003; 278:47110-8. [PMID: 12937174 DOI: 10.1074/jbc.m304622200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purine nucleoside phosphorylase catalyzes reversible phosphorolysis of purine nucleosides and 2'-deoxypurine nucleosides to the free base and ribose (or 2'-deoxyribose) 1-phosphate. Whereas the human enzyme is specific for 6-oxopurine ribonucleosides, the Escherichia coli enzyme accepts additional substrates including 6-oxopurine ribonucleosides, 6-aminopurine ribonucleosides, and to a lesser extent purine arabinosides. These differences have been exploited in a potential suicide gene therapy treatment for solid tumors. In an effort to optimize this suicide gene therapy approach, we have determined the three-dimensional structure of the E. coli enzyme in complex with 10 nucleoside analogs and correlated the structures with kinetic measurements and computer modeling. These studies explain the preference of the enzyme for ribose sugars, show increased flexibility for active site residues Asp204 and Arg24, and suggest that interactions involving the 1- and 6-positions of the purine and the 4'- and 5'-positions of the ribose provide the best opportunities to increase prodrug specificity and enzyme efficiency.
Collapse
Affiliation(s)
- Eric M Bennett
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
41
|
Wielgus-Kutrowska B, Bzowska A, Tebbe J, Koellner G, Shugar D. Purine nucleoside phosphorylase from Cellulomonas sp.: physicochemical properties and binding of substrates determined by ligand-dependent enhancement of enzyme intrinsic fluorescence, and by protective effects of ligands on thermal inactivation of the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:320-34. [PMID: 12044910 DOI: 10.1016/s0167-4838(02)00313-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purine nucleoside phosphorylase (PNP) from Cellulomonas sp., homotrimeric in the crystalline state, is also a trimer in solution. Other features of the enzyme are typical for "low molecular mass" PNPs, except for its unusual stability at pH 11. Purine bases, alpha-D-ribose-1-phosphate (R1P) and phosphate enhance the intrinsic fluorescence of Cellulomonas PNP, and hence form binary complexes and induce conformational changes of the protein that alter the microenvironment of tryptophan residue(s). The effect due to guanine (Gua) binding is much higher than those caused by other ligands, suggesting that the enzyme preferentially binds a fluorescent, most probably rare tautomeric anionic form of Gua, further shown by comparison of emission properties of the PNP/Gua complex with that of Gua anion and its N-methyl derivatives. Guanosine (Guo) and inosine (Ino) at 100 microM concentration show little and no effect, respectively, on enzyme intrinsic fluorescence, but their protective effect against thermal inactivation of the enzyme points to their forming weak binary complexes with PNP. Binding of Gua, hypoxanthine (Hx) and R1P to the trimeric enzyme is described by one dissociation constant, K(d)=0.46 microM for Gua, 3.0 microM for Hx, and 60 microM for R1P. The binding stoichiometry for Gua (and probably Hx) is three ligand molecules per enzyme trimer. Effects of phosphate on the enzyme intrinsic fluorescence are due not only to binding, but also to an increase in ionic strength, as shown by titration with KCl. When corrected for effects of ionic strength, titration data with phosphate are most consistent with one dissociation constant, K(d)=270 microM, but existence of a very weak binding site with K(d)>50 mM could not be unequivocally ruled out. Binding of Gua to the PNP/phosphate binary complex is weaker (K(d)=1.7 microM) than to the free enzyme (K(d)=0.46 microM), suggesting that phosphate helps release the purine base in the catalytic process of phosphorolysis. The results indicate that nonlinear kinetic plots of initial velocity, typical for PNPs, including Cellulomonas PNP, are not, as generally assumed, due to cooperative interaction between monomers forming the trimer, but to a more complex kinetic mechanism than hitherto considered.
Collapse
Affiliation(s)
- Beata Wielgus-Kutrowska
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|