1
|
Jackson S, Sugiman-Marangos S, Cheung K, Junop M. Crystallization and preliminary diffraction analysis of truncated human pleckstrin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:412-6. [PMID: 21393855 DOI: 10.1107/s174430911005092x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/04/2010] [Indexed: 01/11/2023]
Abstract
Pleckstrin is a major substrate of protein kinase C in platelets and leukocytes and appears to play an important role in exocytosis through a currently unknown mechanism. Pleckstrin function is regulated by phosphorylation, which is thought to cause dissociation of pleckstrin dimers, thereby facilitating phosphoinositide interactions and membrane localization. Evidence also exists suggesting that phosphorylation causes a subtle conformational change in pleckstrin. Structural studies of pleckstrin have been initiated in order to characterize these structural changes and ultimately advance understanding of pleckstrin function. Here, the crystallization and preliminary X-ray diffraction analysis of a truncated version of pleckstrin consisting of the N-terminal PH domain, the protein kinase C phosphorylation sites and the DEP domain (NPHDEP) are reported. In addition, the oligomeric state and phospholipid-binding properties of NPHDEP were analyzed. This work demonstrates that NPHDEP behaves as a monomer in solution and suggests that all three pleckstrin domains contribute to the dimerization interface. Furthermore, based on the binding properties of NPHDEP, the C-terminal PH domain appears to increase the specificity of pleckstrin for phosphoinositides. This work represents a significant step towards determining the structure of pleckstrin.
Collapse
Affiliation(s)
- Sean Jackson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
2
|
Day KR, Jagadeeswaran P. Microarray analysis of prothrombin knockdown in zebrafish. Blood Cells Mol Dis 2009; 43:202-10. [PMID: 19442542 DOI: 10.1016/j.bcmd.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/03/2009] [Indexed: 01/10/2023]
Abstract
The serine protease thrombin is generated from its precursor, prothrombin, in the coagulation cascade and plays a central role in fibrin deposition and platelet activation mediated through the protease activated receptors. Knockdown of prothrombin in the zebrafish was previously shown to recapitulate the phenotype observed in prothrombin knockout mice, such as an absence of blood pericardial edema, and hemorrhage. However, the role of thrombin during embryogenesis is not fully understood. To find genes affected by potential thrombin signaling in embryogenesis before blood circulation, microarray analysis was performed using total RNA prepared from antisense-injected, knockdown embryos versus mismatch-injected at 20 h post fertilization. A total of 63 upregulated and downregulated genes were identified with duplicate microarrays using dye reversal and a two-fold difference limitation. Real time RT-PCR for 10 selected genes identified by the microarray confirmed the expression changes in these genes. One particular gene, phlda3, was at least eleven fold upregulated, and in situ hybridization revealed expansion of phlda3 expression in the central nervous system, branchial arches, and head endoderm in knockdown embryos. The identification of these genes regulated by thrombin according to microarray analysis should provide a greater understanding of the effects of thrombin activity in the early vertebrate embryo.
Collapse
Affiliation(s)
- Kenneth R Day
- Department of Cellular and Structural Biology, the University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | |
Collapse
|
3
|
Abstract
Pleckstrin, the platelet and leukocyte C kinase substrate, is a prominent substrate of PKC in platelets, monocytes, macrophages, lymphocytes, and granulocytes. Pleckstrin accounts for 1% of the total protein in these cells, but it is best known for containing the 2 prototypic Pleckstrin homology, or PH, domains. Overexpressed pleckstrin can affect polyphosphoinositide second messenger-based signaling events; however, its true in vivo role has been unknown. Here, we describe mice containing a null mutation within the pleckstrin gene. Platelets lacking pleckstrin exhibit a marked defect in exocytosis of delta and alpha granules, alphaIIbbeta3 activation, actin assembly, and aggregation after exposure to the PKC stimulant, PMA. Pleckstrin-null platelets aggregate normally in response to thrombin, but they fail to aggregate in response to thrombin in the presence of PI3K inhibitors, suggesting that a PI3K-dependent signaling pathway compensates for the loss of pleckstrin. Although pleckstrin-null platelets merged their granules in response to stimulation of PKC, they failed to empty their contents into the open canalicular system. This might be attributable to impaired actin assembly present in cells lacking pleckstrin. These data show that pleckstrin regulates the fusion of granules to the cell membrane and is an essential component of PKC-mediated exocytosis.
Collapse
|
4
|
Edlich C, Stier G, Simon B, Sattler M, Muhle-Goll C. Structure and phosphatidylinositol-(3,4)-bisphosphate binding of the C-terminal PH domain of human pleckstrin. Structure 2005; 13:277-86. [PMID: 15698571 DOI: 10.1016/j.str.2004.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 11/03/2004] [Accepted: 11/28/2004] [Indexed: 11/20/2022]
Abstract
Pleckstrin is the major target of protein kinase C (PKC) in blood platelets. Its phosphorylation triggers responses that ultimately lead to platelet activation and blood clot formation. Pleckstrin consists of three domains: a pleckstrin homology (PH) domain at both termini and a central DEP (Dishevelled, Egl-1, Pleckstrin) domain. Here, we report the solution nuclear magnetic resonance (NMR) structure of the C-terminal PH domain (C-PH) of human pleckstrin-1. We show that this PH domain binds phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) with high specificity in protein lipid overlay assays. Using NMR titration experiments and mutational analysis, residues involved in binding to PtdIns(3,4)P2 are identified. The binding site is formed by a patch of basic residues from the beta1 and beta2 strands and the beta1-beta2 loop. Since PtdIns(3,4)P2 is an important signaling molecule in platelets, our data suggest a C-PH dependent regulation of pleckstrin function in response to PtdIns(3,4)P2.
Collapse
|
5
|
Gerasimovskaya EV, Tucker DA, Weiser-Evans M, Wenzlau JM, Klemm DJ, Banks M, Stenmark KR. Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways. J Biol Chem 2004; 280:1838-48. [PMID: 15522879 DOI: 10.1074/jbc.m409466200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular nucleotides are increasingly recognized as important regulators of growth in a variety of cell types. Recent studies have demonstrated that extracellular ATP is a potent inducer of fibroblast growth acting, at least in part, through an ERK1/2-dependent signaling pathway. However, the contributions of additional signaling pathways to extracellular ATP-mediated cell proliferation have not been defined. By using both pharmacologic and genetic approaches, we found that in addition to ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and p70 S6K-dependent signaling pathways are required for ATP-induced proliferation of adventitial fibroblasts. We found that extracellular ATP acting in part through G(i) proteins increased PI3K activity in a time-dependent manner and transient phosphorylation of Akt. This PI3K pathway is not involved in ATP-induced activation of ERK1/2, implying activation of independent parallel signaling pathways by ATP. Extracellular ATP induced dramatic increases in mTOR and p70 S6K phosphorylation. This activation of the mTOR/p70 S6 kinase (p70 S6K) pathway in response to ATP is because of independent contributions of PI3K/Akt and ERK1/2 pathways, which converge on the level of p70 S6K. ATP-dependent activation of mTOR and p70 S6K also requires additional signaling inputs perhaps from pathways operating through Galpha or Gbetagamma subunits. Collectively, our data demonstrate that ATP-induced adventitial fibroblast proliferation requires activation and interaction of multiple signaling pathways such as PI3K, Akt, mTOR, p70 S6K, and ERK1/2 and provide evidence for purinergic regulation of the protein translational pathways related to cell proliferation.
Collapse
Affiliation(s)
- Evgenia V Gerasimovskaya
- Developmental Lung Biology Laboratory, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Chahdi A, Sorokin A, Dunn MJ, Landry Y. The Rac/Cdc42 guanine nucleotide exchange factor beta1Pix enhances mastoparan-activated Gi-dependent pathway in mast cells. Biochem Biophys Res Commun 2004; 317:384-9. [PMID: 15063769 DOI: 10.1016/j.bbrc.2004.03.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 11/20/2022]
Abstract
Carbachol stimulates granule exocytosis, phospholipase C (PLC), and phospholipase D (PLD) in RBL-2H3hm1 mast cells by a mechanism that involves Galphaq. However, mastoparan stimulates the same responses through Gi protein. Both Gi and Galphaq pathways are suppressed by Clostridium difficile toxin B, suggesting that Rac and Cdc42 small GTPases are also involved. Over-expression of beta1Pix, a guanine nucleotide exchange factor for Rac and Cdc42, enhances mastoparan-but not carbachol-induced hexosaminidase secretion and PLC and PLD activation. Furthermore, cells expressing beta1Pix exhibit elevated levels of mastoparan-stimulated IP3 production. Taken together, these findings implicate beta1Pix in regulating hexoasaminidase secretion and IP3 production in early stage upon mastoparan stimulation.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Division of Nephrology and the Cardiovascular Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
7
|
Snyder JT, Singer AU, Wing MR, Harden TK, Sondek J. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. J Biol Chem 2003; 278:21099-104. [PMID: 12657629 DOI: 10.1074/jbc.m301418200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence links the activation of Rho family GTPases to the stimulation of lipid hydrolysis catalyzed by phospholipase C (PLC)-beta isozymes. To better define this relationship, members of a library of recombinant Rho GTPases were screened for their capacity to directly engage various purified PLC-beta isozymes. Of the 17 tested members of the Rho family, only the active isoforms of Rac (Rac1, Rac2, and Rac3) both stimulate PLC-beta activity in vivo and bind PLC-beta2 and PLC-beta3, but not PLC-beta1, in vitro. Furthermore, the recognition site for Rac GTPases was localized to the pleckstrin homology (PH) domain of PLC-beta2, and this PH domain is fully sufficient to selectively interact with the active versions of the Rac GTPases, but not with other similar Rho GTPases. Together, these findings present a quantitative evaluation of the direct interactions between Rac GTPases and PLC-beta isozymes and define a novel role for the PH domain of PLC-beta2 as a putative effector site for Rac GTPases.
Collapse
Affiliation(s)
- Jason T Snyder
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
8
|
Sloan DC, Wang P, Bao X, Haslam RJ. Translocation of pleckstrin requires its phosphorylation and newly formed ligands. Biochem Biophys Res Commun 2002; 293:640-6. [PMID: 12054651 DOI: 10.1016/s0006-291x(02)00260-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pleckstrin is the major substrate of protein kinase C (PKC) in platelets. We sought to determine whether pleckstrin phosphorylation is sufficient to target the soluble protein to binding sites. Permeabilization of platelets by streptolysin O (SLO) was used to separate bound and soluble pleckstrin. Platelets were incubated with phorbol 12-myristate 13-acetate (PMA) and/or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in the presence of [gamma-(32)P]ATP and SLO. PMA stimulated pleckstrin phosphorylation, but this pleckstrin diffused from permeabilized platelets. Addition of GTP[S] with PMA caused up to 40-50% of pleckstrin to be retained within platelets and enhanced secretion of platelet 5-hydroxytryptamine. PKC alpha pseudosubstrate peptide inhibited pleckstrin phosphorylation, the binding of pleckstrin and secretion. After extraction of permeabilized platelets containing bound pleckstrin with Triton X-100, the protein was solubilized. Thus, phosphorylated pleckstrin was retained in platelets only after activation of GTP-binding proteins that stimulate the formation of membrane-bound pleckstrin ligands. Translocation of pleckstrin may facilitate the associated secretion.
Collapse
Affiliation(s)
- Denis C Sloan
- Department of Biochemistry, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | | | | | |
Collapse
|
9
|
Bobe R, Wilde JI, Maschberger P, Venkateswarlu K, Cullen PJ, Siess W, Watson SP. Phosphatidylinositol 3-kinase-dependent translocation of phospholipase Cgamma2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood 2001; 97:678-84. [PMID: 11157484 DOI: 10.1182/blood.v97.3.678] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the collagen receptor glycoprotein VI (GPVI) by a collagen-related peptide (CRP) induces stimulation of platelets and megakaryocytes through the phosphatidylinositol (PI) 3-kinase-dependent pathway leading to activation of Bruton tyrosine kinase (Btk) and phospholipase Cgamma2 (PLCgamma2). Here, we present evidence that both proteins undergo PI 3-kinase-dependent translocation to the plasma membrane on CRP stimulation that is markedly inhibited by wortmannin and LY294002. Translocation of PLCgamma2 but not Btk is also seen in megakaryocytes from X-linked immunodeficiency mice, which have a mutation that reduces the affinity of the pleckstrin homology (PH) domain of Btk for PI 3,4,5-trisphosphate (PI 3,4,5-P3). Activation of PC12 cells by epidermal growth factor (EGF) results in increased PI 3-kinase activity and high PI 3,4,5-P3 levels that trigger translocation of the green fluorescent protein (GFP)-labeled PH of Btk, but not the GFP-labeled PH and tandem Src homology 2 (SH2) domains of PLCgamma2. In contrast to the results with CRP, the G protein-coupled receptor agonist thrombin stimulates PI 3-kinase-independent translocation of Btk but not PLCgamma2. In conclusion, these results demonstrate that in mouse megakaryocytes, CRP leads to PI 3-kinase-dependent translocation of PLCgamma2 and Btk that are independent of one another, whereas thrombin only induces translocation of Btk through a pathway that is independent of PI 3-kinase activity.
Collapse
Affiliation(s)
- R Bobe
- Department of Pharmacology, University of Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cmarik JL, Hegamyer G, Gerrard B, Dean M, Colburn NH. cDNA cloning and mapping of mouse pleckstrin (Plek), a gene upregulated in transformation-resistant cells. Genomics 2000; 66:204-12. [PMID: 10860665 DOI: 10.1006/geno.2000.6210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes that occur during tumor promotion, the rate-limiting phase of multistep carcinogenesis, may offer the best targets for prevention of cancer or reversal of early disease. The murine epidermal JB6 promotion-sensitive (P+) and -resistant (P-) cell lines provide a cell culture model for tumor promoter-induced neoplastic transformation ideally suited to the identification of molecular events that mediate or inhibit transformation. A differential display comparison of P+ and P- cell mRNAs yielded seven differentially expressed sequences. One of the sequences preferentially expressed in P- cells identified an approximately 3. 6-kb message that was induced to higher levels in P- cells following exposure to the tumor promoter 12-O-tetradecanoylphorbol acetate than in P+ cells. The message was detected in mRNA from heart, lung, and spleen. cDNA cloning of the P- preferential sequence revealed a high degree of identity to human pleckstrin (PLEK), the major PKC substrate in platelets (Tyers et al., 1988, Nature 333: 470). We report the complete mouse cDNA sequence of pleckstrin and the localization of the gene to chromosome 11, its expression in a nonhematopoetic cell line, and its potential role in blocking neoplastic transformation.
Collapse
Affiliation(s)
- J L Cmarik
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, 21702, USA
| | | | | | | | | |
Collapse
|
11
|
Rao S, Garrett-Sinha LA, Yoon J, Simon MC. The Ets factors PU.1 and Spi-B regulate the transcription in vivo of P2Y10, a lymphoid restricted heptahelical receptor. J Biol Chem 1999; 274:34245-52. [PMID: 10567398 DOI: 10.1074/jbc.274.48.34245] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the in vivo functions of PU.1 and Spi-B, two highly related Ets transcription factors, we previously generated PU. 1(+/+)Spi-B(-/-) and PU.1(+/-)Spi-B(-/-) mice and demonstrated a significant decrease in B-cell receptor (BCR) signaling in mutants. Major components of BCR signaling appear to be expressed at normal levels in these mice, implying that PU.1 and Spi-B cooperate in the transcription of additional target genes important for antigen receptor signaling. We used subtractive hybridization to identify novel in vivo PU.1/Spi-B target genes and determined that the expression of a heptahelical receptor, P2Y10, is dramatically reduced in PU.1(+/-)Spi-B(-/-) B-cells. Further analysis shows that P2Y10 expression is restricted to lymphoid cells and parallels that of Spi-B in B-lymphocytes. Lastly, the P2Y10 promoter contains a PU. 1/Spi-B binding site functionally required for efficient transcription in B-cells. Thus, P2Y10 is likely to be a direct in vivo transcriptional target for PU.1 and Spi-B and provides a unique model to explore transcriptional regulation by this Ets factor subfamily. Furthermore, P2Y10 suggests an intriguing connection between heterotrimeric G-proteins and BCR signaling.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- B-Lymphocytes/metabolism
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Cell Lineage
- DNA/genetics
- DNA/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Expression
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Amino Acid
- Tissue Distribution
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Rao
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Pleckstrin homology (PH) domains are present in over one hundred signaling molecules, where they are thought to mediate membrane targeting by binding to phosphoinositides. They were initially defined at the NH(2) and COOH termini of the molecule, pleckstrin, a major substrate for protein kinase C in platelets. We have previously reported that pleckstrin associates with the plasma membrane, where it induces the formation of villous and ruffled structures from the surface of transfected cells (1). We now show that overexpression of pleckstrin results in reorganization of the actin cytoskeleton. This pleckstrin effect is regulated by its phosphorylation and requires the NH(2)-terminal, but not the COOH-terminal, PH domain. Overexpression of the NH(2)-terminal PH domain alone of pleckstrin is sufficient to induce the cytoskeletal effects. Pleckstrin-induced actin rearrangements are not inhibited by pharmacologic inhibition of phosphatidylinositol 3-kinase, nor are they blocked by co-expression of a dominant negative phosphatidylinositol 3-kinase. The cytoskeletal effects of pleckstrin can be blocked by co-expression of a dominant negative Rac1 variant, but not wild-type Rac and not a dominant negative Cdc42 variant. These data indicate that the NH(2)-terminal PH domain of pleckstrin induces reorganization of the actin cytoskeleton via a pathway dependent on Rac but independent of Cdc42 and phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- A D Ma
- Department of Medicine, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
13
|
Hu MH, Bauman EM, Roll RL, Yeilding N, Abrams CS. Pleckstrin 2, a widely expressed paralog of pleckstrin involved in actin rearrangement. J Biol Chem 1999; 274:21515-8. [PMID: 10419454 DOI: 10.1074/jbc.274.31.21515] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have identified a cDNA for pleckstrin 2 that is 39% identical and 65% homologous to the original pleckstrin. Like the original pleckstrin 1, this protein contains a pleckstrin homology (PH) domain at each end of the molecule as well as a DEP (Dishevelled, Egl-10, and pleckstrin) domain in the intervening sequence. A Northern blot probed with the full-length cDNA reveals that this homolog is ubiquitously expressed and is most abundant in the thymus, large bowel, small bowel, stomach, and prostate. Unlike pleckstrin 1, this newly discovered protein does not contain obvious sites of PKC phosphorylation, and in transfected Cos-7 cells, it is a poor substrate for phosphorylation, even after PMA stimulation. Cells expressing pleckstrin 2 undergo a dramatic shape change associated with actin rearrangement, including a loss of central F-actin and a redistribution of actin toward the cell cortex. Overexpression of pleckstrin 2 causes large lamellipodia and peripheral ruffle formation. A variant of pleckstrin 2 lacking both PH domains still had some membrane binding but did not efficiently induce lamellipodia, suggesting that the PH domains of pleckstrin 2 contribute to lamellipodia formation. This work describes a novel, widely expressed, membrane-associating protein and suggests that pleckstrin 2 may help orchestrate cytoskeletal arrangement.
Collapse
Affiliation(s)
- M H Hu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Deehan MR, Klaus GG, Holman MJ, Harnett W, Harnett MM. MAPkinase: a second site of G-protein regulation of B-cell activation via the antigen receptors. Immunol Suppl 1998; 95:169-77. [PMID: 9824472 PMCID: PMC1364301 DOI: 10.1046/j.1365-2567.1998.00591.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ligation of the antigen receptors on B cells transduces transmembrane signals leading to the induction of DNA synthesis. We now show that a pertussis toxin-sensitive heterotrimeric G-protein(s) of the Gi class plays a key role in the regulation of surface immunoglobulin (sIg)-mediated DNA synthesis in B cells. This site of G-protein regulation is distinct from that we have previously reported to govern the coupling of the antigen receptors on B cells to the phospholipase C-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate. We have, moreover, identified a candidate target for this new G-protein regulation by showing that mitogen-activating protein kinase (MAPkinase) activity, which plays a key role in the transduction of sIg-mediated proliferative signals in B cells, is abrogated by pre-exposure to pertussis toxin that covalently modifies and inactivates heterotrimeric G-proteins of the Gi class. Furthermore, our data suggest that this pertussis toxin-sensitive G-protein couples the antigen receptors to MAPkinase activation, at least in part, by regulating sIg-coupling to Lyn, Syk and perhaps Blk and Fyn activity, results consistent with studies in other systems which show that classical G-protein-coupled receptors recruit such protein tyrosine kinases to tranduce MAPkinase activation. Interestingly, however, this G-protein plays no apparent role in the control of up-regulation of major histocompatibility complex class II expression on B cells, suggesting that such G-protein-regulated-tyrosine kinase and MAPkinase activation is not required for the induction of this biological response following antigen receptor ligation.
Collapse
Affiliation(s)
- M R Deehan
- Department of Immunology, University of Strathclyde, Glasgow
| | | | | | | | | |
Collapse
|
15
|
Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:503-28. [PMID: 9646876 DOI: 10.1146/annurev.biophys.27.1.503] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pleckstrin homology (PH) motifs are approximately 100 amino-acid residues long and have been identified in nearly 100 different eukaryotic proteins, many of which participate in cell signaling and cytoskeletal regulation. Despite minimal sequence homology, the three-dimensional structures are remarkably conserved. This review gives an overview of the PH domain architecture and examines the best-studied examples in an attempt to understand their function.
Collapse
Affiliation(s)
- M J Rebecchi
- Department of Anesthesiology, State University of New York at Stony Brook 11794, USA.
| | | |
Collapse
|
16
|
Sloan DC, Haslam RJ. Protein kinase C-dependent and Ca2+-dependent mechanisms of secretion from streptolysin O-permeabilized platelets: effects of leakage of cytosolic proteins. Biochem J 1997; 328 ( Pt 1):13-21. [PMID: 9359828 PMCID: PMC1218881 DOI: 10.1042/bj3280013] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human platelets containing dense granules labelled with 5-hydroxy[14C]tryptamine ([14C]5-HT) were permeabilized by exposure to streptolysin O (SLO) in the presence of 4 mM [gamma-32P]ATP. Addition of either 100 nM phorbol 12-myristate 13-acetate (PMA) or of Ca2+ (pCa 5) at the same time as SLO induced secretion of dense-granule [14C]5-HT and the phosphorylation of pleckstrin by protein kinase C (PKC). Ca2+ also induced phosphorylation of myosin P-light chains. Guanosine 5'-[gamma-thio]triphosphate (GTP[S], 100 microM) did not stimulate secretion from SLO-permeabilized platelets in the absence of Ca2+ (pCa>9), but greatly potentiated secretion in the presence of low PMA (10 nM) or low Ca2+ (pCa 6). However, GTP[S] did stimulate myosin P-light-chain phosphorylation in the absence of Ca2+, an effect that was associated with morphological changes, including granule centralization. Inhibition of PKC and of pleckstrin phosphorylation by Ro 31-8220 blocked secretion induced by PMA or by GTP[S] and PMA in the absence of Ca2+, but did not prevent the GTP[S]-induced phosphorylation of myosin P-light chains or secretion induced by Ca2+ at pCa 5. When the time period between exposure of platelets to SLO and challenge at pCa>9 with PMA or with GTP[S] and PMA was increased, there were rapid and parallel decreases in the secretion and pleckstrin phosphorylation responses, which were lost after 3-5 min. In contrast, the responsiveness of secretion to Ca2+ (pCa 5) or to GTP[S] and Ca2+ (pCa 6) persisted for at least 10 min after exposure of platelets to SLO, although the ability of pleckstrin to undergo phosphorylation was still lost after 3-5 min. Both PKC and pleckstrin were undetectable within platelets after 5 min exposure to SLO. The results suggest that the loss of responsiveness to PMA or to GTP[S] and PMA is attributable to the leakage of PKC (and possibly pleckstrin) from the platelets, whereas secretion stimulated by Ca2+ or by GTP[S] and Ca2+ utilizes membrane-associated Ca2+- and GTP-binding proteins and occurs independently of PKC activation.
Collapse
Affiliation(s)
- D C Sloan
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
17
|
Ma AD, Brass LF, Abrams CS. Pleckstrin associates with plasma membranes and induces the formation of membrane projections: requirements for phosphorylation and the NH2-terminal PH domain. J Cell Biol 1997; 136:1071-9. [PMID: 9060471 PMCID: PMC2132483 DOI: 10.1083/jcb.136.5.1071] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1996] [Revised: 11/14/1996] [Indexed: 02/03/2023] Open
Abstract
Pleckstrin homology (PH) domains are sequences of approximately 100 amino acids that form "modules" that have been proposed to facilitate protein/protein or protein/lipid interactions. Pleckstrin, first described as a substrate for protein kinase C in platelets and leukocytes, is composed of two PH domains, one at each end of the molecule, flanking an intervening sequence of 147 residues. Evidence is accumulating to support the hypothesis that PH domains are structural motifs that target molecules to membranes, perhaps through interactions with G betagamma or phosphatidylinositol 4,5-bisphosphate (PIP2), two putative PH domain ligands. In the present studies, we show that pleckstrin associates with membranes in human platelets. We further demonstrate that, in transfected Cos-1 cells, pleckstrin associates with peripheral membrane ruffles and dorsal membrane projections. This association depends on phosphorylation of pleckstrin and requires the presence of its NH2-terminal, but not its COOH-terminal, PH domain. Moreover, PH domains from other molecules cannot effectively substitute for pleckstrin's NH2-terminal PH domain in directing membrane localization. Lastly, we show that wild-type pleckstrin actually promotes the formation of membrane projections from the dorsal surface of transfected cells, and that this morphologic change is similarly PH domain dependent. Since we have shown previously that pleckstrin-mediated inhibition of PIP2 metabolism by phospholipase C or phosphatidylinositol 3-kinase also requires pleckstrin phosphorylation and an intact NH2-terminal PH domain, these results suggest that: (a) pleckstrin's NH2-terminal PH domain may regulate pleckstrin's activity by targeting it to specific areas within the cell membrane; and (b) pleckstrin may affect membrane structure, perhaps via interactions with PIP2 and/or other membrane-bound ligands.
Collapse
Affiliation(s)
- A D Ma
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|