1
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
2
|
Zhou X, Zheng B. Surface modification for improving immunoassay sensitivity. LAB ON A CHIP 2023; 23:1151-1168. [PMID: 36636910 DOI: 10.1039/d2lc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on which the immunoassay is performed. In this review article, we summarize the recent progress in surface modification strategies for improving the sensitivity of immunoassays. The surface modification strategies can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating techniques to prevent nonspecific binding and reduce background noise. The techniques include hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels, and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the surface modification techniques for digital immunoassays. In the end, the challenges and the future perspectives of the surface modification techniques for immunoassays are presented.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
3
|
Delgado P, Oshinowo O, Fay ME, Luna CA, Dissanayaka A, Dorbala P, Ravindran A, Shen L, Myers DR. Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics. BIOMICROFLUIDICS 2023; 17:014104. [PMID: 36687143 PMCID: PMC9848651 DOI: 10.1063/5.0122771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Integrating microfluidic mixers into lab-on-a-chip devices remains challenging yet important for numerous applications including dilutions, extractions, addition of reagents or drugs, and particle synthesis. High-efficiency mixers utilize large or intricate geometries that are difficult to manufacture and co-implement with lab-on-a-chip processes, leading to cumbersome two-chip solutions. We present a universal dry-film microfluidic mixing sticker that can retrofit pre-existing microfluidics and maintain high mixing performance over a range of Reynolds numbers and input mixing ratios. To attach our pre-mixing sticker module, remove the backing material and press the sticker onto an existing microfluidic/substrate. Our innovation centers around the multilayer use of laser-cut commercially available silicone-adhesive-coated polymer sheets as microfluidic layers to create geometrically complex, easy to assemble designs that can be adhered to a variety of surfaces, namely, existing microfluidic devices. Our approach enabled us to assemble the traditional yet difficult to manufacture "F-mixer" in minutes and conceptually extend this design to create a novel space-saving spiral F-mixer. Computational fluid dynamic simulations and experimental results confirmed that both designs maintained high performance for 0.1 < Re < 10 and disparate input mixing ratios of 1:10. We tested the integration of our system by using the pre-mixer to fluorescently tag proteins encapsulated in an existing microfluidic. When integrated with another microfluidic, our pre-mixing sticker successfully combined primary and secondary antibodies to fluorescently tag micropatterned proteins with high spatial uniformity, unlike a traditional pre-mixing "T-mixer" sticker. Given the ease of this technology, we anticipate numerous applications for point-of-care devices, microphysiological-systems-on-a-chip, and microfluidic-based biomedical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - D. R. Myers
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Effect of hydrophobic groups on adsorption of arginine-based amino acids to solid surfaces in water. Struct Chem 2022. [DOI: 10.1007/s11224-022-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Yang Y, Liu P, Teng R, Liu F, Zhang C, Lu X, Ding Y. Integrative bioinformatics analysis of potential therapeutic targets and immune infiltration characteristics in dilated cardiomyopathy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:348. [PMID: 35433958 PMCID: PMC9011224 DOI: 10.21037/atm-22-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
Background Dilated cardiomyopathy (DCM) is currently the major cause of systolic heart failure. This study explored potential therapeutic targets and investigated the role of immune cell infiltration in DCM. Methods Three DCM datasets (GSE3585, GSE9800, and GSE84796) from the Gene Expression Omnibus (GEO) database were merged into an integrated dataset, and batch effects were removed. Differentially expressed genes (DEGs) were screened and the associations between gene co-expression modules and clinical traits were assessed by weighted gene co-expression network analysis (WGCNA) in R software. Any DEGs from the integrated dataset overlapped with the significant module genes were defined as common genes (CGs). Enrichment analysis of the CGs was performed. The protein-protein interaction (PPI) network of the CGs was visualized and the hub gene was identified by using Cytoscape 3.8.2 software. The miRNA-transcription factor-mRNA (miRNA-TF-mRNA) network was constructed using Cytoscape to unveil the regulatory relationships in DCM. Finally, the CIBERSORT method (https://cibersort.stanford.edu/) was used to investigate immune cell infiltration in DCM. Results A total of 53 DEGs were identified, and 5 gene co-expression modules were detected by WGCNA of the DCM and control group samples of cardiac tissue. Genes such as FRZB, ASPN, and PHLDA1 were significantly upregulated, whereas IDH2 and ENDOG were significantly downregulated. Functional enrichment analysis showed that CGs were mainly enriched in the extracellular matrix (ECM) signaling pathway. ASPN was the hub gene in the PPI network. The miRNA-TF-mRNA network revealed that FRZB and ASPN were targeted by paired related homeobox 2 (Prrx2). We also found that miR-129-5p could regulate ASPN, PHLDA1, and IDH2 simultaneously. The immune infiltration analysis revealed higher levels of M1 macrophages in DCM samples than in the control samples. Conclusions In conclusion, we speculate that miR-129-5p might target ASPN in regulating DCM via the ECM signaling pathway. Macrophage infiltration may be involved in ECM remodeling and eventually lead to DCM.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ping Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruoling Teng
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fenfen Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cuiping Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Ding
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Nova A, Fazia T, Beecham A, Saddi V, Piras M, McCauley JL, Berzuini C, Bernardinelli L. Plasma Protein Levels Analysis in Multiple Sclerosis Sardinian Families Identified C9 and CYP24A1 as Candidate Biomarkers. Life (Basel) 2022; 12:life12020151. [PMID: 35207439 PMCID: PMC8879906 DOI: 10.3390/life12020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Here we investigate protein levels in 69 multiple sclerosis (MS) cases and 143 healthy controls (HC) from twenty Sardinian families to search for promising biomarkers in plasma. Using antibody suspension bead array technology, the plasma levels of 56 MS-related proteins were obtained. Differences between MS cases and HC were estimated using Linear Mixed Models or Linear Quantile Mixed Models. The proportion of proteins level variability, explained by a set of 119 MS-risk SNPs as to the literature, was also quantified. Higher plasma C9 and CYP24A1 levels were found in MS cases compared to HC (p < 0.05 after Holm multiple testing correction), with protein level differences estimated as, respectively, 0.53 (95% CI: 0.25, 0.81) and 0.42 (95% CI: 0.19, 0.65) times plasma level standard deviation measured in HC. Furthermore, C9 resulted in both statistically significantly higher relapsing-remitting MS (RRMS) and secondary-progressive MS (SPMS) compared to HC, with SPMS showing the highest differences. Instead, CYP24A1 was statistically significantly higher only in RRMS as compared to HC. Respectively, 26% (95% CI: 10%, 44%) and 16% (95% CI: 9%, 39%) of CYP24A1 and C9 plasma level variability was explained by known MS-risk SNPs. Our results highlight C9 and CYP24A1 as potential biomarkers in plasma for MS and allow us to gain insight into molecular disease mechanisms.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
- Correspondence:
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Carlo Berzuini
- Centre for Biostatistics, The University of Manchester, Manchester M13 9PL, UK;
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| |
Collapse
|
7
|
Cho DH, Hahm JI. Protein-Polymer Interaction Characteristics Unique to Nanoscale Interfaces: A Perspective on Recent Insights. J Phys Chem B 2021; 125:6040-6057. [PMID: 34101462 DOI: 10.1021/acs.jpcb.1c00684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein interactions at polymer interfaces represent a complex but ubiquitous phenomenon that demands an entirely different focus of investigation than what has been attempted before. With the advancement of nanoscience and nanotechnology, the nature of polymer materials interfacing proteins has evolved to exhibit greater chemical intricacy and smaller physical dimensions. Existing knowledge built from studying the interaction of macroscopic, chemically alike surfaces with an ensemble of protein molecules cannot be simply carried over to nanoscale protein-polymer interactions. In this Perspective, novel protein interaction phenomena driven by the presence of nanoscale polymer interfaces are discussed. Being able to discern discrete protein interaction events via simple visualization was crucial to attaining the much needed, direct experimental evidence of protein-polymer interactions at the single biomolecule level. Spatial and temporal tracking of particular proteins at specific polymer interfaces was made possible by resolving individual proteins simultaneously with those polymer nanodomains responsible for the protein interactions. Therefore, such single biomolecule level approaches taken to examine protein-polymer interaction mark a big departure from the mainstream approaches of collecting indirectly observed, ensemble-averaged protein signals on chemically simple substrates. Spearheading research efforts so far has led to inspiring initial discoveries of protein interaction mechanisms and kinetics that are entirely unique to nanoscale polymer systems. They include protein self-assembly/packing characteristics, protein-polymer interaction mechanisms/kinetics, and various protein functionalities on polymer nanoconstructs. The promising beginning and future of nanoscale protein-polymer research endeavors are presented in this article.
Collapse
Affiliation(s)
- David H Cho
- Department of Chemistry, Georgetown University, 37th & O Streets NW, Washington, District of Columbia 20057, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
8
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
9
|
High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol 2020; 64:141-150. [DOI: 10.1016/j.copbio.2020.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023]
|
10
|
Feng F, Ataca ST, Ran M, Wang Y, Breen M, Kepler TB. Gain-Scanning for Protein Microarray Assays. J Proteome Res 2020; 19:2664-2675. [PMID: 31928020 DOI: 10.1021/acs.jproteome.9b00892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein microarrays consist of known proteins spotted onto solid substrates and are used to perform highly multivariate assessments of protein-binding interactions. Human protein arrays are routinely applied to pathogen detection, immune response biomarker profiling, and antibody specificity profiling. Here, we describe and demonstrate a new data processing procedure, gain-scan, in which data were acquired under multiple photomultiplier tube (PMT) settings, followed by data fitting with a power function model to estimate the incident light signals of the array spots. Data acquisition under multiple PMT settings solves the difficulty of determining the single optimal PMT gain setting and allows us to maximize the detection of low-intensity signals while avoiding the saturation of high-intensity ones at the same time. The gain-scan data acquisition and fitting also significantly lower the variances over the detectable range of signals and improve the linear data normalization. The performance of the proposed procedure was verified by analyzing the profiling data of both the human polyclonal serum samples and the monoclonal antibody samples with both technical replicates and biological replicates. We showed that the multigain power function was an appropriate model for describing data acquired under multiple PMT settings. The gain-scan fitting alone or in combination with the linear normalization could effectively reduce the technical variability of the array data and lead to better sample separability and more sensitive differential analysis.
Collapse
Affiliation(s)
- Feng Feng
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Sila Toksoz Ataca
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Mingxuan Ran
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Yumei Wang
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Michael Breen
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States.,Department of Mathematics & Statistics, Boston University, Boston, Massachusetts 02118, United States
| |
Collapse
|
11
|
Çelikbıçak Ö, Hamaloğlu KÖ, Salih B, Pişkin E. Following hybridization on sensor/array platforms by using SPR, elipsometer and MALDI-MS. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1057-1072. [PMID: 32397925 DOI: 10.1080/15257770.2020.1750635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study is to develop a methodology in which Surface Plasmon Resonance (SPR), Ellipsometer (EM) and Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS) will be used together for detection of single-strand oligodeoxynucleotides (ssODNs) targets. A selected target-ssODNs, and its complementary, the probe-ssODNs carrying a -SH end group, a spacer arm (HS-(CH2)6-(T)15, and a non-complementary ssODNs were used. Silicone based stamps with 16 regions were prepared and used for micro-contact printing (µCP) of the probe-ssODNs on the gold coated surfaces homogeneously. A modulator-spacer molecule (6-mercapto-1-hexanol) was co-immobilized to control surface probe density, to orientate the probe-ssODNs, and to eliminate the nonspecific interactions. SPR was used successfully to follow the hybridization of the target-ssODNs with the immobilized probe-ssODNs on the platform surfaces. Complete hybridizations were achieved in 100 min. It was obtained that there was a linear relationship between relative change in delta and target concentration below 1 µm. Using imaging version of ellipsometer (IEM) allowed imaging of the surfaces and supported extra datum for the SPR results. After a very simple dehybridization protocol, MALDI-MS analysis allowed detection of the target-ssODNs hybridized on the sensor/array platforms.
Collapse
Affiliation(s)
- Ömür Çelikbıçak
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | | | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erhan Pişkin
- Nanobiyomedtek, Cyberpark, Bilkent, Ankara, Turkey
| |
Collapse
|
12
|
Yang CG, Cheng L, Ye WQ, Zheng DH, Xu ZR. Preparation of encoded bar-like core-shell microparticles on a microfluidic chip. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Yao W, Chang L, Yin W, Wang T, Yang Y, Yin P, Yang M, Ma Y, Qin Y, Ma H. One immunoassay probe makes SERS and fluorescence two readout signals: Rapid imaging and determination of intracellular glutathione levels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117303. [PMID: 31255857 DOI: 10.1016/j.saa.2019.117303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/14/2019] [Accepted: 06/21/2019] [Indexed: 05/16/2023]
Abstract
In this paper, one probe (TPPA-VCh) with fluorescence and Surface-enhanced Raman Scattering (SERS) two readout signals, which has high sensitivity and specificity to glutathione in both vitro and cell image applications, is designed and synthesized. Furthermore, the quenched emissions and intensified SERS signals is obtained by loading TPPA-VCh on the surfaces of gold nanoparticles.
Collapse
Affiliation(s)
- Wenhuan Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Lu Chang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Weidong Yin
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuan Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pei Yin
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Manyi Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yucheng Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yanfang Qin
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hengchang Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
14
|
Hamaloğlu KÖ, Çelikbıçak Ö, Salih B, Pişkin E. Performances of protein array platforms prepared by soft lithography and self-assemblying monolayers-approach by using SPR, ellipsometry and MALDI-MS. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Bedri SK, Nilsson OB, Fink K, Månberg A, Hamsten C, Ayoglu B, Manouchehrinia A, Nilsson P, Olsson T, Hillert J, Grönlund H, Glaser A. Plasma protein profiling reveals candidate biomarkers for multiple sclerosis treatment. PLoS One 2019; 14:e0217208. [PMID: 31141529 PMCID: PMC6541274 DOI: 10.1371/journal.pone.0217208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) treatment options have improved significantly over the past decades, but the consequences of MS can still be devastating and the needs for monitoring treatment surveillance are considerable. In the current study we used affinity proteomics technology to identify potential biomarkers which could ultimately be used to as facilitate treatment decisions. We profiled the intra-individual changes in the levels of 59 target proteins using an antibody suspension bead array in serial plasma samples from 44 MS patients during treatment with natalizumab followed by fingolimod. Nine proteins showed decreasing plasma levels during natalizumab treatment, with PEBP1 and RTN3 displaying the most significant changes. Protein levels remained stable during fingolimod treatment for both proteins. The decreasing PEBP1 levels during natalizumab treatment could be validated using ELISA and replicated in an independent cohort. These results support the use of this technology as a high throughput method of identifying potentially useful biomarkers of MS treatment.
Collapse
Affiliation(s)
- Sahl Khalid Bedri
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
- * E-mail:
| | - Ola B. Nilsson
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
- TCER AB, c/o Advice Företagsassistans i Stockholm AB, Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Månberg
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Carl Hamsten
- Immunology and Allergy unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Burcu Ayoglu
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
| | - Anna Glaser
- Department of Clinical Neuroscience and Centrum for Molecular Medicine at Karolinska, Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Jeon H, Jung JH, Kim Y, Kwon Y, Kim ST. Allergen Microarrays for In Vitro Diagnostics of Allergies: Comparison with ImmunoCAP and AdvanSure. Ann Lab Med 2018; 38:338-347. [PMID: 29611384 PMCID: PMC5895863 DOI: 10.3343/alm.2018.38.4.338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/16/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In vitro detection of the allergen-specific IgE antibody (sIgE) is a useful tool for the diagnosis and treatment of allergies. Although multiple simultaneous allergen tests offer simple and low-cost screening methods, these platforms also have limitations with respect to multiplexibility and analytical performance. As an alternative assay platform, we developed and validated a microarray using allergen extracts that we termed "GOLD" chip. METHODS Serum samples of 150 allergic rhinitis patients were used in the study, and the diagnostic performance of the microarray was compared with that of AdvanSure (LG Life Sciences, Daejun, Korea) and ImmunoCAP (Phadia, Uppsala, Sweden). Standard IgE samples were used for the quantitative measurement of sIgEs. RESULTS The microarray-based assay showed excellent performance in the quantitative measurement of sIgEs, demonstrating a linear correlation within the range of sIgE concentrations tested. The limit of detection (LOD) was lower than 0.35 IU/mL, which is the current standard for the LOD cut-off. The assay also provided highly reproducible sets of data. The total agreement percentage of positive and negative calls was 92.2% compared with ImmunoCAP. Moreover, an outstanding correlation was observed between the microarray and the ImmunoCAP results, with Cohen's kappa and Pearson correlation coefficient values of 0.80 and 0.79, respectively. CONCLUSIONS The microarray-based in vitro diagnostic platform offers a sensitive, reproducible, and highly quantitative method to detect sIgEs. The results showed strong correlations with that of ImmunoCAP. These results suggest that the new allergen microarray can serve as a useful alternative to current screening platforms, ultimately becoming a first-line screening method.
Collapse
Affiliation(s)
- Hyunjin Jeon
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul, Korea
| | - Joo Hyun Jung
- Department of Otolaryngology, Gil Medical Center, Gachon University, Incheon, Korea
| | - Yoonji Kim
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul, Korea.,Department of Research and Development, Won Medical Co., Bucheon, Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul, Korea.
| | - Seon Tae Kim
- Department of Otolaryngology, Gil Medical Center, Gachon University, Incheon, Korea
| |
Collapse
|
17
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
18
|
Reguera G. Harnessing the power of microbial nanowires. Microb Biotechnol 2018; 11:979-994. [PMID: 29806247 PMCID: PMC6201914 DOI: 10.1111/1751-7915.13280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
The reduction of iron oxide minerals and uranium in model metal reducers in the genus Geobacter is mediated by conductive pili composed primarily of a structurally divergent pilin peptide that is otherwise recognized, processed and assembled in the inner membrane by a conserved Type IVa pilus apparatus. Electronic coupling among the peptides is promoted upon assembly, allowing the discharge of respiratory electrons at rates that greatly exceed the rates of cellular respiration. Harnessing the unique properties of these conductive appendages and their peptide building blocks in metal bioremediation will require understanding of how the pilins assemble to form a protein nanowire with specialized sites for metal immobilization. Also important are insights into how cells assemble the pili to make an electroactive matrix and grow on electrodes as biofilms that harvest electrical currents from the oxidation of waste organic substrates. Genetic engineering shows promise to modulate the properties of the peptide building blocks, protein nanowires and current‐harvesting biofilms for various applications. This minireview discusses what is known about the pilus material properties and reactions they catalyse and how this information can be harnessed in nanotechnology, bioremediation and bioenergy applications.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd., Rm. 6190, East Lansing, MI, 48824, USA
| |
Collapse
|
19
|
Xie T, Chattoraj J, Mulcahey PJ, Kelleher NP, Del Gado E, Hahm JI. Revealing the principal attributes of protein adsorption on block copolymer surfaces with direct experimental evidence at the single protein level. NANOSCALE 2018; 10:9063-9076. [PMID: 29718032 DOI: 10.1039/c8nr01371c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding protein adsorption onto polymer surfaces is of great importance in designing biomaterials, improving bioanalytical devices, and controlling biofouling, to name a few examples. Although steady research efforts have been advancing this field, our knowledge of this ubiquitous and complex phenomenon is still limited. In this study, we elucidate competitive protein adsorption behaviors sequentially occurring onto nanoscale block copolymer (BCP) surfaces via combined experimental and computer simulation approaches. The model systems chosen for our investigation are immunoglobulin G and fibrinogen introduced in different orders into the self-assembled nanodomains of poly(styrene)-block-poly(methylmethacrylate). We unambiguously reveal the adsorption, desorption, and replacement events of the same protein molecules via single protein tracking with atomic force microscopy. We then ascertain adsorption-related behaviors such as lateral mobility and self-association of proteins. We provide the much-needed, direct experimental proof of sequential adsorption events at the biomolecular level, which was virtually nonexistent before. We determine key protein adsorption pathways and dominant tendencies of sequential protein adsorption. We also reveal preadsorbed surface-associated behaviors in sequential adsorption, distinct from situations involving initially empty surfaces. We perform Monte-Carlo simulations to further substantiate our experimental outcomes. Our endeavors in this study may facilitate a well-guided mechanistic understanding of protein-polymer interactions by providing definite experimental evidence of competitive, sequential adsorption at the nanoscale. Increasingly, biomaterial and biomedical applications rely on systems of multicomponent proteins and chemically intricate, nanoscale polymer surfaces. Hence, our findings can also be beneficial for the development of next-generation nanobiomaterials and nanobiosensors exploiting self-assembled BCP nanodomain surfaces.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Shen Z, He Y, Zhang G, He Q, Li D, Ji Y. Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array. OPTICS LETTERS 2018; 43:739-742. [PMID: 29444066 DOI: 10.1364/ol.43.000739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/26/2017] [Indexed: 06/08/2023]
Abstract
A dual-wavelength digital holographic phase and fluorescence microscopy system is demonstrated as the decoding and detection platform of an optical thickness encoded suspension array. The phase imaging path is designed to decode optical thickness encoded microcarriers, and the fluorescence imaging path is used to detect the quantitative information of the bound target analytes. The encoding capacity could be more than 100. The decoding reliability of the phase imaging path is verified by a multiplexed immunoassay experiment. The ability for quantitative analysis of the fluorescence imaging path is confirmed by concentration gradient experiments. This method offers high decoding accuracy and high detection sensitivity of label signals.
Collapse
|
21
|
Wollhofen R, Axmann M, Freudenthaler P, Gabriel C, Röhrl C, Stangl H, Klar TA, Jacak J. Multiphoton-Polymerized 3D Protein Assay. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1474-1479. [PMID: 29280613 PMCID: PMC5773935 DOI: 10.1021/acsami.7b13183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/27/2017] [Indexed: 05/08/2023]
Abstract
Multiphoton polymerization (MPP) enables 3D fabrication of micro- and nanoscale devices with complex geometries. Using MPP, we create a 3D platform for protein assays. Elevating the protein-binding sites above the substrate surface allows an optically sectioned readout, minimizing the inevitable background signal from nonspecific protein adsorption at the substrate surface. Two fluorescence-linked immunosorbent assays are demonstrated, the first one relying on streptavidin-biotin recognition and the second one on antibody recognition of apolipoprotein A1, a major constituent of high-density lipoprotein particles. Signal-to-noise ratios exceeding 1000 were achieved. The platform has high potential for 3D multiplexed recognition assays with an increased binding surface for on-chip flow cells.
Collapse
Affiliation(s)
- Richard Wollhofen
- Institute of Applied
Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Markus Axmann
- Institute of Medical Chemistry, Center
for Pathobiochemistry and Genetics, Medical
University of Vienna, 1090 Vienna, Austria
| | - Peter Freudenthaler
- Upper Austrian University of Applied Sciences, Campus Linz, 4020 Linz, Austria
| | - Christian Gabriel
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, 1220 Vienna, Austria
| | - Clemens Röhrl
- Institute of Medical Chemistry, Center
for Pathobiochemistry and Genetics, Medical
University of Vienna, 1090 Vienna, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center
for Pathobiochemistry and Genetics, Medical
University of Vienna, 1090 Vienna, Austria
| | - Thomas A. Klar
- Institute of Applied
Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Jaroslaw Jacak
- Institute of Applied
Physics, Johannes Kepler University Linz, 4040 Linz, Austria
- Upper Austrian University of Applied Sciences, Campus Linz, 4020 Linz, Austria
| |
Collapse
|
22
|
Lu M, Faull KF, Whitelegge JP, He J, Shen D, Saxton RE, Chang HR. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery. Biomark Insights 2017. [DOI: 10.1177/117727190700200005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.
Collapse
Affiliation(s)
- Ming Lu
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Kym F. Faull
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jianbo He
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Dejun Shen
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Romaine E. Saxton
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Helena R. Chang
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
23
|
Gevrek TN, Kosif I, Sanyal A. Surface-Anchored Thiol-Reactive Soft Interfaces: Engineering Effective Platforms for Biomolecular Immobilization and Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27946-27954. [PMID: 28745494 DOI: 10.1021/acsami.7b07779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabrication of antibiofouling, specifically reactive polymeric coatings that undergo facile functionalization with thiol-bearing small molecules and ligands, yields effective platforms for biomolecular immobilization and sensing. Poly(ethylene glycol) (PEG)-based copolymers containing alkoxysilyl groups to enable surface-anchoring and furan-protected maleimide groups as latent thiol-reactive moieties as side-chains were synthesized. Reactive interfaces were obtained by coating these copolymers onto Si/SiO2 or glass surfaces and activating the maleimide groups to their thiol-reactive forms via thermal treatment. A series of surfaces modified with copolymers containing varying amounts of maleimide groups were synthesized. Effectiveness of surface modification was probed using Fourier transform infrared spectroscopy, contact angle goniometry, ellipsometry and X-ray photoelectron spectroscopy. Facile surface modification through thiol-maleimide conjugation was established by attachment of a thiol-containing fluorescent dye, namely BODIPY-SH. It was demonstrated that these surfaces allow spatially localized modification through microcontact printing. Importantly, the extent of surface modification could be tuned by varying the initial composition of the copolymer used for coating. Using fluorescence microscopy, it was observed that increasing amount of fluorescent dye was attached onto surfaces fabricated with copolymers with increasing amount of masked maleimide groups. Thereafter, the thiol-maleimide conjugation was utilized to decorate these surfaces with biotin, a protein-binding ligand. It was observed that though these biotinylated surfaces were able to bind Streptavidin effectively, some nonspecific binding was observed on places that were not in conformal contact with the stamp during microcontact printing. This nonspecific binding was eliminated upon neutralizing the residual maleimide units on the printed surface using thiol-containing PEG. Notably, fluorescence analysis of Streptavidin immobilized onto biotinylated surfaces fabricated using varying amounts of maleimide demonstrated that the amount of immobilized protein could be tuned by varying surface composition. It can be envisioned that facile fabrication of these maleimide-containing polymeric surfaces, their effective functionalization in a tunable manner to engineer interfaces for effective immobilization or sensing of biomolecules in a spatially controlled manner would make them attractive candidates for various biotechnological applications.
Collapse
Affiliation(s)
- Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University , Bebek, Istanbul 34342, Turkey
| | - Irem Kosif
- Department of Chemistry, Bogazici University , Bebek, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University , Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University , Bebek, Istanbul 34342, Turkey
| |
Collapse
|
24
|
Wang R, Wang Y, Zhang D, Si G, Zhu L, Du L, Kou S, Badugu R, Rosenfeld M, Lin J, Wang P, Ming H, Yuan XL, Lakowicz JR. Diffraction-Free Bloch Surface Waves. ACS NANO 2017; 11:5383-5390. [PMID: 28505412 PMCID: PMC5777330 DOI: 10.1021/acsnano.7b02358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here, we demonstrate a diffraction-free Bloch surface wave sustained on all-dielectric multilayers that does not diffract after being passed through three obstacles or across a single mode fiber. It can propagate in a straight line for distances longer than 110 μm at a wavelength of 633 nm and could be applied as an in-plane optical virtual probe both in air and in an aqueous environment. Its ability to be used in water, its long diffraction-free distance, and its tolerance to multiple obstacles make this wave ideal for certain applications in areas such as the biological sciences, where many measurements are made on glass surfaces or for which an aqueous environment is required, and for high-speed interconnections between chips, where low loss is necessary.
Collapse
Affiliation(s)
- Ruxue Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yong Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Douguo Zhang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangyuan Si
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Liangfu Zhu
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Luping Du
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Kou
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Mary Rosenfeld
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jiao Lin
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pei Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Ming
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaocong Larry Yuan
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
25
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
26
|
Zhu L, Badugu R, Zhang D, Wang R, Descrovi E, Lakowicz JR. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection. Anal Biochem 2017; 531:20-36. [PMID: 28527910 DOI: 10.1016/j.ab.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
Fluorescence spectroscopy and imaging are now used throughout the biosciences. Fluorescence microscopes, spectrofluorometers, microwell plate readers and microarray imagers all use multiple optical components to collect, redirect and focus the emission onto single point or array imaging detectors. For almost all biological samples, except those with regular nanoscale features, emission occurs in all directions. With the exception of complex microscope objectives with large collection angles (NA ≤ 0.5), all these instruments collect only a small fraction of the total emission. Because of the increasing knowledge base on fluorophores within near-field (<200 nm) distances from plasmonic and photonic structures we can anticipate the development of compact devices in which the sample to be detected is located directly on solid state detectors such as CCDs or CMOS cameras. Near-field interactions of fluorophores with metallic or dielectric multi-layer structures (MLSs) can capture a large fraction of the total emission. Depending on the composition and dimensions of the MLSs, the spatial distribution of the sample emission results in distinct optical patterns on the detector surface. With either plain glass slides or MLSs the most commonly used front focal plane (FFP) images reveal the x-y spatial distribution of emission from the sample. Another approach, which is often used with two or three-dimensional nanostructures, is back focal plane (BFP) imaging. The BFP images reveal the angular distribution of the emission. The FFP and BFP images occur at certain distances from the sample which is determined by the details of the optical components. Obtaining these images requires multiple optical components and distances which are too large for the compact devices. For devices described in this paper, the images will be detected at a fixed distance between the sample and some arbitrary distance below the MLS which is determined by the geometry and thicknesses of the components. We refer to measurements at these locations as out-of-focal plane (OFP) imaging. Herein we describe a method to measure the optical fields at micron and multi-micron distances below the MLS, which will represent the images seen by an optically coupled array detector. The possibility of sub-surface optical images is illustrated using five different multi-layer structures. This is accomplished using an optical configuration which allows measurement at a front focal plane (FFP), back focal plane (BFP) or any OFP locations. Our OFP imaging method provides a link between the FFP images which reveals the surface distribution of fluorophores with the BFP images that reveal the angular distribution of emission. This linkage can be useful when examining structures which have nanoscale features due to fluorescence or leakage radiation from nanostructures.
Collapse
Affiliation(s)
- Liangfu Zhu
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ramachandram Badugu
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, Baltimore, Md 21201, USA
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ruxue Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Emiliano Descrovi
- Department of Applied Science and Technology, Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Joseph R Lakowicz
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, Baltimore, Md 21201, USA.
| |
Collapse
|
27
|
Sauer U. Analytical Protein Microarrays: Advancements Towards Clinical Applications. SENSORS (BASEL, SWITZERLAND) 2017; 17:E256. [PMID: 28146048 PMCID: PMC5335935 DOI: 10.3390/s17020256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.
Collapse
Affiliation(s)
- Ursula Sauer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, 3430 Tulln, Austria.
| |
Collapse
|
28
|
Abstract
Speed and throughput are vital ingredients for discovery driven, "-omics" research. The small molecule microarray (SMM) succeeds at delivering phenomenal screening throughput and versatility. The concept at the heart of the technology is elegant, yet simple: by presenting large collections of molecules in high density on a flat surface, one is able to interrogate all possible interactions with desired targets, in just a single step. SMMs have become established as the choice platform for screening, lead discovery, and molecular characterization. This introduction describes the principles governing microarray construction and use, focusing on practical challenges faced when conducting SMM experiments. It will explain the key design considerations and lay the foundation for the chapters that follow. (An earlier version of this chapter appeared in Small Molecule Microarrays: Methods and Protocols, published in 2010.).
Collapse
Affiliation(s)
- Mahesh Uttamchandani
- Defence Medical and Environmental Research Institute, DMERI, DSO National Laboratories, #09-01, 27 Medical Drive, Singapore, Singapore, 117510. .,Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, Singapore, 117543.
| | - Shao Q Yao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, Singapore, 117543.
| |
Collapse
|
29
|
Badugu R, Mao J, Blair S, Zhang D, Descrovi E, Angelini A, Huo Y, Lakowicz JR. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:28727-28734. [PMID: 28725334 PMCID: PMC5512112 DOI: 10.1021/acs.jpcc.6b08086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The interaction of fluorophores with nearby metallic structures is now an active area of research. Dielectric photonic structures offer some advantages over plasmonic structures, namely small energy losses and less quenching. We describe a dielectric one-dimensional photonic crystal (1DPC), which supports Bloch surface waves (BSWs) from 280 to 440 nm. This BSW structure is a quartz slide coated with alternating layers of SiO2 and Si3N4. We show that this structure displays BSWs and that the near-UV fluorophore, 2-aminopurine (2-AP), on the top surface of the structure couples with the BSWs. Fluorophores do not have to be inside the structure for coupling and show a narrow angular distribution, with an angular separation of wavelengths. The Bloch wave-coupled emission (BWCE) radiates through the dielectric layer. These BSW structures, with useful wavelength range for detection of intrinsic protein and cofactor fluorescence, provide opportunities for novel optical configurations for bioassays with surface-localized biomolecules and for optical imaging using the coupled emission.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Jieying Mao
- Department of Physics and Astronomy, University of Utah, 50 S. Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, 50 S. Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Emiliano Descrovi
- Department of Applied Science and Technology, Polytechnic University of Turin, Corso Daca degli Abruzzi 24, 10129 Turin, Italy
| | - Angelo Angelini
- Department of Applied Science and Technology, Polytechnic University of Turin, Corso Daca degli Abruzzi 24, 10129 Turin, Italy
| | - Yiping Huo
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Arrabito G, Cavaleri F, Montalbano V, Vetri V, Leone M, Pignataro B. Monitoring few molecular binding events in scalable confined aqueous compartments by raster image correlation spectroscopy (CADRICS). LAB ON A CHIP 2016; 16:4666-4676. [PMID: 27812580 DOI: 10.1039/c6lc01072e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The assembly of scalable liquid compartments for binding assays in array formats constitutes a topic of fundamental importance in life sciences. This challenge can be addressed by mimicking the structure of cellular compartments with biological native conditions. Here, inkjet printing is employed to develop up to hundreds of picoliter aqueous droplet arrays stabilized by oil-confinement with mild surfactants (Tween-20). The aqueous environments constitute specialized compartments in which biomolecules may exploit their function and a wide range of molecular interactions can be quantitatively investigated. Raster Image Correlation Spectroscopy (RICS) is employed to monitor in each compartment a restricted range of dynamic intermolecular events demonstrated through protein-binding assays involving the biotin/streptavidin model system.
Collapse
Affiliation(s)
- G Arrabito
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy.
| | - F Cavaleri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy.
| | - V Montalbano
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy.
| | - V Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy. and Aten Center, Università degli Studi di Palermo, Ed. 18, V.le delle Scienze, 90128 Palermo, Italy
| | - M Leone
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy. and Aten Center, Università degli Studi di Palermo, Ed. 18, V.le delle Scienze, 90128 Palermo, Italy
| | - B Pignataro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy. and Aten Center, Università degli Studi di Palermo, Ed. 18, V.le delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
31
|
Das C, Wang G, Nguyen C. A Low-Cost, Accurate, and High-Precision Fluid Dispensing System for Microscale Application. SLAS Technol 2016; 22:144-152. [PMID: 27811326 DOI: 10.1177/2211068216676082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present here the development of a low-cost, accurate, and precise fluid dispensing system. It can be used with peristaltic or any other pump to improve the flow characteristics. The dispensing system has a range of 1 to 100 µL with accuracy of ~99.5% and standard deviation at ~150 nL over the entire range. The system developed does not depend on the accuracy or precision of the driving pump; therefore, any positive displacement pump can be used to get similar accuracy and precision, which gives an opportunity to reduce the cost of the system. The dispensing system does not require periodic calibration and can also be miniaturized for microfluidic application. Although primarily designed for aqueous liquid, it can be extended for different nonconductive liquids as well with modifications. The unit is further used for near real-time measurement of lactate from microdialysate. The individual components can easily be made disposable or sterilized for use in biomedical applications.
Collapse
|
32
|
Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, Joos TO, Kling S, Poetz O, Fehm T, Neubauer H, Kuster B, Templin MF. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun 2016; 7:12852. [PMID: 27659302 PMCID: PMC5036152 DOI: 10.1038/ncomms12852] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. Dissecting cellular signalling requires the analysis of large numbers of proteins. Here the authors describe DigiWest, a high-throughput protein detection method that combines the concept of western and widely-used bead array systems that allows rapid quantification of hundreds of specific proteins.
Collapse
Affiliation(s)
- Fridolin Treindl
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard-Karls-Universität Tübingen, Tübingen, 72770 Reutlingen, Germany
| | - Benjamin Ruprecht
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany.,Center for Integrated Protein Science Munich, 85354 Freising, Germany
| | - Yvonne Beiter
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard-Karls-Universität Tübingen, Tübingen, 72770 Reutlingen, Germany
| | - Silke Schultz
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Anette Döttinger
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Annette Staebler
- Department of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Simon Kling
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Bernhard Kuster
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany.,Center for Integrated Protein Science Munich, 85354 Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technische Universität München, 85354 Freising, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard-Karls-Universität Tübingen, Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
33
|
Chang YJ, Chang CH. Intelligent Computation for Optimal Fabrication Condition of a Protein Chip with Ni-Co Alloy-Coated Surface. SLAS Technol 2016; 21:394-401. [PMID: 25800959 DOI: 10.1177/2211068215577569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 06/04/2023]
Abstract
Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments. Based on the experimental data, the fabrication process model of a Ni-Co protein chip was established by using an artificial neural network, and then an optimal fabrication condition was obtained using the Taguchi genetic algorithm. The result was validated experimentally and compared with a nitrocellulose chip. Consequentially, experimental outcomes revealed that the Ni-Co alloy-coated chip, fabricated using the proposed approach, had the best performance and repeatability compared with the Ni-Co chips of an L18 orthogonal array design and the nitrocellulose chip. Moreover, the low fluorescent background of the chip surface gives a more precise fluorescent detection. Based on a small quantity of experiments, this proposed intelligent computation approach can significantly reduce the experimental cost and improve the product's quality.
Collapse
Affiliation(s)
- Yaw-Jen Chang
- Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan Center for Biomedical Technology (CBT), Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Cheng-Hao Chang
- Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
34
|
Fan X, Yue Q, Li Y, Liu Y, Qu LL, Cao Y, Li H. A single-bead telomere sensor based on fluorescence resonance energy transfer. Analyst 2016; 141:3033-40. [PMID: 27069984 DOI: 10.1039/c5an02543e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present a 200 nm in-diameter single-bead sensor for the detection of single, unlabeled DNA molecules in solution using fluorescence resonance energy transfer technology. DNA-bound Alexa 488 and Crimson 625 loaded on commercial beads served as the donor and acceptor, respectively. Binding of the target DNA to the single bead sensor induces G-quadruplex stretching, resulting in a decrease in fluorescence energy transfer. G-rich telomere sequences formed a G-quadruplex structure in the presence of ZnTCPP, as demonstrated by the detection of two strong donor and acceptor signals. The sensitivity of the sensor was 1 fM. Under optimized conditions using a polydimethylsiloxane microfluidic device, we measured the number of sensor beads by direct counting. By controlling the flow rate via the probe volume, one sensing experiment can be completed in 5 minutes. Based on these results, we propose a new parameter-dependability (RS)-as a quantitative measure to judge the quality of a bio-sensor. This parameter is based on the ratio of the sensor and sensing sample fluorescence signals. This parameter can range from 0.1 to 100, where a value of 10 represents an optimized bio-sensor.
Collapse
Affiliation(s)
- Xiao Fan
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Yanyan Li
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yingya Liu
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lu-Lu Qu
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yingnan Cao
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China. and Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
35
|
Shen L, Zhu J. Oriented Protein Nanoarrays on Block Copolymer Template. Macromol Rapid Commun 2016; 37:494-9. [DOI: 10.1002/marc.201500687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/09/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Shen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 China
| |
Collapse
|
36
|
MUJAWAR LH, FELEMBAN AA, EL-SHAHAWI MS. Hexamethyldisilazane Modified Paper as an Ultra-sensitive Platform for Visual Detection of Hg 2+, Co 2+, Zn 2+ and the Application to Semi-quantitative Determination of Hg 2+ in Wastewater. ANAL SCI 2016; 32:491-7. [DOI: 10.2116/analsci.32.491] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Müller G. Personalized Diagnosis and Therapy. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:3167-3284. [DOI: 10.1007/978-3-319-05392-9_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Sonawane MD, Nimse SB, Song KS, Kim T. Detection, quantification, and profiling of PSA: current microarray technologies and future directions. RSC Adv 2016. [DOI: 10.1039/c5ra20313a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The death rate of 13% among the men diagnosed with prostate cancer makes it a second leading cause of cancer death. This critical review evaluates DNA and protein microarray based methods for detection, quantification, and profiling of PSA.
Collapse
Affiliation(s)
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- Korea
| | | | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- Korea
| |
Collapse
|
39
|
Sang CH, Chou SJ, Pan F, Sheu JT. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices. Biosens Bioelectron 2016; 75:285-92. [DOI: 10.1016/j.bios.2015.08.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 11/30/2022]
|
40
|
Pomelova VG, Korenberg EI, Kuznetsova TI, Bychenkova TA, Bekman NI, Osin NS. C6 Peptide-Based Multiplex Phosphorescence Analysis (PHOSPHAN) for Serologic Confirmation of Lyme Borreliosis. PLoS One 2015; 10:e0130048. [PMID: 26147441 PMCID: PMC4492927 DOI: 10.1371/journal.pone.0130048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/15/2015] [Indexed: 11/18/2022] Open
Abstract
Background A single-tier immunoassay using the C6 peptide of VlsE (C6) from Borrelia burgdorferi sensu stricto (Bb) has been proposed as a potential alternative to conventional two-tier testing for the serologic diagnosis of Lyme disease in the United States and Europe. Objective To evaluate the performance of C6 peptide based multiplex Phosphorescence Analysis (PHOSPHAN) for the serologic confirmation of Lyme borreliosis (LB) in Russian patients. Methods Serum samples (n = 351) were collected from 146 patients with erythema migrans (EM); samples from 131 of these patients were taken several times prior to treatment and at different stages of recovery. The control group consisted of 197 healthy blood donors and 31 patients with other diseases, all from the same highly endemic region of Russia. All samples were analyzed by PHOSPHAN for IgM and IgG to Bb C6, recombinant OspC and VlsE proteins, and C6 peptides from B. garinii and B. afzelii. Results IgM and IgG to Bb C6 were identified in 43 and 95 out of 131 patients (32.8 and 72.5%, respectively); seroconversion of IgM antibodies was observed in about half of the patients (51.2%), and of IgG antibodies, in almost all of them (88.4%). Additional detection of OspC-IgM and VlsE-IgM or IgG to C6 from B. garinii or B. afzelii did not contribute significantly to the overall sensitivity of the multiplex immunoassay. Conclusions The multiplex phosphorescence immunoassay is a promising method for simultaneously revealing the spectrum of antibodies to several Borrelia antigens. Detection of IgM and IgG to Bb C6 in the sera of EM patients provides effective serologic confirmation of LB and, with high probability, indicates an active infection process.
Collapse
Affiliation(s)
- Vera G. Pomelova
- Laboratory of Molecular Diagnostics, Department of Biological Microassay, State Research Institute of Biological Engineering, Moscow, Russian Federation
- * E-mail:
| | - Edward I. Korenberg
- Department of Infections with Natural Focality, N. F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russian Federation
| | - Tatiana I. Kuznetsova
- Laboratory of Clinical Immunology, Clinical Infectious Diseases Hospital, Perm, Russian Federation
| | - Tatiana A. Bychenkova
- Laboratory of Molecular Diagnostics, Department of Biological Microassay, State Research Institute of Biological Engineering, Moscow, Russian Federation
| | - Natalya I. Bekman
- Laboratory of Molecular Diagnostics, Department of Biological Microassay, State Research Institute of Biological Engineering, Moscow, Russian Federation
| | - Nikolay S. Osin
- Immunoscreen Closed Joint Stock Company, Moscow, Russian Federation
| |
Collapse
|
41
|
Appel EA, Larson BL, Luly KM, Kim JD, Langer R. Non-cell-adhesive substrates for printing of arrayed biomaterials. Adv Healthc Mater 2015; 4:501-5. [PMID: 25430948 PMCID: PMC4447497 DOI: 10.1002/adhm.201400594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/04/2014] [Indexed: 01/07/2023]
Abstract
Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. An exceedingly simple strategy is developed for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g., RGD and polylysine), hydrogels, and polymers.
Collapse
Affiliation(s)
- Eric A. Appel
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin L. Larson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathryn M. Luly
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinseong D. Kim
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Chen HH, Hsiao YC, Li JR, Chen SH. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays. Anal Chim Acta 2015; 865:53-9. [DOI: 10.1016/j.aca.2015.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
|
43
|
Cheng H, Zheng H, Wu JX, Xu W, Zhou L, Leong KC, Fitzgerald E, Rajagopalan R, Too HP, Choi WK. Photo-attachment of biomolecules for miniaturization on wicking Si-nanowire platform. PLoS One 2015; 10:e0116539. [PMID: 25689680 PMCID: PMC4331555 DOI: 10.1371/journal.pone.0116539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/10/2014] [Indexed: 12/03/2022] Open
Abstract
We demonstrated the surface functionalization of a highly three-dimensional, superhydrophilic wicking substrate using light to immobilize functional biomolecules for sensor or microarray applications. We showed here that the three-dimensional substrate was compatible with photo-attachment and the performance of functionalization was greatly improved due to both increased surface capacity and reduced substrate reflectivity. In addition, photo-attachment circumvents the problems induced by wicking effect that was typically encountered on superhydrophilic three-dimensional substrates, thus reducing the difficulty of producing miniaturized sites on such substrate. We have investigated various aspects of photo-attachment process on the nanowire substrate, including the role of different buffers, the effect of wavelength as well as how changing probe structure may affect the functionalization process. We demonstrated that substrate fabrication and functionalization can be achieved with processes compatible with microelectronics processes, hence reducing the cost of array fabrication. Such functionalization method coupled with the high capacity surface makes the substrate an ideal candidate for sensor or microarray for sensitive detection of target analytes.
Collapse
Affiliation(s)
- He Cheng
- Advanced Materials for Micro- and Nano- Systems, Singapore-MIT Alliance, Singapore, Singapore
| | - Han Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Jia Xin Wu
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Lihan Zhou
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore, Singapore
| | - Kam Chew Leong
- GLOBALFOUNDRIES Singapore Private Limited, Singapore, Singapore
| | - Eugene Fitzgerald
- Advanced Materials for Micro- and Nano- Systems, Singapore-MIT Alliance, Singapore, Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Raj Rajagopalan
- Skolkovo Institute of Science and Technology, Moscow, The Russian Federation
| | - Heng Phon Too
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Wee Kiong Choi
- Advanced Materials for Micro- and Nano- Systems, Singapore-MIT Alliance, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
44
|
Reuterswärd P, Gantelius J, Andersson Svahn H. An 8 minute colorimetric paper-based reverse phase vertical flow serum microarray for screening of hyper IgE syndrome. Analyst 2015; 140:7327-34. [DOI: 10.1039/c5an01013f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A reverse phase serum array with the capacity of simultaneous detection in 113 samples was developed and optimized for a vertical flow 8-minute colorimetric assay detecting IgE.
Collapse
Affiliation(s)
- Philippa Reuterswärd
- Division of Proteomics and Nanobiotechnology
- Science for Life Laboratory
- KTH Royal Institute of Technology
- Sweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology
- Science for Life Laboratory
- KTH Royal Institute of Technology
- Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology
- Science for Life Laboratory
- KTH Royal Institute of Technology
- Sweden
| |
Collapse
|
45
|
INO K. Microchemistry- and MEMS-based Integrated Electrochemical Devices for Bioassay Applications. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
| |
Collapse
|
46
|
Kirschning A, Walter JG, Stahl F, Schax E, Scheper T, Aliuos P, Zeilinger C. Molecular Survival Strategies of Organisms: HSP and Small Molecules for Diagnostics and Drug Development. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-17211-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Cheng H, Wu JX, Zheng H, Xu W, Zhou L, Too HP, Choi WK. DNA hybridization on silicon nanowire platform prepared by glancing angle deposition and metal assisted chemical etching process. RSC Adv 2015. [DOI: 10.1039/c5ra07117h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous nanowire surface provides high capacity for oligonucleotide hybridization.
Collapse
Affiliation(s)
- H. Cheng
- Advanced Materials for Micro- and Nano-Systems
- Singapore-MIT Alliance
- Singapore
| | - J. X. Wu
- NUS Graduate School for Integrative Sciences and Engineering
- National University of Singapore
- Singapore
| | - H. Zheng
- GLOBALFOUNDRIES Singapore Pte. Ltd
- Singapore
| | - W. Xu
- Department of Electrical and Computer Engineering
- National University of Singapore
- Singapore
| | | | - H. P. Too
- Department of Biochemistry
- National University of Singapore
- Singapore
- Bioprocessing Technology Institute
- Singapore
| | - W. K. Choi
- Advanced Materials for Micro- and Nano-Systems
- Singapore-MIT Alliance
- Singapore
- NUS Graduate School for Integrative Sciences and Engineering
- National University of Singapore
| |
Collapse
|
48
|
Hospach I, Joseph Y, Mai MK, Krasteva N, Nelles G. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection. MICROARRAYS 2014; 3:282-301. [PMID: 27600349 PMCID: PMC4979058 DOI: 10.3390/microarrays3040282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/15/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα) and Interleukin 6 (IL-6) were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D). The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established.
Collapse
Affiliation(s)
- Ingeborg Hospach
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Strasse 3, 09599 Freiberg, Germany.
| | - Michaela Kathrin Mai
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Nadejda Krasteva
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| |
Collapse
|
49
|
Nimse SB, Song K, Sonawane MD, Sayyed DR, Kim T. Immobilization techniques for microarray: challenges and applications. SENSORS 2014; 14:22208-29. [PMID: 25429408 PMCID: PMC4299010 DOI: 10.3390/s141222208] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023]
Abstract
The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials) on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.
Collapse
Affiliation(s)
- Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Keumsoo Song
- Biometrix Technology, Inc. 202 BioVenture Plaza, Chuncheon 200-161, Korea.
| | - Mukesh Digambar Sonawane
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Danishmalik Rafiq Sayyed
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
50
|
Kuebler SM, Narayanan A, Karas DE, Wilburn KM. Low-Distortion Surface Functionalization of Polymeric Microstructures. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stephen M. Kuebler
- Chemistry Department; CREOL, The College of Optics and Photonics; and; Physics Department, University of Central Florida; 4000 Central Florida Blvd. Orlando FL 32816 USA
| | - Ananthakrishnan Narayanan
- CREOL, The College of Optics and Photonics; University of Central Florida; 4000 Central Florida Blvd. Orlando FL 32816 USA
| | - Dale E. Karas
- CREOL, The College of Optics and Photonics; University of Central Florida; 4000 Central Florida Blvd. Orlando FL 32816 USA
| | - Kaley M. Wilburn
- Department of Chemistry; University of Central Florida; 4000 Central Florida Blvd. Orlando FL 32816 USA
| |
Collapse
|