1
|
Wang YC, Lv YH, Wang C, Jiang GY, Han MF, Deng JG, Hsi HC. Microbial community evolution and functional trade-offs of biofilm in odor treatment biofilters. WATER RESEARCH 2023; 235:119917. [PMID: 37003115 DOI: 10.1016/j.watres.2023.119917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Biofilters inoculated with activated sludge are widely used for odor control in WWTP. In this process, biofilm community evolution plays an important role in the function of reactor and is closely related to reactor performance. However, the trade-offs in biofilm community and bioreactor function during the operation are still unclear. Herein, an artificially constructed biofilter for odorous gas treatment was operated for 105 days to study the trade-offs in the biofilm community and function. Biofilm colonization was found to drive community evolution during the start-up phase (phase 1, days 0-25). Although the removal efficiency of the biofilter was unsatisfactory at this phase, the microbial genera related to quorum sensing and extracellular polymeric substance secretion led to the rapid accumulation of the biofilm (2.3 kg biomass/m3 filter bed /day). During the stable operation phase (phase 2, days 26-80), genera related to target-pollutant degradation showed increases in relative abundance, which accompanied a high removal efficiency and a stable accumulation of biofilm (1.1 kg biomass/m3 filter bed/day). At the clogging phase (phase 3, days 81-105), a sharp decline in the biofilm accumulation rate (0.5 kg biomass/m3 filter bed /day) and fluctuating removal efficiency were observed. The quorum quenching-related genera and quenching genes of signal molecules increased, and competition for resources among species drove the evolution of the community in this phase. The results of this study highlight the trade-offs in biofilm community and functions during the operation of bioreactors, which could help improve bioreactor performance from a biofilm community perspective.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
2
|
Schnyder A, Eberl L, Agnoli K. Investigating the Biocontrol Potential of the Natural Microbiota of the Apple Blossom. Microorganisms 2022; 10:microorganisms10122480. [PMID: 36557734 PMCID: PMC9784478 DOI: 10.3390/microorganisms10122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Erwinia amylovora, the causative agent of fire blight, leads to important economic losses of apple and pear crops worldwide. This study aimed to investigate the potential of the resident microbiota of the apple blossom in combatting plant disease-causing organisms, with a focus on controlling fire blight. We obtained 538 isolates from sites around Canton Zurich, which we tested for activity against Pectobacterium carotovorum and E. amylovora. We also evaluated the isolates' activity against oomycete and fungal pathogens. Nine isolates showed activity against P. carotovorum, and eight of these against E. amylovora. Furthermore, 117 showed antifungal, and 161 anti-oomycete, activity. We assigned genera and in some cases species to 238 of the isolates by sequencing their 16S RNA-encoding gene. Five strains showed activity against all pathogens and were tested in a detached apple model for anti-E. amylovora activity. Of these five strains, two were able to antagonize E. amylovora, namely Bacillus velezensis #124 and Pantoea agglomerans #378. We sequenced the P. agglomerans #378 genome and analyzed it for secondary metabolite clusters using antiSMASH, revealing the presence of a putative bacteriocin cluster. We also showed that B. velezensis #124 exhibits strong activity against three different fungi and two oomycetes in vitro, suggesting a broader capacity for biocontrol. Our results showcase the protective potential of the natural apple blossom microbiota. We isolated two candidate biocontrol strains from apple blossoms, suggesting that they might persist at the most common entry point for the causative agent of fire blight. Furthermore, they are probably already part of the human diet, suggesting they might be safe for consumption, and thus are promising candidates for biocontrol applications.
Collapse
Affiliation(s)
- Anya Schnyder
- Institut für Veterinärbakteriologie, Universität Bern, 3001 Bern, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland
| | - Kirsty Agnoli
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
3
|
A selective genome-guided method for environmental Burkholderia isolation. J Ind Microbiol Biotechnol 2019; 46:345-362. [PMID: 30680473 DOI: 10.1007/s10295-018-02121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The genus Burkholderia is an emerging source of novel natural products chemistry, yet to date few methods exist for the selective isolation of strains of this genus from the environment. More broadly, tools to efficiently design selection media for any given genus would be of significant value to the natural products and microbiology communities. Using a modification of the recently published SMART protocol, we have developed a two-stage isolation protocol for strains from the genus Burkholderia. This method uses a combination of selective agar isolation media and multiplexed PCR profiling to derive Burkholderia strains from environmental samples with 95% efficiency. Creation of this new method paves the way for the systematic exploration of natural products chemistry from this important genus and offers new insight into potential methods for selective isolation method development for other priority genera.
Collapse
|
4
|
Draghi WO, Degrossi J, Bialer M, Brelles-Mariño G, Abdian P, Soler-Bistué A, Wall L, Zorreguieta A. Biodiversity of cultivable Burkholderia species in Argentinean soils under no-till agricultural practices. PLoS One 2018; 13:e0200651. [PMID: 30001428 PMCID: PMC6042781 DOI: 10.1371/journal.pone.0200651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.
Collapse
Affiliation(s)
- Walter Omar Draghi
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- Instituto de Biotecnología y Biología Molecular–CCT La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AZ); (WOD)
| | - Jose Degrossi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Bialer
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | - Graciela Brelles-Mariño
- Center for Research and Development of Industrial Fermentations, (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia Abdian
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | | | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- * E-mail: (AZ); (WOD)
| |
Collapse
|
5
|
Boukerb AM, Decor A, Ribun S, Tabaroni R, Rousset A, Commin L, Buff S, Doléans-Jordheim A, Vidal S, Varrot A, Imberty A, Cournoyer B. Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa. Front Microbiol 2016; 7:811. [PMID: 27303392 PMCID: PMC4885879 DOI: 10.3389/fmicb.2016.00811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewis(a) rather than Lewis(x). Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewis(a) showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great variations in the responses were observed. Glycomimetics directed against LecB yielded the highest numbers of aggregates for strains from all clades. The use of a PAO1ΔlecB strain confirmed a role of LecB in this aggregation phenotype. Fucosylated calix[4]arene showed the greatest potential for a use in the prevention of P. aeruginosa infections.
Collapse
Affiliation(s)
- Amine M Boukerb
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Aude Decor
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Sébastien Ribun
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Rachel Tabaroni
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Audric Rousset
- Laboratoire de Chimie Organique 2 - Glycochimie, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR Centre National de la Recherche Scientifique 5246, Université Lyon 1 Lyon, France
| | - Loris Commin
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, Interactions Cellules Environnement and CRB-ANIM (ANR-INBS11-0003) Marcy-L'Etoile, France
| | - Samuel Buff
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, Interactions Cellules Environnement and CRB-ANIM (ANR-INBS11-0003) Marcy-L'Etoile, France
| | - Anne Doléans-Jordheim
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Sébastien Vidal
- Laboratoire de Chimie Organique 2 - Glycochimie, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR Centre National de la Recherche Scientifique 5246, Université Lyon 1 Lyon, France
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Benoit Cournoyer
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| |
Collapse
|
6
|
Complete Genome Sequence of a Phenanthrene Degrader, Burkholderia sp. HB-1 (NBRC 110738). GENOME ANNOUNCEMENTS 2015; 3:3/6/e01283-15. [PMID: 26543118 PMCID: PMC4645203 DOI: 10.1128/genomea.01283-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan. The genome of strain HB-1 comprises two circular chromosomes of 4.1 Mb and 3.1 Mb. The finishing was facilitated by the computational tools GenoFinisher, AceFileViewer, and ShortReadManager.
Collapse
|
7
|
Tariq M, Lum MR, Chong AW, Amirapu AB, Hameed S, Hirsch AM. A reliable method for the selection and confirmation of transconjugants of plant growth-promoting bacteria especially plant-associated Burkholderia spp. J Microbiol Methods 2015; 117:49-53. [PMID: 26187775 DOI: 10.1016/j.mimet.2015.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Selectable markers, e.g., antibiotic resistance, for conjugation experiments are not always effective for slow-growing plant growth promoting bacteria such as Burkholderia. We used PCAT medium containing Congo Red for selecting Burkholderia transconjugants. This method allows for the reliable selection of transconjugants of these novel plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Mohsin Tariq
- National Institute for Biotechnology & Genetic Engineering, Faisalabad, Pakistan; Government College University Faisalabad, Allama Iqbal Road, Faisalabad, Pakistan
| | - Michelle R Lum
- Department of Biology, Loyola Marymount University, Los Angeles, CA, USA
| | - Allan W Chong
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Anjana B Amirapu
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Sohail Hameed
- National Institute for Biotechnology & Genetic Engineering, Faisalabad, Pakistan
| | - Ann M Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Tago K, Kikuchi Y, Nakaoka S, Katsuyama C, Hayatsu M. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs. Mol Ecol 2015; 24:3766-78. [PMID: 26059639 DOI: 10.1111/mec.13265] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance.
Collapse
Affiliation(s)
- Kanako Tago
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences (NIAES), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan.,Graduate School of Agriculture, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Sinji Nakaoka
- Laboratory for Mathematical Modeling of Immune System, RIKEN Center for Integrative Medical Science Center (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Chie Katsuyama
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Masahito Hayatsu
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences (NIAES), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| |
Collapse
|
9
|
Draghi WO, Peeters C, Cnockaert M, Snauwaert C, Wall LG, Zorreguieta A, Vandamme P. Burkholderia cordobensis sp. nov., from agricultural soils. Int J Syst Evol Microbiol 2014; 64:2003-2008. [PMID: 24623656 DOI: 10.1099/ijs.0.059667-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain.
Collapse
Affiliation(s)
- Walter O Draghi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Fundación Instituto Leloir and IIBA - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Cindy Snauwaert
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luis G Wall
- Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir and IIBA - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Bergmark L, Poulsen PHB, Al-Soud WA, Norman A, Hansen LH, Sørensen SJ. Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiol Lett 2012; 333:77-84. [PMID: 22639954 DOI: 10.1111/j.1574-6968.2012.02601.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/13/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, two highly specific quantitative PCR assays targeting the bacterial genera Burkholderia and Pseudomonas were developed and evaluated on soil samples. The primers were targeting different multivariate regions of the 16S rRNA gene and designed to be compatible with quantitative PCR and the high throughput 454 pyrosequencing technique. The developed assays were validated using the standard methods. All tests with the new developed assays showed very high specificity. Pyrosequencing was used for direct analysis of the PCR product and applied as a specificity measurement of the primers. The Pseudomonas primers showed a 99% primer specificity, which covered 200 different Pseudomonas sequence clusters in 0.5 g of soil. In contrast to that the same approach using the genus-specific Burkholderia primers showed only 8% primer specificity. This discrepancy in primer specificity between the normal procedures compared with pyrosequencing illustrates that the common validation procedures for quantitative PCR primers may be misleading. Our results exemplify the fact that current 16S RNA gene sequence databases might lack resolution within many taxonomic groups and emphasize the necessity for a standardized and functional primer validation protocol. A possible solution to this could be to supplement the normal verification of quantitative PCR assays with a pyrosequencing approach.
Collapse
Affiliation(s)
- Lasse Bergmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
11
|
Barak JD, Schroeder BK. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:241-66. [PMID: 22656644 DOI: 10.1146/annurev-phyto-081211-172936] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Collapse
Affiliation(s)
- Jeri D Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
12
|
Coutinho CP, dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011; 1:12. [PMID: 22919578 PMCID: PMC3417363 DOI: 10.3389/fcimb.2011.00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/15/2011] [Indexed: 01/06/2023] Open
Abstract
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case-study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients' airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways.
Collapse
Affiliation(s)
- Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Nuno P. Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Ana S. Moreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| |
Collapse
|
13
|
Vial L, Chapalain A, Groleau MC, Déziel E. The various lifestyles of theBurkholderia cepaciacomplex species: a tribute to adaptation. Environ Microbiol 2010; 13:1-12. [DOI: 10.1111/j.1462-2920.2010.02343.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Complementary cooperation between two syntrophic bacteria in pesticide degradation. J Theor Biol 2008; 256:644-54. [PMID: 19038271 DOI: 10.1016/j.jtbi.2008.10.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 09/30/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022]
Abstract
Interactions between microbial species, including competition and mutualism, influence the abundance and distribution of the related species. For example, metabolic cooperation among multiple bacteria plays a major role in the maintenance of consortia. This study aims to clarify how two bacterial species coexist in a syntrophic association involving the degradation of the pesticide fenitrothion. To elucidate essential mechanisms for maintaining a syntrophic association, we employed a mathematical model based on an experimental study, because experiment cannot elucidate various conditions for two bacterial coexistence. We isolated fenitrothion-degrading Sphingomonas sp. TFEE and its metabolite of 3-methyl-4-nitrophenol (3M4N)-degrading Burkholderia sp. MN1 from a fenitrothion-treated soil microcosm. Neither bacterium can completely degrade fenitrothion alone, but they can utilize the second intermediate, methylhydroquinone (MHQ). Burkholderia sp. MN1 excretes a portion of MHQ during the degradation of 3M4N, from which Sphingomonas sp. TFEE carries out degradation to obtain carbon and energy. Based on experimental findings, we developed mathematical models that represent the syntrophic association involving the two bacteria. We found that the two bacteria are characterized by the mutualistic degradation of fenitrothion. Dynamics of two bacteria are determined by the degree of cooperation between two bacteria (i.e., supply of 3M4N by Sphingomonas sp. TFEE and excretion of MHQ by Burkholderia sp. MN1) and the initial population sizes. The syntrophic association mediates the coexistence of the two bacteria under the possibility of resource competition for MHQ, and robustly facilitates the maintenance of ecosystem function in terms of degrading xenobiotics. Thus, the mathematical analysis and numerical computations based on the experiment indicate the key mechanisms for coexistence of Sphingomonas sp. TFEE and Burkholderia sp. MN1 in syntrophic association involving fenitrothion degradation.
Collapse
|
15
|
Cunha MV, Pinto-de-Oliveira A, Meirinhos-Soares L, Salgado MJ, Melo-Cristino J, Correia S, Barreto C, Sá-Correia I. Exceptionally high representation of Burkholderia cepacia among B. cepacia complex isolates recovered from the major Portuguese cystic fibrosis center. J Clin Microbiol 2007; 45:1628-33. [PMID: 17360834 PMCID: PMC1865859 DOI: 10.1128/jcm.00234-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/02/2007] [Accepted: 03/07/2007] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia, a species found infrequently in cystic fibrosis (CF), was isolated from 85% of patients infected with bacteria of the B. cepacia complex that visited the major Portuguese CF center, in Lisbon, during 2003 to 2005. A detailed molecular analysis revealed that this was mainly due to two B. cepacia clones. These clones were indistinguishable from two strains isolated from intrinsically contaminated nonsterile saline solutions for nasal application, detected during routine market surveillance by the Portuguese Medicines and Health Products Authority.
Collapse
Affiliation(s)
- Mónica V Cunha
- IBB-Institute for Biological and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vanlaere E, Coenye T, Samyn E, Van den Plas C, Govan J, De Baets F, De Boeck K, Knoop C, Vandamme P. A novel strategy for the isolation and identification of environmental Burkholderia cepacia complex bacteria. FEMS Microbiol Lett 2005; 249:303-7. [PMID: 16000240 DOI: 10.1016/j.femsle.2005.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/07/2005] [Accepted: 06/13/2005] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to develop a novel strategy for the isolation and identification of Burkholderia cepacia complex bacteria from the home environment of cystic fibrosis (CF) patients. Water and soil samples were enriched in a broth containing 0.1% l-arabinose, 0.1% l-threonine, and a mixture of selective agents including 1 microgml(-1) C-390, 600U ml(-1) polymyxin B sulfate, 10 microgml(-1) gentamycin, 2 microgml(-1) vancomycin and 10 microgml(-1) cycloheximide. On selective media (consisting of the same components as above plus 1.8% agar), several dilutions of the enrichment broth were inoculated and incubated for 5 days at 28 degrees C. Isolates with different randomly amplified polymorphic DNA patterns were inoculated in Stewart's medium. Putative B. cepacia complex bacteria were confirmed by means of recA PCR and further identified by HaeIII-recA restriction fragment length polymorphism analysis. Our results suggest that these organisms may be more widespread in the home environment than previously assumed and that plant associated soil and pond water may be reservoirs of B. cepacia complex infection in CF patients.
Collapse
Affiliation(s)
- Elke Vanlaere
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reis VM, Santos PEDL, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 2005; 54:2155-2162. [PMID: 15545451 DOI: 10.1099/ijs.0.02879-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In an ecological survey of nitrogen-fixing bacteria isolated from the rhizosphere and as endophytes of sugarcane, maize and teosinte plants in Brazil, Mexico and South Africa, a new phylogenetically homogeneous group of N(2)-fixing bacteria was identified within the genus Burkholderia. This polyphasic taxonomic study included microscopic and colony morphology, API 20NE tests and growth on different culture media at different pH and temperatures, as well as carbon source assimilation tests and whole-cell protein pattern analysis. Analysis of 16S rRNA gene sequences showed 99.2-99.9 % similarity within the novel species and 97.2 % similarity to the closest related species, Burkholderia sacchari. The novel species was composed of four distinct amplified 16S rDNA restriction analysis groups. The DNA-DNA reassociation values within the novel species were greater than 70 % and less than 42 % for the closest related species, B. sacchari. Based on these results and on many phenotypic characteristics, a novel N(2)-fixing species is proposed for the genus Burkholderia, Burkholderia tropica sp. nov., with the type strain Ppe8(T) (=ATCC BAA-831(T)=LMG 22274(T)=DSM 15359(T)). B. tropica was isolated from plants grown in geographical regions with climates ranging from temperate subhumid to hot humid.
Collapse
Affiliation(s)
- V M Reis
- Centro Nacional de Pesquisa de Agrobiologia (EMBRAPA-Agrobiologia), km 47, Seropédica, 23851-970, CP 74505, Rio de Janeiro, Brazil
| | - P Estrada-de Los Santos
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México
| | - S Tenorio-Salgado
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México
| | - J Vogel
- SASA Experiment Station, Private Bag X02, Mt Edgecombe, KZN, 4300 South Africa
| | - M Stoffels
- GSF - National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr.1, D-85764 Neuherberg/Munich, Germany
| | - S Guyon
- Ecologie Microbienne, UMR CNRS 5557 Université Claude Bernard Lyon I, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - P Mavingui
- Ecologie Microbienne, UMR CNRS 5557 Université Claude Bernard Lyon I, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México
| | - V L D Baldani
- Centro Nacional de Pesquisa de Agrobiologia (EMBRAPA-Agrobiologia), km 47, Seropédica, 23851-970, CP 74505, Rio de Janeiro, Brazil
| | - M Schmid
- GSF - National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr.1, D-85764 Neuherberg/Munich, Germany
| | - J I Baldani
- Centro Nacional de Pesquisa de Agrobiologia (EMBRAPA-Agrobiologia), km 47, Seropédica, 23851-970, CP 74505, Rio de Janeiro, Brazil
| | - J Balandreau
- Ecologie Microbienne, UMR CNRS 5557 Université Claude Bernard Lyon I, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
- SASA Experiment Station, Private Bag X02, Mt Edgecombe, KZN, 4300 South Africa
| | - A Hartmann
- GSF - National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr.1, D-85764 Neuherberg/Munich, Germany
| | - J Caballero-Mellado
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México
| |
Collapse
|
18
|
Rimé D, Nazaret S, Gourbière F, Cadet P, Moënne-Loccoz Y. Comparison of sandy soils suppressive or conducive to ectoparasitic nematode damage on sugarcane. PHYTOPATHOLOGY 2003; 93:1437-44. [PMID: 18944073 DOI: 10.1094/phyto.2003.93.11.1437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT Two South African sandy soils, one suppressive and the other conducive to ectoparasitic nematode damage on monoculture sugarcane, were compared. Analysis of field transects indicated that the suppressive soil displayed a comparatively higher population of the weak ectoparasite Helicotylenchus dihystera, whose predominance among ectoparasitic nematodes is known to limit yield loss caused by more virulent phytonematodes. Soil type was identical at both sites (entisols), but the suppressive soil had a higher organic matter content and a lower pH, which correlated with H. dihystera population data. In contrast, microclimatic differences between the two field sites were unlikely to be responsible for the suppressive or conducive status of the soils, as shown in a greenhouse experiment. The two soils exhibited a bacterial community of the same size but with different genetic structures, as indicated by automated ribosomal intergenic spacer analysis (RISA). The number of culturable fluorescent pseudomonads was higher for the conducive soil, probably because extensive root damage caused by ectoparasitic nematodes favored proliferation of these bacteria. This study shows that apparently small differences in soil composition between fields located in the same climatic area and managed similarly can translate into contrasted nematode communities, ectoparasitic nematode damage levels, and sugarcane yields.
Collapse
|