1
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. Appl Environ Microbiol 2024; 90:e0054823. [PMID: 38126750 PMCID: PMC10807460 DOI: 10.1128/aem.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape maintenance, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Apparently-redundant proteins can be important for enabling an organism to cope with environmental stressors. In this study, we evaluated the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of PBPs in B. subtilis change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are favored for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly-redundant periplasmic enzymes.IMPORTANCEMicrobes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Departments of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533529. [PMID: 36993441 PMCID: PMC10055284 DOI: 10.1101/2023.03.20.533529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Seemingly redundant proteins can be important for enabling an organism to cope with environmental stressors. We sought to evaluate the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of B. subtilis PBPs change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are preferred for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly redundant periplasmic enzymes.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Departments of Medicinal Chemistry, Biochemistry, Molecular Biology and Biophysics, and Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
3
|
Sharma H, Raju B, Narendra G, Motiwale M, Sharma B, Verma H, Silakari O. QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update. ChemistrySelect 2023. [DOI: 10.1002/slct.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Himani Sharma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Mohit Motiwale
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Bhavna Sharma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| |
Collapse
|
4
|
Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance. Microbiol Spectr 2022; 10:e0173422. [PMID: 35758683 PMCID: PMC9430164 DOI: 10.1128/spectrum.01734-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin and β-lactams are clinically important antibiotics that inhibit the formation of peptidoglycan cross-links, but their binding targets are different. The binding target of vancomycin is d-alanine-d-alanine (d-Ala-d-Ala), whereas that of β-lactam is penicillin-binding proteins (PBPs). In this study, we revealed the divergent effects of peptidoglycan (PG) carboxypeptidase DacA on vancomycin and β-lactam resistance in Escherichia coli and Bacillus subtilis. The deletion of DacA induced sensitivity to most β-lactams, whereas it induced strong resistance toward vancomycin. Notably, both phenotypes did not have a strong association with ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and an Lpp outer membrane (OM) lipoprotein. Vancomycin resistance was induced by an increased amount of decoy d-Ala-d-Ala residues within PG, whereas β-lactam sensitivity was associated with physical interactions between DacA and PBPs. The presence of an OM permeability barrier strongly strengthened vancomycin resistance, but it significantly weakened β-lactam sensitivity. Collectively, our results revealed two distinct functions of DacA, which involved inverse modulation of bacterial resistance to clinically important antibiotics, β-lactams and vancomycin, and presented evidence for a link between DacA and PBPs. IMPORTANCE Bacterial PG hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and stress adaptation. Of all the PG hydrolases, the role of PG carboxypeptidases is poorly understood, especially regarding their impacts on antibiotic resistance. We have revealed two distinct functions of PG carboxypeptidase DacA with respect to antibiotic resistance. The deletion of DacA led to sensitivity to most β-lactams, while it caused strong resistance to vancomycin. Our study provides novel insights into the roles of PG carboxypeptidases in the regulation of antibiotic resistance and a potential clue for the development of a drug to improve the clinical efficacy of β-lactam antibiotics.
Collapse
|
5
|
Newman H, Krajnc A, Bellini D, Eyermann CJ, Boyle GA, Paterson NG, McAuley KE, Lesniak R, Gangar M, von Delft F, Brem J, Chibale K, Schofield CJ, Dowson CG. High-Throughput Crystallography Reveals Boron-Containing Inhibitors of a Penicillin-Binding Protein with Di- and Tricovalent Binding Modes. J Med Chem 2021; 64:11379-11394. [PMID: 34337941 PMCID: PMC9282634 DOI: 10.1021/acs.jmedchem.1c00717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly compromised by β-lactamases. Boron-containing inhibitors are potent serine-β-lactamase inhibitors, but the interactions of boron-based compounds with the penicillin-binding protein (PBP) β-lactam targets have not been extensively studied. We used high-throughput X-ray crystallography to explore reactions of a boron-containing fragment set with the Pseudomonas aeruginosa PBP3 (PaPBP3). Multiple crystal structures reveal that boronic acids react with PBPs to give tricovalently linked complexes bonded to Ser294, Ser349, and Lys484 of PaPBP3; benzoxaboroles react with PaPBP3 via reaction with two nucleophilic serines (Ser294 and Ser349) to give dicovalently linked complexes; and vaborbactam reacts to give a monocovalently linked complex. Modifications of the benzoxaborole scaffold resulted in a moderately potent inhibition of PaPBP3, though no antibacterial activity was observed. Overall, the results further evidence the potential for the development of new classes of boron-based antibiotics, which are not compromised by β-lactamase-driven resistance.
Collapse
Affiliation(s)
- Hector Newman
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Alen Krajnc
- Department
of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Dom Bellini
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Charles J. Eyermann
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Grant A. Boyle
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Neil G. Paterson
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Katherine E. McAuley
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Robert Lesniak
- Department
of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Mukesh Gangar
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Frank von Delft
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
- Structural
Genomics Consortium (SGC), University of
Oxford, Oxford, U.K.
- Department
of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
- Research
Complex at Harwell, Harwell
Science and Innovation Campus, Didcot OX11 0FA, U.K.
| | - Jürgen Brem
- Department
of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Department of Chemistry and Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Rondebosch 7701, South Africa
| | - Christopher J. Schofield
- Department
of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | | |
Collapse
|
6
|
Peters K, Pazos M, VanNieuwenhze MS, Vollmer W. Optimized Protocol for the Incorporation of FDAA (HADA Labeling) for in situ Labeling of Peptidoglycan. Bio Protoc 2019; 9:e3316. [PMID: 33654824 DOI: 10.21769/bioprotoc.3316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/02/2022] Open
Abstract
The essential peptidoglycan (PG) layer surrounds the cytoplasmic membrane in nearly all bacteria. It is needed to maintain the shape of the cell and protect it from lysis due to high turgor. Growth of the PG layer is a complex process that involves the activities of PG synthases and hydrolases during elongation and cell division. PG growth sites can be labeled by the recently developed fluorescent D-amino acid (FDAA) probes in a range of different bacteria. FDAAs are incorporated into PG by dd-transpeptidases (Penicillin-binding proteins, PBPs) or, if present, ld-transpeptidase (LDTs). Long-pulse in situ labeling of E. coli cells with the FDAA 7-hydroxycoumarincarbonylamino-D-alanine (HADA) is expected to result in a uniform label at the side wall of cells and enhanced label at cell division sites due to the intense PG synthesis. However, we observed reduced label at mid-cell when labeling E. coli cells with HADA. We reasoned that probe incorporated at cell division sites may be removed by PG hydrolases and modified the labeling protocol to better preserve PG-incorporated HADA for fluorescence microscopy. Here, we report the optimized HADA-labeling protocol by which cells retain an enhanced HADA signal at the division septum.
Collapse
Affiliation(s)
- Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Copper inhibits peptidoglycan LD-transpeptidases suppressing β-lactam resistance due to bypass of penicillin-binding proteins. Proc Natl Acad Sci U S A 2018; 115:10786-10791. [PMID: 30275297 DOI: 10.1073/pnas.1809285115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peptidoglycan (PG) layer stabilizes the bacterial cell envelope to maintain the integrity and shape of the cell. Penicillin-binding proteins (PBPs) synthesize essential 4-3 cross-links in PG and are inhibited by β-lactam antibiotics. Some clinical isolates and laboratory strains of Enterococcus faecium and Escherichia coli achieve high-level β-lactam resistance by utilizing β-lactam-insensitive LD-transpeptidases (LDTs) to produce exclusively 3-3 cross-links in PG, bypassing the PBPs. In E. coli, other LDTs covalently attach the lipoprotein Lpp to PG to stabilize the envelope and maintain the permeability barrier function of the outermembrane. Here we show that subminimal inhibitory concentration of copper chloride sensitizes E. coli cells to sodium dodecyl sulfate and impair survival upon LPS transport stress, indicating reduced cell envelope robustness. Cells grown in the presence of copper chloride lacked 3-3 cross-links in PG and displayed reduced covalent attachment of Braun's lipoprotein and reduced incorporation of a fluorescent d-amino acid, suggesting inhibition of LDTs. Copper dramatically decreased the minimal inhibitory concentration of ampicillin in E. coli and E. faecium strains with a resistance mechanism relying on LDTs and inhibited purified LDTs at submillimolar concentrations. Hence, our work reveals how copper affects bacterial cell envelope stability and counteracts LDT-mediated β-lactam resistance.
Collapse
|
8
|
Kar D, Pandey SD, Mallick S, Dutta M, Ghosh AS. Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 Ω-Like Loop Introduces a Moderate Cephalosporinase Activity. Protein J 2018; 37:122-131. [DOI: 10.1007/s10930-018-9765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Nemmara VV, Nicholas RA, Pratt RF. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 2016; 55:4065-76. [PMID: 27420403 DOI: 10.1021/acs.biochem.6b00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - R F Pratt
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
10
|
A single amino acid substitution in the Ω-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance. Microbiology (Reading) 2015; 161:895-902. [DOI: 10.1099/mic.0.000052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
|
11
|
Fedarovich A, Cook E, Tomberg J, Nicholas RA, Davies C. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae. Biochemistry 2014; 53:7596-603. [PMID: 25403720 PMCID: PMC4263433 DOI: 10.1021/bi5011317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A hallmark
of penicillin-binding protein 2 (PBP2) from penicillin-resistant
strains of Neisseria gonorrhoeae is insertion of
an aspartate after position 345. The insertion resides on a loop near
the active site and is immediately adjacent to an existing aspartate
(Asp346) that forms a functionally important hydrogen bond with Ser363
of the SxN conserved motif. Insertion of other amino acids, including
Glu and Asn, can also lower the rate of acylation by penicillin, but
these insertions abolish transpeptidase function. Although the kinetic
consequences of the Asp insertion are well-established, how it impacts
the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution
crystal structure of a truncated construct of PBP2 containing all
five mutations present in PBP2 from the penicillin-resistant strain
6140, including the Asp insertion. Commensurate with the strict specificity
for the Asp insertion over similar amino acids, the insertion does
not cause disordering of the structure, but rather induces localized
flexibility in the β2c−β2d loop. The crystal structure
resolves the ambiguity of whether the insertion is Asp345a or Asp346a
(due to the adjacent Asp) because the hydrogen bond between Asp346
and Ser362 is preserved and the insertion is therefore Asp346a. The
side chain of Asp346a projects directly toward the β-lactam-binding
site near Asn364 of the SxN motif. The Asp insertion may lower the
rate of acylation by sterically impeding binding of the antibiotic
or by hindering breakage of the β-lactam ring during acylation
because of the negative charge of its side chain.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | | | | | | | | |
Collapse
|
12
|
Kumarasiri M, Zhang W, Shi Q, Fisher JF, Mobashery S. Protonation states of active-site lysines of penicillin-binding protein 6 from Escherichia coli and the mechanistic implications. Proteins 2014; 82:1348-58. [PMID: 24375650 DOI: 10.1002/prot.24501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/15/2013] [Accepted: 12/09/2013] [Indexed: 02/02/2023]
Abstract
The protonation states of the two active-site lysines (Lys69 and Lys235) of PBP 6 of Escherichia coli were explored to understand the active site chemistry of this enzyme. Each lysine was individually mutated to cysteine, and the resultant two mutant proteins were purified to homogeneity. Each protein was denatured, and its cysteine was chemically modified to produce an S-aminoethylated cysteine (γ-thialysine) residue. Following renaturation, the evaluation of the kinetics of the dd-carboxypeptidase activity of PBP 6 as a function of pH was found consistent with one lysine in its free-base (Lys69) and the other in the protonated state (Lys235) for optimal catalysis. The experimental estimates for their pKa values were compared with the pKa values calculated computationally, using molecular-dynamics simulations and a thermodynamic cycle. Study of the γ-thialysine69 showed that lysine at position 69 influenced the basic limb of catalysis, consistent with the fact that the two lysine side chains are in proximity to each other in the active site. Based on these observations, a reaction sequence for PBP 6 is proposed, wherein protonated Lys235 serves as the electrostatic substrate anchor and Lys69 as the conduit for protons in the course of the acylation and deacylation half-reactions.
Collapse
Affiliation(s)
- Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556
| | | | | | | | | |
Collapse
|
13
|
Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob Agents Chemother 2013; 57:3137-46. [PMID: 23629710 DOI: 10.1128/aac.00505-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Penicillin-binding protein 5 (PBP5) is one of the most abundant PBPs in Pseudomonas aeruginosa. Although its main function is that of a cell wall dd-carboxypeptidase, it possesses sufficient β-lactamase activity to contribute to the ability of P. aeruginosa to resist the antibiotic activity of the β-lactams. The study of these dual activities is important for understanding the mechanisms of antibiotic resistance by P. aeruginosa, an important human pathogen, and to the understanding of the evolution of β-lactamase activity from the PBP enzymes. We purified a soluble version of P. aeruginosa PBP5 (designated Pa sPBP5) by deletion of its C-terminal membrane anchor. Under in vitro conditions, Pa sPBP5 demonstrates both dd-carboxypeptidase and expanded-spectrum β-lactamase activities. Its crystal structure at a 2.05-Å resolution shows features closely resembling those of the class A β-lactamases, including a shortened loop spanning residues 74 to 78 near the active site and with respect to the conformations adopted by two active-site residues, Ser101 and Lys203. These features are absent in the related PBP5 of Escherichia coli. A comparison of the two Pa sPBP5 monomers in the asymmetric unit, together with molecular dynamics simulations, revealed an active-site flexibility that may explain its carbapenemase activity, a function that is absent in the E. coli PBP5 enzyme. Our functional and structural characterizations underscore the versatility of this PBP5 in contributing to the β-lactam resistance of P. aeruginosa while highlighting how broader β-lactamase activity may be encoded in the structural folds shared by the PBP and serine β-lactamase classes.
Collapse
|
14
|
Development of new drugs for an old target: the penicillin binding proteins. Molecules 2012; 17:12478-505. [PMID: 23095893 PMCID: PMC6268044 DOI: 10.3390/molecules171112478] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/05/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs). PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and thus open avenues new for the discovery of novel antibiotics.
Collapse
|
15
|
Dzhekieva L, Kumar I, Pratt RF. Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry 2012; 51:2804-11. [DOI: 10.1021/bi300148v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| | - Ish Kumar
- School of Natural
Sciences, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| |
Collapse
|
16
|
Abstract
The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway.
Collapse
Affiliation(s)
- Jean van Heijenoort
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Bat 430, Université Paris-Sud, Orsay F-91405, France.
| |
Collapse
|
17
|
AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli. J Bacteriol 2011; 193:6887-94. [PMID: 22001512 DOI: 10.1128/jb.05764-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.
Collapse
|
18
|
Adediran SA, Kumar I, Nagarajan R, Sauvage E, Pratt RF. Kinetics of Reactions of the Actinomadura R39 dd-Peptidase with Specific Substrates. Biochemistry 2010; 50:376-87. [DOI: 10.1021/bi101760p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. A. Adediran
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Ish Kumar
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Rajesh Nagarajan
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
19
|
Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 2010; 49:8094-104. [PMID: 20726582 DOI: 10.1021/bi100879m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are the molecular targets for the widely used β-lactam class of antibiotics, but how these compounds act at the molecular level is not fully understood. We have determined crystal structures of Escherichia coli PBP 5 as covalent complexes with imipenem, cloxacillin, and cefoxitin. These antibiotics exhibit very different second-order rates of acylation for the enzyme. In all three structures, there is excellent electron density for the central portion of the β-lactam, but weak or absent density for the R1 or R2 side chains. Areas of contact between the antibiotics and PBP 5 do not correlate with the rates of acylation. The same is true for conformational changes, because although a shift of a loop leading to an electrostatic interaction between Arg248 and the β-lactam carboxylate, which occurs completely with cefoxitin and partially with imipenem and is absent with cloxacillin, is consistent with the different rates of acylation, mutagenesis of Arg248 decreased the level of cefoxitin acylation only 2-fold. Together, these data suggest that structures of postcovalent complexes of PBP 5 are unlikely to be useful vehicles for the design of new covalent inhibitors of PBPs. Finally, superimposition of the imipenem-acylated complex with PBP 5 in complex with a boronic acid peptidomimetic shows that the position corresponding to the hydrolytic water molecule is occluded by the ring nitrogen of the β-lactam. Because the ring nitrogen occupies a similar position in all three complexes, this supports the hypothesis that deacylation is blocked by the continued presence of the leaving group after opening of the β-lactam ring.
Collapse
Affiliation(s)
- George Nicola
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
20
|
O'Daniel PI, Zajicek J, Zhang W, Shi Q, Fisher JF, Mobashery S. Elucidation of the structure of the membrane anchor of penicillin-binding protein 5 of Escherichia coli. J Am Chem Soc 2010; 132:4110-8. [PMID: 20192190 DOI: 10.1021/ja9094445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli is a membrane-bound cell wall dd-carboxypeptidase, localized in the outer leaflet of the cytosolic membrane of this Gram-negative bacterium. Not only is it the most abundant PBP of E. coli, but it is as well a target for penicillins and is the most studied of the PBP enzymes. PBP 5, as a representative peripheral membrane protein, is anchored to the cytoplasmic membrane by the 21 amino acids of its C-terminus. Although the importance of this terminus as a membrane anchor is well recognized, the structure of this anchor was previously unknown. Using natural isotope abundance NMR, the structure of the PBP 5 anchor peptide within a micelle was determined. The structure conforms to a helix-bend-helix-turn-helix motif and reveals that the anchor enters the membrane so as to form an amphiphilic structure within the interface of the hydrophilic/hydrophobic boundary regions near the lipid head groups. The bend and the turn within the motif allow the C-terminus to exit from the same side of the membrane that is penetrated. The PBP anchor sequences represent extraordinary diversity, encompassing both N-terminal and C-terminal anchoring domains. This study establishes a surface adherence mechanism for the PBP 5 C-terminus anchor peptide, as the structural basis for further study toward understanding the role of these domains in selecting membrane environments and in the assembly of the multienzyme hyperstructures of bacterial cell wall biosynthesis.
Collapse
Affiliation(s)
- Peter I O'Daniel
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
21
|
Potluri L, Karczmarek A, Verheul J, Piette A, Wilkin JM, Werth N, Banzhaf M, Vollmer W, Young KD, Nguyen-Distèche M, den Blaauwen T. Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol Microbiol 2010; 77:300-23. [PMID: 20545860 PMCID: PMC2909392 DOI: 10.1111/j.1365-2958.2010.07205.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of PBP5, the major D,D-carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild-type cells and in mutants lacking one or more D,D-carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane-bound form localized to the developing septum and restored wild-type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.
Collapse
Affiliation(s)
- Lakshmiprasad Potluri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. Crystal Structures of Penicillin-Binding Proteins 4 and 5 from Haemophilus influenzae. J Mol Biol 2010; 396:634-45. [DOI: 10.1016/j.jmb.2009.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/20/2009] [Accepted: 11/22/2009] [Indexed: 10/20/2022]
|
23
|
Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B. Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bacteriol 2010; 192:134-44. [PMID: 19854906 PMCID: PMC2798245 DOI: 10.1128/jb.00822-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. Beta-lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Collapse
Affiliation(s)
- Vikas Navratna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Varun Sood
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - K. Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Gayathri Arakere
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - B. Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| |
Collapse
|
24
|
Eklöf JM, Tan TC, Divne C, Brumer H. The crystal structure of the outer membrane lipoprotein YbhC from Escherichia coli sheds new light on the phylogeny of carbohydrate esterase family 8. Proteins 2009; 76:1029-36. [PMID: 19452549 DOI: 10.1002/prot.22453] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jens M Eklöf
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, S 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Clarke TB, Kawai F, Park SY, Tame JRH, Dowson CG, Roper DI. Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. Biochemistry 2009; 48:2675-83. [PMID: 19209901 DOI: 10.1021/bi801993x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli PBP4 is the archetypal class C, low molecular mass penicillin binding protein (LMM-PBP) and possesses both dd-carboxypeptidase and dd-endopeptidase activity. In contrast to other classes of PBP, class C LMM-PBPs show high dd-carboxypeptidase activity and rapidly hydrolyze synthetic fragments of peptidoglycan. The recently solved X-ray crystal structures of three class C LMM-PBPs (E. coli PBP4, Bacillus subtilis PBP4a, and Actinomadura R39 dd-peptidase) have identified several residues that form a pocket in the active site unique to this class of PBP. The X-ray cocrystal structure of the Actinomadura R39 DD-peptidase with a cephalosporin bearing a peptidoglycan-mimetic side chain showed that residues of this pocket interact with the third position meso-2,6-diaminopimelic acid residue of the peptidoglycan stem peptide. Equivalent residues of E. coli PBP4 (Asp155, Phe160, Arg361, and Gln422) were mutated, and the effect on both DD-carboxypeptidase and DD-endopeptidase activities was determined. Using N-acetylmuramyl-L-alanyl-gamma-D-glutamyl-meso-2,6-diaminopimelyl-D-alanyl-D-alanine as substrate, mutation of Asp155, Phe160, Arg361, and Gln422 to alanine reduced k(cat)/K(m) by 12.7-, 1.9-, 24.5-, and 13.8-fold, respectively. None of the k(cat) values deviated significantly from wild-type PBP4. PBP4 DD-endopeptidase activity was also affected, with substitution of Asp155, Arg361, and Gln422 reducing specific activity by 22%, 56%, and 40%, respectively. This provides the first direct demonstration of the importance of residues forming a subsite to accommodate meso-2,6-diaminopimelic acid in both the DD-carboxypeptidase and DD-endopeptidase activities of a class C LMM-PBP.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Peddi S, Nicholas RA, Gutheil WG. Neisseria gonorrhoeae penicillin-binding protein 3 demonstrates a pronounced preference for N(epsilon)-acylated substrates. Biochemistry 2009; 48:5731-7. [PMID: 19413336 DOI: 10.1021/bi9003099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis and are the lethal targets of beta-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-l-Ala-gamma-d-Glu-l-Lys-d-Ala-d-Ala, were synthesized to test specificity for three features of PBP substrates: (1) the presence or absence of an N(epsilon)-acyl group, (2) the presence of d-IsoGln in place of gamma-d-Glu, and (3) the presence or absence of the N-terminal l-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 x 10(5) M(-1) s(-1)) with the best of these substrates, with a pronounced preference (50-fold) for N(epsilon)-acylated substrates over N(epsilon)-nonacylated substrates. This observation suggests that NG PBP3 is specific for the approximately d-Ala-d-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity. NG PBP3 demonstrated low selectivity for gamma-d-Glu vs d-IsoGln and for the presence or absence of the terminal l-Ala residue. The implications of this substrate specificity of NG PBP3 with respect to its possible role in cell wall biosynthesis, and for understanding the substrate specificity of the LMM PBPs in general, are discussed.
Collapse
Affiliation(s)
- Sridhar Peddi
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
27
|
Shi Q, Meroueh SO, Fisher JF, Mobashery S. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. J Am Chem Soc 2008; 130:9293-303. [PMID: 18576637 PMCID: PMC6993461 DOI: 10.1021/ja801727k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.
Collapse
Affiliation(s)
- Qicun Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
28
|
Sauvage E, Powell AJ, Heilemann J, Josephine HR, Charlier P, Davies C, Pratt RF. Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle. J Mol Biol 2008; 381:383-93. [PMID: 18602645 DOI: 10.1016/j.jmb.2008.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with beta-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-alpha-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these beta-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and beta-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang W, Shi Q, Meroueh SO, Vakulenko SB, Mobashery S. Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. Biochemistry 2007; 46:10113-21. [PMID: 17685588 DOI: 10.1021/bi700777x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding proteins (PBPs) and beta-lactamases are members of large families of bacterial enzymes. These enzymes undergo acylation at a serine residue with their respective substrates as the first step in their catalytic events. Penicillin-binding protein 5 (PBP 5) of Escherichia coli is known to perform a dd-carboxypeptidase reaction on the bacterial peptidoglycan, the major constituent of the cell wall. The roles of the active site residues Lys47 and Lys213 in the catalytic machinery of PBP 5 have been explored. By a sequence of site-directed mutagenesis and chemical modification, we individually introduced gamma-thialysine at each of these positions. The pH dependence of kcat/Km and of kcat for the wild-type PBP 5 and for the two gamma-thialysine mutant variants at positions 47 and 213 were evaluated. The pH optimum for the enzyme was at 9.5-10.5. The ascending limb to the pH optimum is due to Lys47; hence, this residue exists in the free-base form for catalysis. The descending limb from the pH optimum is contributed to by both Lys213 and a water molecule coordinated to Lys47. These results have been interpreted as Lys47 playing a key role in proton-transfer events in the course of catalysis during both the acylation and deacylation events. However, the findings for Lys213 argue for a protonated state at the pH optimum. Lys213 serves as an electrostatic anchor for the substrate.
Collapse
Affiliation(s)
- Weilie Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
30
|
Nicola G, Fedarovich A, Nicholas R, Davies C. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli. Biochem J 2006; 392:55-63. [PMID: 16038617 PMCID: PMC1317664 DOI: 10.1042/bj20050449] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Penicillin-binding proteins (PBPs), which are the lethal targets of beta-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl-PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414-423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584-2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 A (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74-90 and a shift in residues 106-111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation.
Collapse
Affiliation(s)
- George Nicola
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Alena Fedarovich
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Robert A. Nicholas
- †Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, U.S.A
- Correspondence may be addressed to either of these authors (email or )
| | - Christopher Davies
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
31
|
Nicola G, Peddi S, Stefanova M, Nicholas RA, Gutheil WG, Davies C. Crystal Structure of Escherichia coli Penicillin-Binding Protein 5 Bound to a Tripeptide Boronic Acid Inhibitor: A Role for Ser-110 in Deacylation. Biochemistry 2005; 44:8207-17. [PMID: 15938610 DOI: 10.1021/bi0473004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) from Escherichia coli is a well-characterized d-alanine carboxypeptidase that serves as a prototypical enzyme to elucidate the structure, function, and catalytic mechanism of PBPs. A comprehensive understanding of the catalytic mechanism underlying d-alanine carboxypeptidation and antibiotic binding has proven elusive. In this study, we report the crystal structure at 1.6 A resolution of PBP 5 in complex with a substrate-like peptide boronic acid, which was designed to resemble the transition-state intermediate during the deacylation step of the enzyme-catalyzed reaction with peptide substrates. In the structure of the complex, the boron atom is covalently attached to Ser-44, which in turn is within hydrogen-bonding distance to Lys-47. This arrangement further supports the assignment of Lys-47 as the general base that activates Ser-44 during acylation. One of the two hydroxyls in the boronyl center (O2) is held by the oxyanion hole comprising the amides of Ser-44 and His-216, while the other hydroxyl (O3), which is analogous to the nucleophilic water for hydrolysis of the acyl-enzyme intermediate, is solvated by a water molecule that bridges to Ser-110. Lys-47 is not well-positioned to act as the catalytic base in the deacylation reaction. Instead, these data suggest a mechanism of catalysis for deacylation that uses a hydrogen-bonding network, involving Lys-213, Ser-110, and a bridging water molecule, to polarize the hydrolytic water molecule.
Collapse
Affiliation(s)
- George Nicola
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
32
|
Stefanova ME, Tomberg J, Davies C, Nicholas RA, Gutheil WG. Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4. ACTA ACUST UNITED AC 2003; 271:23-32. [PMID: 14686916 DOI: 10.1046/j.1432-1033.2003.03886.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis, and are the targets of the beta-lactam antibiotics. The low molecular mass Neisseria gonorrhoeae PBP 4 (NG PBP 4) is the fourth PBP revealed in the gonococcal genome. NG PBP 4 was cloned, overexpressed, purified, and characterized for beta-lactam binding, DD-carboxypeptidase activity, acyl-donor substrate specificity, transpeptidase activity, inhibition by a number of active site directed reagents, and pH profile. NG PBP 4 was efficiently acylated by penicillin (30,000 m-1.s-1). Against a set of five alpha- and epsilon-substituted l-Lys-D-Ala-D-Ala substrates, NG PBP 4 exhibited wide variation in specificity with a preference for N epsilon-acylated substrates, suggesting a possible preference for crosslinked pentapeptide substrates in the cell wall. Substrates with an N epsilon-Cbz group demonstrated pronounced substrate inhibition. NG PBP 4 showed 30-fold higher activity against the depsipeptide Lac-ester substrate than against the analogous peptide substrate, an indication that k2 (acylation) is rate determining for carboxypeptidase activity. No transpeptidase activity was apparent in a model transpeptidase reaction. Among a number of active site-directed agents, N-chlorosuccinimide, elastinal, iodoacetamide, iodoacetic acid, and phenylglyoxal gave substantial inhibition, and methyl boronic acid gave modest inhibition. The pH profile for activity against Ac2-l-Lys-D-Ala-d-Ala (kcat/Km) was bell-shaped, with pKa values at 6.9 and 10.1. Comparison of the enzymatic properties of NG PBP 4 with other DD-carboxypeptidases highlights both similarities and differences within these enzymes, and suggests the possibility of common mechanistic roles for the two highly conserved active site lysines in Class A and C low molecular mass PBPs.
Collapse
Affiliation(s)
- Miglena E Stefanova
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City 64110, USA
| | | | | | | | | |
Collapse
|
33
|
Nicholas RA, Krings S, Tomberg J, Nicola G, Davies C. Crystal Structure of Wild-type Penicillin-binding Protein 5 from Escherichia coli. J Biol Chem 2003; 278:52826-33. [PMID: 14555648 DOI: 10.1074/jbc.m310177200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase (CPase), cleaving d-alanine from the C terminus of cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acylenzyme complex (t(1/2) approximately 10 min). A Gly105 --> Asp mutation in PBP 5 markedly impairs deacylation with only minor effects on acylation, and abolishes CPase activity. We have determined the three-dimensional structure of a soluble form of wild-type PBP 5 at 1.85-A resolution and have also refined the structure of the G105D mutant form of PBP 5 to 1.9-A resolution. Comparison of the two structures reveals that the major effect of the mutation is to disorder a loop comprising residues 74-90 that sits atop the SXN motif of the active site. Deletion of the 74-90 loop in wild-type PBP 5 markedly diminished the deacylation rate of penicillin G with a minimal impact on acylation, and abolished CPase activity. These effects were very similar to those observed in the G105D mutant, reinforcing the idea that this mutation causes disordering of the 74-90 loop. Mutation of two consecutive serines within this loop, which hydrogen bond to Ser110 and Asn112 in the SXN motif, had marked effects on CPase activity, but not beta-lactam antibiotic binding or hydrolysis. These data suggest a direct role for the SXN motif in deacylation of the acyl-enzyme complex and imply that the functioning of this motif is modulated by the 74-90 loop.
Collapse
Affiliation(s)
- Robert A Nicholas
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA.
| | | | | | | | | |
Collapse
|
34
|
Stefanova ME, Tomberg J, Olesky M, Höltje JV, Gutheil WG, Nicholas RA. Neisseria gonorrhoeaePenicillin-Binding Protein 3 Exhibits Exceptionally High Carboxypeptidase and β-Lactam Binding Activities†,‡. Biochemistry 2003; 42:14614-25. [PMID: 14661974 DOI: 10.1021/bi0350607] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A soluble form of penicillin-binding protein 3 (PBP 3) from Neisseria gonorrhoeae was expressed and purified from Escherichia coli and characterized for its interaction with beta-lactam antibiotics, its catalytic properties with peptide and peptidoglycan substrates, and its role in cell viability and morphology. PBP 3 had an unusually high k(2)/K' value relative to other PBPs for acylation with penicillin (7.7 x 10(5) M(-1) s(-1)) at pH 8.5 at 25 degrees C and hydrolyzed bound antibiotic very slowly (k(3) < 4.6 x 10(-5) s(-1), t(1/2) > 230 min). PBP 3 also demonstrated exceptionally high carboxypeptidase activity with a k(cat) of 580 s(-1) and a k(cat)/K(m) of 1.8 x 10(5) M(-1) s(-1) with the substrate N(alpha)-Boc-N(epsilon)-Cbz-L-Lys-D-Ala-D-Ala. This is the highest k(cat) value yet reported for a PBP or other serine peptidases. Activity against a approximately D-Ala-D-Lac peptide substrate was approximately 2-fold lower than against the analogous approximately D-Ala-D-Ala peptide substrate, indicating that deacylation is rate determining for both amide and ester hydrolysis. The pH dependence profiles of both carboxypeptidase activity and beta-lactam acylation were bell-shaped with maximal activity at pH 8.0-8.5. PBP 3 displayed weak transpeptidase activity in a model transpeptidase reaction but was active as an endopeptidase, cleaving dimeric peptide cross-links. Deletion of PBP 3 alone had little effect on viability, growth rate, and morphology of N. gonorrhoeae, although deletion of both PBP 3 and PBP 4, the other low-molecular-mass PBP in N. gonorrhoeae, resulted in a decreased growth rate and marked morphological abnormalities.
Collapse
Affiliation(s)
- Miglena E Stefanova
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Pechenov A, Stefanova ME, Nicholas RA, Peddi S, Gutheil WG. Potential transition state analogue inhibitors for the penicillin-binding proteins. Biochemistry 2003; 42:579-88. [PMID: 12525187 DOI: 10.1021/bi026726k] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis. The development of new PBP inhibitors is a potentially viable strategy for developing new antibacterial agents. Several potential transition state analogue inhibitors for the PBPs were synthesized, including peptide chloromethyl ketones, trifluoromethyl ketones, aldehydes, and boronic acids. These agents were characterized chemically, stereochemically, and as inhibitors of a set of low molecular mass PBPs: Escherichia coli (EC) PBP 5, Neisseria gonorrhoeae (NG) PBP 3, and NG PBP 4. A peptide boronic acid was the most effective PBP inhibitor in the series, with a preference observed for a d-boroAla-based over an l-boroAla-based inhibitor, as expected given that physiological PBP substrates are based on d-Ala at the cleavage site. The lowest K(I) of 370 nM was obtained for NG PBP 3 inhibition by Boc-l-Lys(Cbz)-d-boroAla (10b). Competitive inhibition was observed for this enzyme-inhibitor pair, as expected for an active site-directed inhibitor. For the three PBPs included in this study, an inverse correlation was observed between the values for log K(I) with 10b and the values for log(k(cat)/K(m)) for activity against the analogous substrate, and K(m)/K(I) ratios were 90, 1900, and 9600 for NG PBP 4, EC PBP 5, and NG PBP 3, respectively. These results demonstrate that peptide boronic acids can be effective transition state analogue inhibitors for the PBPs and provide a basis for the use of these agents as probes of PBP structure, function, and mechanism, as well as a possible basis for the development of new PBP-targeted antibacterial agents.
Collapse
Affiliation(s)
- Aleksandr Pechenov
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110, USA
| | | | | | | | | |
Collapse
|