1
|
Torres-Haro A, Verdín J, Kirchmayr MR, Arellano-Plaza M. Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb Cell Fact 2021; 20:175. [PMID: 34488760 PMCID: PMC8420053 DOI: 10.1186/s12934-021-01664-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Astaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3'R or 3S, 3'S) are a minority. Microbial production of (3R, 3'R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Alejandro Torres-Haro
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Melchor Arellano-Plaza
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Baeza M, Fernández-Lobato M, Alcaíno J, Cifuentes V. Isolation and Characterization of Extrachromosomal Double-Stranded RNA Elements from Carotenogenic Yeasts. Methods Mol Biol 2018; 1852:327-339. [PMID: 30109641 DOI: 10.1007/978-1-4939-8742-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Double-stranded RNA (dsRNA) molecules are widely found in yeasts and filamentous fungi. It has been suggested that these molecules may play an important role in the evolution of eukaryote genomes and could be a valuable tool in yeast typing. The characterization of these extrachromosomal genetic elements is usually a laborious process, especially when trying to analyze a large number of samples. In this chapter, we describe a simple method to isolate dsRNA elements from yeasts using low amounts of starting material and their application to different Xanthophyllomyces dendrorhous strains and other psychrotolerant carotenogenic yeasts. Furthermore, the methodologies for enzymatic and hybridization characterizations and quantification of relative dsRNA abundance are detailed.
Collapse
Affiliation(s)
- Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jennifer Alcaíno
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Barredo JL, García-Estrada C, Kosalkova K, Barreiro C. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. J Fungi (Basel) 2017; 3:E44. [PMID: 29371561 PMCID: PMC5715937 DOI: 10.3390/jof3030044] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.
Collapse
Affiliation(s)
- Jose L Barredo
- CRYSTAL PHARMA S.A.U. Parque Tecnológico de León, C/Nicostrato Vela s/n, 24009 León, Spain.
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
- Área de Toxicología, Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, 24071 León, Spain.
| | - Katarina Kosalkova
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda, Astorga, s/n, 24400 Ponferrada, Spain.
| |
Collapse
|
4
|
Córdova P, Gonzalez AM, Nelson DR, Gutiérrez MS, Baeza M, Cifuentes V, Alcaíno J. Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Genomics 2017; 18:540. [PMID: 28724407 PMCID: PMC5516332 DOI: 10.1186/s12864-017-3942-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases involved in the oxidative metabolism of an enormous diversity of substrates. These enzymes require electrons for their activity, and the electrons are supplied by NAD(P)H through a P450 electron donor system, which is generally a cytochrome P450 reductase (CPR). The yeast Xanthophyllomyces dendrorhous has evolved an exclusive P450-CPR system that specializes in the synthesis of astaxanthin, a carotenoid with commercial potential. For this reason, the aim of this work was to identify and characterize other potential P450 genes in the genome of this yeast using a bioinformatic approach. RESULTS Thirteen potential P450-encoding genes were identified, and the analysis of their deduced proteins allowed them to be classified in ten different families: CYP51, CYP61, CYP5139 (with three members), CYP549A, CYP5491, CYP5492 (with two members), CYP5493, CYP53, CYP5494 and CYP5495. Structural analyses of the X. dendrorhous P450 proteins showed that all of them have a predicted transmembrane region at their N-terminus and have the conserved domains characteristic of the P450s, including the heme-binding region (FxxGxRxCxG); the PER domain, with the characteristic signature for fungi (PxRW); the ExxR motif in the K-helix region and the oxygen-binding domain (OBD) (AGxDTT); also, the characteristic secondary structure elements of all the P450 proteins were identified. The possible functions of these P450s include primary, secondary and xenobiotic metabolism reactions such as sterol biosynthesis, carotenoid synthesis and aromatic compound degradation. CONCLUSIONS The carotenogenic yeast X. dendrorhous has thirteen P450-encoding genes having potential functions in primary, secondary and xenobiotic metabolism reactions, including some genes of great interest for fatty acid hydroxylation and aromatic compound degradation. These findings established a basis for future studies about the role of P450s in the carotenogenic yeast X. dendrorhous and their potential biotechnological applications.
Collapse
Affiliation(s)
- Pamela Córdova
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Ana-María Gonzalez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - María-Soledad Gutiérrez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
5
|
Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Microbiol Biotechnol 2015; 31:517-26. [PMID: 25643668 PMCID: PMC4333312 DOI: 10.1007/s11274-015-1808-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| |
Collapse
|
6
|
Contreras G, Barahona S, Rojas MC, Baeza M, Cifuentes V, Alcaíno J. Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous. BMC Biotechnol 2013; 13:84. [PMID: 24103677 PMCID: PMC3852557 DOI: 10.1186/1472-6750-13-84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that is relevant to biotechnology, as it can synthesize the carotenoid astaxanthin. However, the astaxanthin levels produced by wild-type strains are low. Although different approaches for promoting increased astaxanthin production have been attempted, no commercially competitive results have been obtained thus far. A promising alternative to facilitate the production of carotenoids in this yeast involves the use of genetic modification. However, a major limitation is the few available molecular tools to manipulate X. dendrorhous. RESULTS In this work, the DNA assembler methodology that was previously described in Saccharomyces cerevisiae was successfully applied to assemble DNA fragments in vivo and integrate these fragments into the genome of X. dendrorhous by homologous recombination in only one transformation event. Using this method, the gene encoding astaxanthin synthase (crtS) was overexpressed in X. dendrorhous and a higher level of astaxanthin was produced. CONCLUSIONS This methodology could be used to easily and rapidly overexpress individual genes or combinations of genes simultaneously in X. dendrorhous, eliminating numerous steps involved in conventional cloning methods.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| |
Collapse
|
7
|
Lin G, Bultman J, Johnson EA, Fell JW. Genetic manipulation of Xanthophyllomyces dendrorhous and Phaffia rhodozyma. Methods Mol Biol 2012; 898:235-249. [PMID: 22711130 DOI: 10.1007/978-1-61779-918-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The yeasts Xanthophyllomyces dendrorhous (teleomorph) and Phaffia rhodozyma (anamorph) are of basidiomycetous affinity and have the unique property among yeasts of producing the carotenoid pigment astaxanthin. Astaxanthin imparts the attractive coloration to salmonids, crustaceans, and several birds such as the flamingo, and it has considerable economic value. Microbiological and genetic techniques for manipulation are rudimentary in the yeast, while their utility would be valuable for strain development including hypermutants that overproduce astaxanthin. Here we describe methods for manipulation of the yeast, including induction of the sexual stage with basidiospore formation, methods for isolation of mutants (particularly mutants affected in carotenoid biosynthesis) as well as techniques for isolation and analysis of carotenoids. These methods are valuable for understanding the biology and enhancing the biotechnology value of the yeast.
Collapse
Affiliation(s)
- Guangyun Lin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
8
|
Baeza M, Fernández-Lobato M, Cifuentes V. Isolation and characterization of extrachromosomal double-stranded RNA elements in Xanthophyllomyces dendrorhous. Methods Mol Biol 2012; 898:195-205. [PMID: 22711127 DOI: 10.1007/978-1-61779-918-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Double-stranded RNA (dsRNA) molecules are widely found in yeasts and filamentous fungi. It has been suggested that may play important roles in the evolution of eukaryote genomes and may be a valuable tool in yeast typing. The characterization of these extrachromosomal genetic elements is usually a laborious process, especially when trying to analyze a large number of samples. In this chapter, we describe a simple method to isolate dsRNA elements from yeasts using low amounts of starting material, and their application to different Xanthophyllomyces dendrorhous strains. Furthermore, the methodologies for enzymatic and hybridization characterizations, and quantification of relative dsRNA abundance are detailed.
Collapse
Affiliation(s)
- Marcelo Baeza
- Centro de Biotecnología y Dpto. Cs. Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
9
|
Martinez-Moya P, Watt SA, Niehaus K, Alcaíno J, Baeza M, Cifuentes V. Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Microbiol 2011; 11:131. [PMID: 21669001 PMCID: PMC3224108 DOI: 10.1186/1471-2180-11-131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/13/2011] [Indexed: 01/28/2023] Open
Abstract
Background The yeast Xanthophyllomyces dendrorhous is used for the microbiological production of the antioxidant carotenoid astaxanthin. In this study, we established an optimal protocol for protein extraction and performed the first proteomic analysis of the strain ATCC 24230. Protein profiles before and during the induction of carotenogenesis were determined by two-dimensional polyacrylamide gel electrophoresis and proteins were identified by mass spectrometry. Results Among the approximately 600 observed protein spots, 131 non-redundant proteins were identified. Proteomic analyses allowed us to identify 50 differentially expressed proteins that fall into several classes with distinct expression patterns. These analyses demonstrated that enzymes related to acetyl-CoA synthesis were more abundant prior to carotenogenesis. Later, redox- and stress-related proteins were up-regulated during the induction of carotenogenesis. For the carotenoid biosynthetic enzymes mevalonate kinase and phytoene/squalene synthase, we observed higher abundance during induction and/or accumulation of carotenoids. In addition, classical antioxidant enzymes, such as catalase, glutathione peroxidase and the cytosolic superoxide dismutases, were not identified. Conclusions Our results provide an overview of potentially important carotenogenesis-related proteins, among which are proteins involved in carbohydrate and lipid biosynthetic pathways as well as several redox- and stress-related proteins. In addition, these results might indicate that X. dendrorhous accumulates astaxanthin under aerobic conditions to scavenge the reactive oxygen species (ROS) generated during metabolism.
Collapse
Affiliation(s)
- Pilar Martinez-Moya
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
10
|
Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaíno J, Sepulveda D, Baeza M, Cifuentes V. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res 2011; 11:252-62. [DOI: 10.1111/j.1567-1364.2010.00711.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
The inter-generic fungicidal activity of Xanthophyllomyces dendrorhous. J Microbiol 2011; 48:822-8. [PMID: 21221941 DOI: 10.1007/s12275-010-0180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
In this study, the existence of intra-specific and inter-generic fungicidal activity in Xanthophyllomyces dendrorhous and Phaffia rhodozyma strains isolated from different regions of the earth was examined. Assays were performed under several culture conditions, showing that all the analyzed X. dendrorhous and P. rhodozyma strains have killing activity against Kloeckera apiculata, Rhodotorula sloffiae, and R. minuta. This activity was greater in rich media at a pH from 4.6 to 5.0. Extracellular protein extracts with fungicidal activity were obtained from cultures of all strains, and their characterization suggested that a protein of 33 kDa is the antifungal factor. According to peptide mass fingerprinting and an analysis of the results with the MASCOT search engine, this protein was identified as an aspartic protease. Additionally, extrachromosomal double-stranded DNA elements (dsDNAs) were observed in all X. dendrorhous and P. rhodozyma strains. Although there is a high variability, two dsDNAs of 5.4 and 6.8 kb are present in all strains.
Collapse
|
12
|
Rodríguez-Sáiz M, de la Fuente JL, Barredo JL. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 2010; 88:645-58. [PMID: 20711573 DOI: 10.1007/s00253-010-2814-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).
Collapse
Affiliation(s)
- Marta Rodríguez-Sáiz
- R&D Biology, Antibióticos S.A., Avenida de Antibióticos 59-61, 24009 León, Spain
| | | | | |
Collapse
|
13
|
Baeza M, Sanhueza M, Flores O, Oviedo V, Libkind D, Cifuentes V. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas. Virol J 2009; 6:160. [PMID: 19814805 PMCID: PMC2764699 DOI: 10.1186/1743-422x-6-160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. RESULTS Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, while the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. CONCLUSION The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in X. dendrorhous.
Collapse
Affiliation(s)
- Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Oriana Flores
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Oviedo
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología. Bariloche, Río Negro, Argentina
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Baeza M, Retamales P, Sepúlveda D, Lodato P, Jiménez A, Cifuentes V. Isolation, characterization and long term preservation of mutant strains of Xanthophyllomyces dendrorhous. J Basic Microbiol 2009; 49:135-41. [PMID: 18792046 DOI: 10.1002/jobm.200800096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The yeast Xanthophyllomyces dendrorhous is biotechnologically important due to its ability to produce the pigment astaxanthin, but is poorly understood at the genetic level. This is mainly because its preservation is difficult and many of the mutants obtained are unstable. The objectives of the present work were (i) the mutagenesis X. dendrorhous and, (ii) isolation of mutants with auxotrophic markers suitable for genetic studies of the carotenogenesis pathway and sexual cycle. Additionally, two kinds of preservation methods at the laboratory level were tested for the storage of strains. A collection of X. dendrorhous mutants affected in the production of carotenoid pigments or development of sexual structures and auxotrophic requirements were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine and the antibiotic nystatin. From a detailed analysis about the requirements of auxotrophic mutants the ARG7, ARG3 and PRO3 loci can be defined in this yeast. Among the methods assayed for the long-term preservation of X. dendrorhous strains, the dehydrated gelatin drop method showed the highest recovery of viable yeast after storage for 65 months. No changes in auxotrophic properties and in macro or micro morphology were observed after applying the latter method.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
15
|
Alcaíno J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, Sepúlveda D, Baeza M, Cifuentes V. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 2008; 8:169. [PMID: 18837978 PMCID: PMC2575211 DOI: 10.1186/1471-2180-8-169] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/06/2008] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid with high commercial interest. The proposed biosynthetic route in this organism is isopentenyl-pyrophosphate (IPP) --> geranyleranyl pyrophosphate (GGPP) --> phytoene --> lycopene --> beta-carotene --> astaxanthin. Recently, it has been published that the conversion of beta-carotene into astaxanthin requires only one enzyme, astaxanthin synthase or CrtS, encoded by crtS gene. This enzyme belongs to the cytochrome P450 protein family. RESULTS In this work, a crtR gene was isolated from X. dendrorhous yeast, which encodes a cytochrome P450 reductase (CPR) that provides CrtS with the necessary electrons for substrate oxygenation. We determined the structural organization of the crtR gene and its location in the yeast electrophoretic karyotype. Two transformants, CBSTr and T13, were obtained by deleting the crtR gene and inserting a hygromycin B resistance cassette. The carotenoid composition of the transformants was altered in relation to the wild type strain. CBSTr forms yellow colonies because it is unable to produce astaxanthin, hence accumulating beta-carotene. T13 forms pale colonies because its astaxanthin content is reduced and its beta-carotene content is increased. CONCLUSION In addition to the crtS gene, X. dendrorhous requires a novel gene, crtR, for the conversion of beta-carotene to astaxanthin.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marisela Carmona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carla Lozano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés Marcoleta
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Niklitschek
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Lodato P, Alcaino J, Barahona S, Retamales P, Cifuentes V. Alternative splicing of transcripts from crtI and crtYB genes of Xanthophyllomyces dendrorhous. Appl Environ Microbiol 2003; 69:4676-82. [PMID: 12902257 PMCID: PMC169127 DOI: 10.1128/aem.69.8.4676-4682.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthophyllomyces dendrorhous is one of the relevant sources of the carotenoid astaxanthin. In this paper, we describe for the first time cloning of unexpected cDNAs obtained from the crtI and crtYB genes of X. dendrorhous strain UCD 67-385. The cDNA of the crtI gene conserves 80 bp of the first intron, while the cDNA of the crtYB gene conserves 55 bp of the first intron and lacks 111 bp of the second exon. The crtI and crtYB RNAs could be spliced in alternative splice sites, which produced alternative transcripts which could not be translated to active CRTI and CRTYB proteins since they had numerous stop codons in their sequences. The ratio of mature mRNA to alternative mRNA for the crtI gene decreased as a function of the age of the culture, while the cellular content of carotenoids increased. It is possible that splicing to mature or alternative transcripts could regulate the cellular concentrations of phytoene desaturase and phytoene synthase-lycopene cyclase proteins, depending on the physiological or environmental conditions.
Collapse
Affiliation(s)
- P Lodato
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|