1
|
Meek RW, Brockerman J, Fordwour OB, Zandberg WF, Davies GJ, Vocadlo DJ. The primary familial brain calcification-associated protein MYORG is an α-galactosidase with restricted substrate specificity. PLoS Biol 2022; 20:e3001764. [PMID: 36129849 PMCID: PMC9491548 DOI: 10.1371/journal.pbio.3001764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Primary familial brain calcification (PFBC) is characterised by abnormal deposits of calcium phosphate within various regions of the brain that are associated with severe cognitive impairments, psychiatric conditions, and movement disorders. Recent studies in diverse populations have shown a link between mutations in myogenesis-regulating glycosidase (MYORG) and the development of this disease. MYORG is a member of glycoside hydrolase (GH) family 31 (GH31) and, like the other mammalian GH31 enzyme α-glucosidase II, this enzyme is found in the lumen of the endoplasmic reticulum (ER). Though presumed to act as an α-glucosidase due to its localization and sequence relatedness to α-glucosidase II, MYORG has never been shown to exhibit catalytic activity. Here, we show that MYORG is an α-galactosidase and present the high-resolution crystal structure of MYORG in complex with substrate and inhibitor. Using these structures, we map detrimental mutations that are associated with MYORG-associated brain calcification and define how these mutations may drive disease progression through loss of enzymatic activity. Finally, we also detail the thermal stabilisation of MYORG afforded by a clinically approved small molecule ligand, opening the possibility of using pharmacological chaperones to enhance the activity of mutant forms of MYORG. MYORG is an enzyme genetically linked to primary familial brain calcification that has historically been presumed to act as an α-glucosidase. This study describes the crystal structure of dimeric MYORG and, surprisingly, reveals it to be an α-galactosidase with restricted specificity.
Collapse
Affiliation(s)
- Richard W. Meek
- Department of Chemistry. University of York, York, United Kingdom
| | - Jacob Brockerman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Osei B. Fordwour
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Gideon J. Davies
- Department of Chemistry. University of York, York, United Kingdom
- * E-mail: (GJD); (DJV)
| | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (GJD); (DJV)
| |
Collapse
|
2
|
Liu Y, Lan L, Li Y, Lu J, He L, Deng Y, Fei M, Lu JW, Shangguan F, Lu JP, Wang J, Wu L, Huang K, Lu B. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biol 2022; 54:102366. [PMID: 35728303 PMCID: PMC9214875 DOI: 10.1016/j.redox.2022.102366] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the evidences of elevated expression of Mer tyrosine kinase (MerTK) in multiple human cancers, mechanisms underlying the oncogenic roles of MerTK in hepatocellular carcinoma (HCC) remains undefined. We explored the functional effects of MerTK and N-Glycosylated MerTK on HCC cell survival and tumor growth. Here, we show that MerTK ablation increases reactive oxygen species (ROS) production and promotes the switching from glycolytic metabolism to oxidative phosphorylation in HCC cells, thus suppressing HCC cell proliferation and tumor growth. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote oncogenic transformation. Moreover, we observed that nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. Pathologically, tissue microarray (TMA) data indicate that MerTK is a pivotal prognostic factor for HCC. Our data strongly support the roles of MerTK N-glycosylation in HCC tumorigenesis and suggesting N-glycosylation inhibition as a potential HCC therapeutic strategy. MerTK promotes the switching from oxidative phosphorylation to glycolytic metabolism in HCC cells. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote HCC tumor growth. The nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. MerTK is a pivotal prognostic factor for HCC and its N-glycosylation inhibition is a potential HCC therapeutic strategy.
Collapse
Affiliation(s)
- Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yujie Li
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Lu
- Department of Laboratory Medicine, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Lipeng He
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Deng
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingming Fei
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Wan Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ju-Ping Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxin Wang
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Hu W, Zhang R, Chen W, Lin D, Wei K, Li J, Zhang B, Li X, Tang Z. Glycosylation at Asn254 Is Required for the Activation of the PDGF-C Protein. Front Mol Biosci 2021; 8:665552. [PMID: 34109212 PMCID: PMC8181125 DOI: 10.3389/fmolb.2021.665552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a member of the PDGF/VEGF (vascular endothelial growth factor) family, which includes proteins that are well known for their mitogenic effects on multiple cell types. Glycosylation is one of the most important forms of posttranslational modification that has a significant impact on secreted and membrane proteins. Glycosylation has many well-characterized roles in facilitating protein processing and contributes to appropriate folding, conformation, distribution, and stability of proteins that are synthesized intracellularly in the endoplasmic reticulum (ER) and Golgi apparatus. Although the general process and functions of glycosylation are well documented, there are most likely others yet to be discovered, as the glycosylation of many potential substrates has not been characterized. In this study, we report that the PDGF-C protein is glycosylated at three sites, including Asn25, Asn55, and Asn254. However, we found that mutations at any of these sites do not affect the protein expression or secretion. Similarly, disruption of PDGF-C glycosylation had no impact on its progression through the ER and Golgi apparatus. However, the introduction of a mutation at Asn254 (N254 A) prevents the activation of full-length PDGF-C and its capacity for signaling via the PDGF receptor. Our findings reveal that glycosylation affects PDGF-C activation rather than the protein synthesis or processing. This study characterizes a crucial modification of the PDGF-C protein, and may shed new light on the process and function of glycosylation.
Collapse
Affiliation(s)
- Wenjie Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ruting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Dongyue Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Kun Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Bo Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
DeRossi C, Bambino K, Morrison J, Sakarin I, Villacorta-Martin C, Zhang C, Ellis JL, Fiel MI, Ybanez M, Lee YA, Huang KL, Yin C, Sakaguchi TF, Friedman SL, Villanueva A, Chu J. Mannose Phosphate Isomerase and Mannose Regulate Hepatic Stellate Cell Activation and Fibrosis in Zebrafish and Humans. Hepatology 2019; 70:2107-2122. [PMID: 31016744 PMCID: PMC6812593 DOI: 10.1002/hep.30677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
The growing burden of liver fibrosis and lack of effective antifibrotic therapies highlight the need for identification of pathways and complementary model systems of hepatic fibrosis. A rare, monogenic disorder in which children with mutations in mannose phosphate isomerase (MPI) develop liver fibrosis led us to explore the function of MPI and mannose metabolism in liver development and adult liver diseases. Herein, analyses of transcriptomic data from three human liver cohorts demonstrate that MPI gene expression is down-regulated proportionate to fibrosis in chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis B virus. Depletion of MPI in zebrafish liver in vivo and in human hepatic stellate cell (HSC) lines in culture activates fibrotic responses, indicating that loss of MPI promotes HSC activation. We further demonstrate that mannose supplementation can attenuate HSC activation, leading to reduced fibrogenic activation in zebrafish, culture-activated HSCs, and in ethanol-activated HSCs. Conclusion: These data indicate the prospect that modulation of mannose metabolism pathways could reduce HSC activation and improve hepatic fibrosis.
Collapse
Affiliation(s)
- Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua Morrison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isabel Sakarin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - M. Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Ybanez
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Youngmin A. Lee
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Takuya F. Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Scott L. Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Augusto Villanueva
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Eker İ, Yılmaz S, Çetinkaya RA, Pekel A, Ünlü A, Gürsel O, Yılmaz S, Avcu F, Muşabak U, Pekoğlu A, Ertaş Z, Açıkel C, Zeybek N, Kürekçi AE, Avcı İY. Generation of Platelet Microparticles after Cryopreservation of Apheresis Platelet Concentrates Contributes to Hemostatic Activity. Turk J Haematol 2016; 34:64-71. [PMID: 27094612 PMCID: PMC5451691 DOI: 10.4274/tjh.2016.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE In the last decade, substantial evidence has accumulated about the use of cryopreserved platelet concentrates, especially in trauma. However, little reference has been made in these studies to the morphological and functional changes of platelets. Recently platelets have been shown to be activated by cryopreservation processes and to undergo procoagulant membrane changes resulting in the generation of platelet-derived microparticles (PMPs), platelet degranulation, and release of platelet-derived growth factors (PDGFs). We assessed the viabilities and the PMP and PDGF levels of cryopreserved platelets, and their relation with thrombin generation. MATERIALS AND METHODS Apheresis platelet concentrates (APCs) from 20 donors were stored for 1 day and cryopreserved with 6% dimethyl sulfoxide. Cryopreserved APCs were kept at -80 °C for 1 day. Thawed APCs (100 mL) were diluted with 20 mL of autologous plasma and specimens were analyzed for viabilities and PMPs by flow cytometry, for thrombin generation by calibrated automated thrombogram, and for PDGFs by enzyme-linked immunosorbent assay testing. RESULTS The mean PMP and PDGF levels in freeze-thawed APCs were significantly higher (2763±399.4/µL vs. 319.9±80.5/µL, p<0.001 and 550.9±73.6 pg/mL vs. 96.5±49 pg/mL, p<0.001, respectively), but the viability rates were significantly lower (68.2±13.7% vs. 94±7.5%, p<.001) than those of fresh APCs. The mean endogenous thrombin potential (ETP) of freeze-thawed APCs was significantly higher than that of the fresh APCs (3406.1±430.4 nM.min vs. 2757.6±485.7 nM.min, p<0.001). Moreover, there was a significant positive poor correlation between ETP levels and PMP levels (r=0.192, p=0.014). CONCLUSION Our results showed that, after cryopreservation, while levels of PMPs were increasing, significantly higher and earlier thrombin formation was occurring in the samples analyzed despite the significant decrease in viability. Considering the damage caused by the freezing process and the scarcity of evidence for their in vivo superiority, frozen platelets should be considered for use in austere environments, reserving fresh platelets for prophylactic use in blood banks.
Collapse
Affiliation(s)
| | - Soner Yılmaz
- University of Health Sciences Gülhane Faculty of Medicine, Blood Training Center and Blood Bank, Ankara, Turkey Phone : +90 312 304 4902 E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Najy AJ, Won JJ, Movilla LS, Kim HRC. Differential tumorigenic potential and matriptase activation between PDGF B versus PDGF D in prostate cancer. Mol Cancer Res 2012; 10:1087-97. [PMID: 22689130 DOI: 10.1158/1541-7786.mcr-12-0071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The platelet-derived growth factors (PDGF A, B, C, and D) and their receptors (α-PDGFR and β-PDGFR) play an indispensible role in physiologic and pathologic conditions, including tumorigenesis. The transformative β-PDGFR is overexpressed and activated during prostate cancer progression, but the identification and functional significance of its complementary ligand have not been elucidated. This study examined potential oncogenic functions of β-PDGFR ligands PDGF B and PDGF D, using nonmalignant prostate epithelial cells engineered to overexpress these ligands. In our models, PDGF D induced cell migration and invasion more effectively than PDGF B in vitro. Importantly, PDGF D supported prostate epithelial cell tumorigenesis in vivo and showed increased tumor angiogenesis compared with PDGF B. Autocrine signaling analysis of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways found PDGF D-specific activation of the c-jun-NH2-kinase (JNK) signaling cascade. Using short hairpin RNA and pharmacologic inhibitors, we showed that PDGFD-mediated phenotypic transformation is β-PDGFR and JNK dependent. Importantly, we made a novel finding of PDGF D-specific increase in the shedding and activation of the serine protease matriptase in prostate epithelial cells. Our study, for the first time to our knowledge, showed ligand-specific β-PDGFR signaling as well as PDGF D-specific regulation of matriptase activity and its spatial distribution through shedding. Taken together with our previous finding that matriptase is a proteolytic activator of PDGF D, this study provides a molecular insight into signal amplification of the proteolytic network and PDGF signaling loop during cancer progression.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
7
|
Siegfried G, Basak A, Prichett-Pejic W, Scamuffa N, Ma L, Benjannet S, Veinot JP, Calvo F, Seidah N, Khatib AM. Regulation of the stepwise proteolytic cleavage and secretion of PDGF-B by the proprotein convertases. Oncogene 2006; 24:6925-35. [PMID: 16007151 DOI: 10.1038/sj.onc.1208838] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelet-derived growth factor-B (PDGF-B) is important for normal tissue growth and maintenance and its overexpression has been linked to several diseases, including cancer, fibrotic disease and atherosclerosis. Here, we show that synthesized as a precursor, proPDGF-B is converted to a mature form by proteolytic cleavage at two sites and its N-terminal cleavage is a prerequisite for processing at its C-terminus. The first cleavage occurs at residues RGRR81/, and the second cleavage close to residues ARPVT190, just before the C-terminal amino-acid sequence crucial for PDGF-B retention to cell surface. Cotransfection of a Furin-deficient cell line LoVo-C5 with proPDGF-B and different PC members revealed that Furin, PACE4, PC5, and PC7 are candidate proPDGF-B convertases. This finding is consistent with the in vitro digestions of a synthetic peptide mimicking the cleavage site of proPDGF-B. The processing of proPDGF-B is blocked by site-directed mutagenesis of the RGRR81/ sequence and by various PC inhibitors. Mutation of the PDGF-A and/or PDGF-B convertase sites, revealed that processing of both A and B chains is required for the formation of mature PDGF-B dimers and that the processing of the B chain controls the level of secreted and matrix-bound PDGF-BB forms. Our findings emphasize the importance of the convertase-directed processing of proPDGF-B at the RGRR81/ sequence for PDGF-B maturation and secretion.
Collapse
Affiliation(s)
- Geraldine Siegfried
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Ave West, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J 2005; 272:5723-41. [PMID: 16279938 DOI: 10.1111/j.1742-4658.2005.04989.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The platelet-derived growth factor (PDGF) family was for more than 25 years assumed to consist of only PDGF-A and -B. The discovery of the novel family members PDGF-C and PDGF-D triggered a search for novel activities and complementary fine tuning between the members of this family of growth factors. Since the expansion of the PDGF family, more than 60 publications on the novel PDGF-C and PDGF-D have been presented, highlighting similarities and differences to the classical PDGFs. In this paper we review the published data on the PDGF family covering structural (gene and protein) similarities and differences among all four family members, with special focus on PDGF-C and PDGF-D expression and functions. Little information on the protein structures of PDGF-C and -D is currently available, but the PDGF-C protein may be structurally more similar to VEGF-A than to PDGF-B. PDGF-C contributes to normal development of the heart, ear, central nervous system (CNS), and kidney, while PDGF-D is active in the development of the kidney, eye and brain. In adults, PDGF-C is active in the kidney and the central nervous system. PDGF-D also plays a role in the lung and in periodontal mineralization. PDGF-C is expressed in Ewing family sarcoma and PDGF-D is linked to lung, prostate and ovarian cancers. Both PDGF-C and -D play a role in progressive renal disease, glioblastoma/medulloblastoma and fibrosis in several organs.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Codon, Initiator
- Codon, Terminator
- Cysteine/chemistry
- Dimerization
- Disulfides/chemistry
- Exons
- Humans
- Introns
- Lymphokines/chemistry
- Lymphokines/genetics
- Lymphokines/physiology
- Mice
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Platelet-Derived Growth Factor/chemistry
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Protein Sorting Signals
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Sequence Homology, Amino Acid
Collapse
|
9
|
Gensert JM, Goldman JE. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/neu.1043] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Schilling D, Reid IV JD, Hujer A, Morgan D, Demoll E, Bummer P, Fenstermaker RA, Kaetzel DM. Loop III region of platelet-derived growth factor (PDGF) B-chain mediates binding to PDGF receptors and heparin. Biochem J 1998; 333 ( Pt 3):637-44. [PMID: 9677323 PMCID: PMC1219627 DOI: 10.1042/bj3330637] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties.
Collapse
Affiliation(s)
- D Schilling
- Department of Pharmacology, University of Kentucky, Chandler Medical Center, MS-305, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Martina JA, Daniotti JL, Maccioni HJ. Influence of N-glycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase. J Biol Chem 1998; 273:3725-31. [PMID: 9452504 DOI: 10.1074/jbc.273.6.3725] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GD3 synthase (ST8Sia I) transfers a sialic acid in alpha-2-->8 linkage to the sialic acid moiety of GM3 to form the ganglioside GD3. The cDNAs of GD3 synthases predict several putative N-glycosylation sites. In this work we have examined the occupancy of these sites in a chicken GD3 synthase and how they affect its activity and intracellular traffic. COS-7 cells were transfected with an influenza virus hemagglutinin (HA) epitope-tagged form of GD3 synthase (GD3 synthase-HA). Cells acquired GD3 synthase activity, cell surface GD3 immunoexpression, and GD3 synthase-HA immunoreactivity in the Golgi complex. In Western blots, a main GD3 synthase-HA band of 47 kDa was detected, which was radioactive upon metabolic labeling with [2-3H] mannose. Tunicamycin prevented the incorporation of [2-3H]mannose into GD3 synthase-HA, blocked the enzyme activity, and promoted a reduction of the enzyme molecular mass of 6-7 kDa. Timed deglycosylation with N-glycosidase F showed that all three potential N-glycosylation sites of GD3 synthase-HA were glycosylated. The deglycosylated forms were enzymatically more unstable than the native form. Tunicamycin treatment of cells led to retention of GD3 synthase-HA immunoreactivity in the endoplasmic reticulum (ER). Castanospermine and deoxynojirimycin, inhibitors of the ER-processing enzymes alpha-glucosidases I and II, also prevented the exit from the ER but did not essentially affect the enzyme specific activity. 1-Deoxymannojirimycin and swainsonine, inhibitors of mannosidases, did not affect either the enzyme activity or the Golgi localization. Results indicate that (a) N-glycosylation is necessary for GD3 synthase to attain and to maintain a catalytically active folding, and for exiting the ER; and (b) N-glycan trimming in the ER, while not required for enzyme activity, is necessary for proper trafficking of GD3 synthase to the Golgi complex.
Collapse
Affiliation(s)
- J A Martina
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, AP 4, CC 61, 5000 Córdoba, Argentina
| | | | | |
Collapse
|