1
|
Shin S, Jiang D, Yu J, Yang C, Jeong W, Li J, Bae J, Shin J, An K, Kim W, Cho NJ. Interaction Dynamics of Liposomal Fatty Acids with Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23666-23679. [PMID: 40223206 DOI: 10.1021/acsami.5c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The increasing prevalence of antibiotic-resistant bacteria has driven the need for alternative therapeutic strategies, with liposomal fatty acids (LipoFAs) emerging as promising candidates due to their potent antibacterial properties. Despite growing interest, the detailed biophysical interactions between LipoFAs and bacterial membranes remain underexplored. In this study, we systematically investigate the mechanistic interactions of liposomal linolenic acid (LipoLNA), linoleic acid (LipoLLA), and oleic acid (LipoOA) with model Gram-positive bacterial membranes using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. QCM-D analysis revealed that LipoOA displayed the highest rate of membrane fusion, followed by LipoLLA and LipoLNA. Fluorescence microscopy highlighted distinct morphological changes induced by each LipoFA: LipoLNA generated large membrane buds, LipoLLA formed smaller dense protrusions, and LipoOA caused rapid incorporation with uniform dense spots. Furthermore, fluorescence recovery after photobleaching (FRAP) demonstrated that LipoLNA significantly enhanced lipid mobility and membrane fluidity, as confirmed by Laurdan generalized polarization measurements. The extent of unsaturation in LipoFAs was found to play a critical role in their interaction mechanism, with higher degrees of unsaturation inducing greater local curvature stress, increased membrane permeability, and substantial ATP leakage, ultimately leading to improved bactericidal activity. Notably, liposomal formulations exhibited enhanced biocompatibility compared to free fatty acids. These findings provide valuable mechanistic insights into how LipoFAs perturb bacterial membranes, supporting their potential application as alternative antibacterial agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Woncheol Jeong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jian Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jieun Bae
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Jihoon Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Kyongman An
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| |
Collapse
|
2
|
Chacón CF, Parachú Marcó MV, Poletta GL, Siroski PA. Lipid metabolism in crocodilians: A field with promising applications in the field of ecotoxicology. ENVIRONMENTAL RESEARCH 2024; 252:119017. [PMID: 38704009 DOI: 10.1016/j.envres.2024.119017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
In the last years, lipid physiology has become an important research target for systems biology applied to the field of ecotoxicology. Lipids are not only essential components of biological membranes, but also participate in extra and intracellular signaling processes and as signal transducers and amplifiers of regulatory cascades. Particularly in sauropsids, lipids are the main source of energy for reproduction, growth, and embryonic development. In nature, organisms are exposed to different stressors, such as parasites, diseases and environmental contaminants, which interact with lipid signaling and metabolic pathways, disrupting lipid homeostasis. The system biology approach applied to ecotoxicological studies is crucial to evaluate metabolic regulation under environmental stress produced by xenobiotics. In this review, we cover information of molecular mechanisms that contribute to lipid metabolism homeostasis in sauropsids, specifically in crocodilian species. We focus on the role of lipid metabolism as a powerful source of energy and its importance during oocyte maturation, which has been increasingly recognized in many species, but information is still scarce in crocodiles. Finally, we highlight priorities for future research on the influence of environmental stressors on lipid metabolism, their potential effect on the reproductive system and thus on the offspring, and their implications on crocodilians conservation.
Collapse
Affiliation(s)
- C F Chacón
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina.
| | - M V Parachú Marcó
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| | - G L Poletta
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N, 3000, Santa Fe, Argentina
| | - P A Siroski
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| |
Collapse
|
3
|
Laffet GP, Genette A, Gamboa B, Auroy V, Voegel JJ. Determination of fatty acid and sphingoid base composition of eleven ceramide subclasses in stratum corneum by UHPLC/scheduled-MRM. Metabolomics 2018; 14:69. [PMID: 30830395 DOI: 10.1007/s11306-018-1366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Ceramides play a key role in skin barrier function in homeostatic and pathological conditions and can be sampled non-invasively through stratum corneum collection. OBJECTIVES To develop a novel UHPLC/Scheduled MRM method for the identification and relative distribution of eleven classes of ceramides, which are separated by UHPLC and determined by their specific retention times. The precise composition of the fatty acid and sphingoid base parts of each individual ceramide is determined via mass fragmentation. METHODS More than 1000 human and pig ceramides were identified. Three human and minipig ceramide classes, CER[AS], CER[NS] and CER[EOS] have been investigated in depth. RESULTS Sphingoid bases were characterized by a prevalence of chain lengths with sizes from C16 to C22, whereas fatty acids were mainly observed in the range of C22-C26. Overall, the ceramide profiles between human and minipig stratum corneum were similar. Differences in the CER[AS] and CER[NS] classes included a more homogeneous distribution of fatty acids (16-30 carbon atoms) in minipig, whereas in human longer fatty acid chains (> 24 carbon atoms) predominated. CONCLUSION The method will be useful for the analysis of healthy and pathological skin in various specie, and the measurement of the relative distribution of ceramides as biomarkers for pharmacodynamic studies.
Collapse
Affiliation(s)
- Gilbert P Laffet
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France.
| | - Alexandre Genette
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France
| | - Bastien Gamboa
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France
| | - Virginie Auroy
- Albhades Provence, 940 avenue de Traversetolo, 04700, Oraison, France
| | - Johannes J Voegel
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France.
| |
Collapse
|
4
|
El-Gharbawy A, Goldstein A. Mitochondrial Fatty Acid Oxidation Disorders Associated with Cardiac Disease. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0148-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Hua T, Wu D, Ding W, Wang J, Shaw N, Liu ZJ. Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids. J Biol Chem 2012; 287:28956-65. [PMID: 22745130 DOI: 10.1074/jbc.m112.385351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the K(m) values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Tian Hua
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
6
|
Rajasingh H, Øyehaug L, Våge DI, Omholt SW. Carotenoid dynamics in Atlantic salmon. BMC Biol 2006; 4:10. [PMID: 16620373 PMCID: PMC1479383 DOI: 10.1186/1741-7007-4-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/18/2006] [Indexed: 11/13/2022] Open
Abstract
Background Carotenoids are pigment molecules produced mainly in plants and heavily exploited by a wide range of organisms higher up in the food-chain. The fundamental processes regulating how carotenoids are absorbed and metabolized in vertebrates are still not fully understood. We try to further this understanding here by presenting a dynamic ODE (ordinary differential equation) model to describe and analyse the uptake, deposition, and utilization of a carotenoid at the whole-organism level. The model focuses on the pigment astaxanthin in Atlantic salmon because of the commercial importance of understanding carotenoid dynamics in this species, and because deposition of carotenoids in the flesh is likely to play an important life history role in anadromous salmonids. Results The model is capable of mimicking feed experiments analyzing astaxanthin uptake and retention over short and long time periods (hours, days and years) under various conditions. A sensitivity analysis of the model provides information on where to look for possible genetic determinants underlying the observed phenotypic variation in muscle carotenoid retention. Finally, the model framework is used to predict that a specific regulatory system controlling the release of astaxanthin from the muscle is not likely to exist, and that the release of the pigment into the blood is instead caused by the androgen-initiated autolytic degradation of the muscle in the sexually mature salmon. Conclusion The results show that a dynamic model describing a complex trait can be instrumental in the early stages of a project trying to uncover underlying determinants. The model provides a heuristic basis for an experimental research programme, as well as defining a scaffold for modelling carotenoid dynamics in mammalian systems.
Collapse
Affiliation(s)
- Hannah Rajasingh
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), 1430 Ås, Norway
| | - Leiv Øyehaug
- Centre for Integrative Genetics (CIGENE) and Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (UMB), 1430 Ås, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), 1430 Ås, Norway
| | - Stig W Omholt
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), 1430 Ås, Norway
| |
Collapse
|
7
|
Seth G, Philp RJ, Denoya CD, McGrath K, Stutzman-Engwall KJ, Yap M, Hu WS. Large-scale gene expression analysis of cholesterol dependence in NS0 cells. Biotechnol Bioeng 2005; 90:552-67. [PMID: 15830340 DOI: 10.1002/bit.20429] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NS0, a nonsecreting mouse myeloma cell, is a major host line used for recombinant antibody production. These cells have a cholesterol-dependent phenotype and rely on an exogenous supply of cholesterol for their survival and growth. To better understand the physiology underlying cholesterol dependence, we compared NS0 cells, cultivated under standard cholesterol-dependent growth conditions (NS0), to cells adapted to cholesterol-independent conditions (NS0 revertant, NS0_r). Large-scale transcriptional analyses were done using the Affymetrix GeneChip array, MG-U74Av2. The transcripts expressed differentially across the two cell lines were identified. Additionally, proteomic tools were employed to analyze cell lysates from these two cell lines. Cellular proteins from both NS0 and NS0_r were subjected to 2D gel electrophoresis. MALDI-TOF mass spectrometry was performed to determine the identity of the differentially expressed spots. We examined the expression level of mouse genes directly involved in cholesterol biosynthesis, lipid metabolism, and central energy metabolism. Most of these genes were downregulated in the revertant cell type, NS0_r, compared to NS0. Overall, a large number of genes are expressed differentially, indicating that the reversal of cholesterol dependency has a profound effect on cell physiology. It is probable that a single gene mutation, activation, or inactivation is responsible for cholesterol auxotrophy. However, the wide-ranging changes in gene expression point to the distinct possibility of a regulatory event affecting the reversibility of auxotrophy, either directly or indirectly.
Collapse
Affiliation(s)
- Gargi Seth
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455-0132, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Price AC, Rock CO, White SW. The 1.3-Angstrom-resolution crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Streptococcus pneumoniae. J Bacteriol 2003; 185:4136-43. [PMID: 12837788 PMCID: PMC164876 DOI: 10.1128/jb.185.14.4136-4143.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-ketoacyl-acyl carrier protein synthases are members of the thiolase superfamily and are key regulators of bacterial fatty acid synthesis. As essential components of the bacterial lipid metabolic pathway, they are an attractive target for antibacterial drug discovery. We have determined the 1.3 A resolution crystal structure of the beta-ketoacyl-acyl carrier protein synthase II (FabF) from the pathogenic organism Streptococcus pneumoniae. The protein adopts a duplicated betaalphabetaalphabetaalphabetabeta fold, which is characteristic of the thiolase superfamily. The two-fold pseudosymmetry is broken by the presence of distinct insertions in the two halves of the protein. These insertions have evolved to bind the specific substrates of this particular member of the thiolase superfamily. Docking of the pantetheine moiety of the substrate identifies the loop regions involved in substrate binding and indicates roles for specific, conserved residues in the substrate binding tunnel. The active site triad of this superfamily is present in spFabF as His 303, His 337, and Cys 164. Near the active site is an ion pair, Glu 346 and Lys 332, that is conserved in the condensing enzymes but is unusual in our structure in being stabilized by an Mg(2+) ion which interacts with Glu 346. The active site histidines interact asymmetrically with Lys 332, whose positive charge is closer to His 303, and we propose a specific role for the lysine in polarizing the imidazole ring of this histidine. This asymmetry suggests that the two histidines have unequal roles in catalysis and provides new insights into the catalytic mechanisms of these enzymes.
Collapse
Affiliation(s)
- Allen C Price
- Department of Structural Biology, St. Jude Children's Research Hospital, Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|