1
|
Richards CM, McRae SA, Ranger AL, Klegeris A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev Neurosci 2023; 34:533-558. [PMID: 36368030 DOI: 10.1515/revneuro-2022-0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023]
Abstract
The four core histones H2A, H2B, H3, H4, and the linker histone H1 primarily bind DNA and regulate gene expression within the nucleus. Evidence collected mainly from the peripheral tissues illustrates that histones can be released into the extracellular space by activated or damaged cells. In this article, we first summarize the innate immune-modulatory properties of extracellular histones and histone-containing complexes, such as nucleosomes, and neutrophil extracellular traps (NETs), described in peripheral tissues. There, histones act as damage-associated molecular patterns (DAMPs), which are a class of endogenous molecules that trigger immune responses by interacting directly with the cellular membranes and activating pattern recognition receptors (PRRs), such as toll-like receptors (TLR) 2, 4, 9 and the receptor for advanced glycation end-products (RAGE). We then focus on the available evidence implicating extracellular histones as DAMPs of the central nervous system (CNS). It is becoming evident that histones are present in the brain parenchyma after crossing the blood-brain barrier (BBB) or being released by several types of brain cells, including neurons, microglia, and astrocytes. However, studies on the DAMP-like effects of histones on CNS cells are limited. For example, TLR4 is the only known molecular target of CNS extracellular histones and their interactions with other PRRs expressed by brain cells have not been observed. Nevertheless, extracellular histones are implicated in the pathogenesis of a variety of neurological disorders characterized by sterile neuroinflammation; therefore, detailed studies on the role these proteins and their complexes play in these pathologies could identify novel therapeutic targets.
Collapse
Affiliation(s)
- Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Athena L Ranger
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
2
|
Tu JL, Chen WP, Cheng ZJ, Zhang G, Luo QH, Li M, Liu X. EGb761 ameliorates cell necroptosis by attenuating RIP1-mediated mitochondrial dysfunction and ROS production in both in vivo and in vitro models of Alzheimer's disease. Brain Res 2020; 1736:146730. [PMID: 32081533 DOI: 10.1016/j.brainres.2020.146730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the neuroprotective effect of Gingko biloba extract 761 (EGb761) in Alzheimer's disease (AD) models both in vivo and in vitro and the underlying molecular mechanism. METHODS Cultured BV2 microglial cells were treated with Aβ1-42 to establish an in vitro AD model. The in vivo rat AD model was established by injecting Aβ1-42. Cells were pre-treated with EGb761, and the proliferation and necroptosis were examined by MTT or flow cytometry assays, respectively. In addition, the membrane potential and oxidative stress were measured. Cognitive function was evaluated by the Morris water maze, and the activation of the JNK signaling pathway was quantified by Western blotting. RESULTS Cultured BV2 cells exhibited prominent cell death after Aβ1-42 induction, and this cell death was alleviated by EGb761 pre-treatment. EGb761 was found to relieve oxidative stress and suppress the membrane potential and calcium overload. EGb761 treatment in AD model rats also improved cognitive function deficits. Both cultured microglial cells and the rat hippocampus exhibited activation of the JNK signaling pathway, and EGb761 relieved this activation in cells. CONCLUSION Our results showed that EGb761 regulated cell proliferation, suppressed necroptosis and apoptosis, relieved mitochondrial damage, and ameliorated tissue damage to improve cognitive function in AD models. All of these effects may involve the suppression of the JNK signaling pathway.
Collapse
Affiliation(s)
- Jiang-Long Tu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| | - Wei-Ping Chen
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Zhi-Juan Cheng
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Ge Zhang
- Department of Psychiatry, JiangXi Mental Hospital, Nanchang 330029, PR China
| | - Qing-Hua Luo
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Ming Li
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xu Liu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Schueller E, Paiva I, Blanc F, Wang XL, Cassel JC, Boutillier AL, Bousiges O. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer's disease patients. Eur Neuropsychopharmacol 2020; 33:101-116. [PMID: 32057591 DOI: 10.1016/j.euroneuro.2020.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/26/2020] [Indexed: 12/29/2022]
Abstract
Memory impairment is the main feature of Alzheimer's disease (AD). Initial impairments originate in the temporal lobe area and propagate throughout the brain in a sequential manner. Epigenetic mechanisms, especially histone acetylation, regulate plasticity and memory processes. These may be dismantled during the disease. The aim of this work was to establish changes in the acetylation-associated pathway in two key brain regions affected in AD: the hippocampus and the F2 area of frontal cortex in end-stage AD patients and age-matched controls. We found that the F2 area was more affected than the hippocampus. Indeed, CREB-Binding Protein (CBP), P300/CBP-associated protein (PCAF), Histone Deacetylase 1 (HDAC1) and HDAC2 (but not HDAC3) levels were strongly decreased in F2 area of AD compared to controls patients, whereas only HDAC1 was decreased and CBP showed a downward trend in the hippocampus. At the histone level, we detected a substantial increase in total (H3 and H2B) histone levels in the frontal cortex, but these were decreased in nuclear extracts, pointing to a dysregulation in histone trafficking/catabolism in this brain region. Histone H3 acetylation levels were increased in cell nuclei mainly in the frontal cortex. These findings provide evidence for acetylation dysfunctions at the level of associated enzymes and of histones in AD brains, which may underlie transcriptional dysregulations and AD-related cognitive impairments. They further point to stronger dysregulations in the F2 area of the frontal cortex than in the hippocampus at an end-stage of the disease, suggesting a differential vulnerability and/or compensatory mechanisms efficiency towards epigenetic alterations.
Collapse
Affiliation(s)
- Estelle Schueller
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Isabel Paiva
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Frédéric Blanc
- Neuropsychology Unit, Neurology Service, and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, and CMRR (Memory Resources and Research Centre), and Geriatrics Day Hospital, Geriatrics Service, University Hospital of Strasbourg, Strasbourg, France
| | - Xiao-Lan Wang
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France.
| | - Olivier Bousiges
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France; Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Hôpital de Hautepierre, Avenue Molière, Strasbourg, France.
| |
Collapse
|
4
|
Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis 2015; 74:281-94. [DOI: 10.1016/j.nbd.2014.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022] Open
|
5
|
Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood 2015; 125:2286-96. [PMID: 25631771 DOI: 10.1182/blood-2014-06-582759] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
Abstract
Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.
Collapse
|
6
|
Chen R, Kang R, Fan XG, Tang D. Release and activity of histone in diseases. Cell Death Dis 2014; 5:e1370. [PMID: 25118930 PMCID: PMC4454312 DOI: 10.1038/cddis.2014.337] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022]
Abstract
Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases.
Collapse
Affiliation(s)
- R Chen
- 1] Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China [2] Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - X-G Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - D Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Pemberton AD, Brown JK, Inglis NF. Proteomic identification of interactions between histones and plasma proteins: implications for cytoprotection. Proteomics 2010; 10:1484-93. [PMID: 20127695 DOI: 10.1002/pmic.200900818] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular histones released from cells during acute inflammation contribute to organ failure and death in a mouse model of sepsis, and histones are known to exert in vitro cytotoxicity in the absence of serum. Since addition of histones to serum and plasma is known to induce protein aggregation, we reasoned that plasma proteins may afford protection from cytotoxicity. We found that MODE-K mouse small intestinal epithelial cells were protected from histone-induced toxicity in the presence of 10% FCS. Therefore, the main aim of this study was to identify histone-interacting plasma proteins that might be involved in cytoprotection. The precipitate formed following addition of calf thymus histones to human EDTA plasma was characterised by shotgun proteomics, identifying a total of 36 protein subunits, including complement components, coagulation factors, protease inhibitors and apolipoproteins. The highly sulphated glycosaminoglycan heparin inhibited histone-induced plasma protein aggregation. Moreover, histones bound to heparin agarose were capable of pulling down plasma proteins from solution, indicating their effective cross-linking properties. It was particularly notable that inter-alpha-trypsin inhibitor was prominent among the histone-precipitated proteins, since it contains a chondroitin sulphate glycan chain, and suggests a potential role for this protein in histone sequestration during acute inflammation in vivo.
Collapse
Affiliation(s)
- Alan D Pemberton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| | | | | |
Collapse
|
8
|
Duclot F, Meffre J, Jacquet C, Gongora C, Maurice T. Mice knock out for the histone acetyltransferase p300/CREB binding protein-associated factor develop a resistance to amyloid toxicity. Neuroscience 2010; 167:850-63. [PMID: 20219649 DOI: 10.1016/j.neuroscience.2010.02.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/11/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
p300/CREB binding protein-associated factor (PCAF) regulates gene expression by acting through histone acetylation and as a transcription coactivator. Although histone acetyltransferases were involved in the toxicity induced by amyloid-beta (Abeta) peptides, nothing is known about PCAF. We here analyzed the sensitivity of PCAF knockout (KO) mice to the toxic effects induced by i.c.v. injection of Abeta(25-35) peptide, a nontransgenic model of Alzheimer's disease. PCAF wild-type (WT) and KO mice received Abeta(25-35) (1, 3 or 9 nmol) or scrambled Abeta(25-35) (9 nmol) as control. After 7 days, Abeta(25-35) toxicity was measured in the hippocampus of WT mice by a decrease in CA1 pyramidal cells and increases in oxidative stress, endoplasmic reticulum stress and induction of apoptosis. Memory deficits were observed using spontaneous alternation, water-maze learning and passive avoidance. Non-treated PCAF KO mice showed a decrease in CA1 cells and learning alterations. However, Abeta(25-35) injection failed to induce toxicity or worsen the deficits. This resistance to Abeta(25-35) toxicity did not involve changes in glutamate or acetylcholine systems. Examination of enzymes involved in Abeta generation or degradation revealed changes in transcription of presenilins, activity of neprilysin (NEP) and an absence of Abeta(25-35)-induced regulation of NEP activity in PCAF KO mice, partly due to an altered expression of somatostatin (SRIH). We conclude that PCAF regulates the expression of proteins involved in Abeta generation and degradation, thus rendering PCAF KO insensitive to amyloid toxicity. Modulating acetyltransferase activity may offer a new way to develop anti-amyloid therapies.
Collapse
Affiliation(s)
- F Duclot
- INSERM U 710, Montpellier, France
| | | | | | | | | |
Collapse
|
9
|
Dolzhanskaya N, Merz G, Aletta JM, Denman RB. Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP. J Cell Sci 2007; 119:1933-46. [PMID: 16636078 DOI: 10.1242/jcs.02882] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with approximately 4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating that methylation of FMRP affects its ability to bind to FXR1P and regulate the translation of FMRP target mRNAs. Additionally, using double-label fluorescence confocal microscopy, we identified a subpopulation of FMRP-containing small cytoplasmic granules that are distinguishable from larger stress granules. Using the oxidative-stress induced accumulation of abortive pre-initiation complexes as a measure of the association of FMRP with translational components, we have demonstrated that FMRP associates with ribosomes during initiation and, more importantly, that methylation regulates this process by influencing the ratio of FMRP-homodimer-containing mRNPs to FMRP-FXR1P-heterodimer-containing mRNPs. These data suggest a vital role for methylation in normal FMRP functioning.
Collapse
Affiliation(s)
- Natalia Dolzhanskaya
- Biochemical Molecular Neurobiology Laboratory, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
10
|
Henriquez JP, Casar JC, Fuentealba L, Carey DJ, Brandan E. Extracellular matrix histone H1 binds to perlecan, is present in regenerating skeletal muscle and stimulates myoblast proliferation. J Cell Sci 2002; 115:2041-51. [PMID: 11973346 DOI: 10.1242/jcs.115.10.2041] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparan sulfate chains of proteoglycans bind to and regulate the function of a wide variety of ligands. In myoblasts, heparan sulfate proteoglycans modulate basic fibroblast growth factor activity and regulate skeletal muscle differentiation. The aim of this study was to identify endogenous extracellular ligands for muscle cell heparan sulfate proteoglycans.[35S]heparin ligand blot assays identified a 33/30 kDa doublet(p33/30) in detergent/high ionic strength extracts and heparin soluble fractions obtained from intact C2C12 myoblasts. p33/30 is localized on the plasma membrane or in the extracellular matrix where its level increases during muscle differentiation. Heparin-agarose-purified p33/30 was identified as histone H1. In vitro binding assays showed that histone H1 binds specifically to perlecan. Immunofluorescence microscopy showed that an extracellular pool of histone H1 colocalizes with perlecan in the extracellular matrix of myotube cultures and in regenerating skeletal muscle. Furthermore, histone H1 incorporated into the extracellular matrix strongly stimulated myoblast proliferation via a heparan-sulfate-dependent mechanism.These results indicate that histone H1 is present in the extracellular matrix of skeletal muscle cells, where it interacts specifically with perlecan and exerts a strong proliferative effect on myoblasts, suggesting a role for histone H1 during skeletal muscle regeneration.
Collapse
Affiliation(s)
- Juan Pablo Henriquez
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
11
|
Abstract
We have used differential display to address the question of ribozyme specificity in vivo. Stably transfected PC12 cells bearing either a hairpin ribozyme expression plasmid targeted to betaAPP mRNA or the vector alone were analyzed using nine different primer pairs. One of the few differentially expressed genes obtained from this screen corresponded to rat ribosomal protein L19. Steady-state levels of L19 mRNA were lower in ribozyme-transfected cells compared to either vector-transfected cells or native PC12 cells, and a sequence within the L19 message was cleaved by the betaAPP hairpin ribozyme in vitro. These data imply that sequence-specific unintended cleavage of non-target mRNAs may present a formidable problem to the use of hairpin ribozyme therapeutic agents.
Collapse
Affiliation(s)
- R B Denman
- Laboratory of Molecular Neurobiology, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, 10314, USA.
| |
Collapse
|
12
|
Tanaka J, Toku K, Matsuda S, Sudo S, Fujita H, Sakanaka M, Maeda N. Induction of resting microglia in culture medium devoid of glycine and serine. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199810)24:2<198::aid-glia5>3.0.co;2-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Denman RB, Smedman M, Abraham M, Chen-Hwang MC, Currie JR. Facilitated reduction of beta-amyloid peptide precursor by synthetic oligonucleotides in COS-7 cells expressing a hammerhead ribozyme. Arch Biochem Biophys 1997; 348:82-90. [PMID: 9390177 DOI: 10.1006/abbi.1997.0383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synthetic deoxyoligonucleotides and phosphorothioate-capped oligonucleotides targeted to bases 112-128 of beta-amyloid peptide precursor (beta APP) mRNA were analyzed for their ability to reduce steady-state beta APP in COS-7 cells and in pMEP4-Rz1 cells that express a hammerhead ribozyme targeted to bases beta APP mRNA 133-148. Cells, incubated in the presence of 10 or 25 microM oligonucleotide, remained viable and morphologically identical to untreated control cells for up to 5 days. Antisense deoxyoligonucleotides beta 112C, beta 114C, and beta 116C specifically lowered beta APP in pMEP4-Rz1 cells compared to noncognate and scrambled oligonucleotide controls. The extent of the beta APP reduction did not depend on oligonucleotide length, although it did depend on the presence and proximity of the ribozyme to the oligonucleotides. beta 117N, a phosphorothioate-capped antisense oligonucleotide, also reduced beta APP levels in pMEP4-Rz1 cells; however, in this case the sense control, beta 117S, affected beta APP similarly, indicating that the observed reduction may be nonspecific. These data imply that deoxyoligonucleotides targeted immediately upstream of a ribozyme binding site can work cooperatively in vivo. Localizing the oligonucleotides and ribozyme and substrate targets to the same cellular pools further confirmed this possibility.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA.
| | | | | | | | | |
Collapse
|