1
|
Valbuena A, Maity S, Mateu MG, Roos WH. Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways. ACS NANO 2020; 14:8724-8734. [PMID: 32633498 PMCID: PMC7392527 DOI: 10.1021/acsnano.0c03207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Mauricio G. Mateu
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
2
|
Abstract
The capsid protein is a promising target for the development of therapeutic anti-virus agents.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
3
|
Vieweger SE, Tsvetkova IB, Dragnea BG. In Vitro Assembly of Virus-Derived Designer Shells Around Inorganic Nanoparticles. Methods Mol Biol 2018; 1776:279-294. [PMID: 29869249 DOI: 10.1007/978-1-4939-7808-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle-templated assembly of virus shells provides a promising approach to the production of hybrid nanomaterials and a potential avenue toward new mechanistic insights in virus phenomena originating in many-body effects, which cannot be understood from examining the properties of molecular subunits alone. This approach complements the successful molecular biology perspective traditionally used in virology, and promises a deeper understanding of viruses and virus-like particles through an expanded methodological toolbox. Here we present protocols for forming a virus coat protein shell around functionalized inorganic nanoparticles.
Collapse
|
4
|
Mak LY, Wong DKH, Seto WK, Lai CL, Yuen MF. Hepatitis B core protein as a therapeutic target. Expert Opin Ther Targets 2017; 21:1153-1159. [PMID: 29065733 DOI: 10.1080/14728222.2017.1397134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Ching-Lung Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Man Fung Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Zhou Z, Hu T, Zhou X, Wildum S, Garcia-Alcalde F, Xu Z, Wu D, Mao Y, Tian X, Zhou Y, Shen F, Zhang Z, Tang G, Najera I, Yang G, Shen HC, Young JAT, Qin N. Heteroaryldihydropyrimidine (HAP) and Sulfamoylbenzamide (SBA) Inhibit Hepatitis B Virus Replication by Different Molecular Mechanisms. Sci Rep 2017; 7:42374. [PMID: 28205569 PMCID: PMC5304331 DOI: 10.1038/srep42374] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) are promising non-nucleos(t)ide HBV replication inhibitors. HAPs are known to promote core protein mis-assembly, but the molecular mechanism of abnormal assembly is still elusive. Likewise, the assembly status of core protein induced by SBA remains unknown. Here we show that SBA, unlike HAP, does not promote core protein mis-assembly. Interestingly, two reference compounds HAP_R01 and SBA_R01 bind to the same pocket at the dimer-dimer interface in the crystal structures of core protein Y132A hexamer. The striking difference lies in a unique hydrophobic subpocket that is occupied by the thiazole group of HAP_R01, but is unperturbed by SBA_R01. Photoaffinity labeling confirms the HAP_R01 binding pose at the dimer-dimer interface on capsid and suggests a new mechanism of HAP-induced mis-assembly. Based on the common features in crystal structures we predict that T33 mutations generate similar susceptibility changes to both compounds. In contrast, mutations at positions in close contact with HAP-specific groups (P25A, P25S, or V124F) only reduce susceptibility to HAP_R01, but not to SBA_R01. Thus, HAP and SBA are likely to have distinctive resistance profiles. Notably, P25S and V124F substitutions exist in low-abundance quasispecies in treatment-naïve patients, suggesting potential clinical relevance.
Collapse
Affiliation(s)
- Zheng Zhou
- Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Taishan Hu
- Roche Pharma Research and Early Development, Medicinal Chemistry, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Xue Zhou
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Steffen Wildum
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Fernando Garcia-Alcalde
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Zhiheng Xu
- Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Daitze Wu
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Yi Mao
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Xiaojun Tian
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Yuan Zhou
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Fang Shen
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Zhisen Zhang
- Roche Pharma Research and Early Development, Medicinal Chemistry, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Guozhi Tang
- Roche Pharma Research and Early Development, Medicinal Chemistry, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Isabel Najera
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Guang Yang
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Hong C Shen
- Roche Pharma Research and Early Development, Medicinal Chemistry, Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - John A T Young
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Ning Qin
- Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Shanghai, Shanghai, 201203, China
| |
Collapse
|
6
|
Medrano M, Fuertes MÁ, Valbuena A, Carrillo PJP, Rodríguez-Huete A, Mateu MG. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid. J Am Chem Soc 2016; 138:15385-15396. [PMID: 27933931 DOI: 10.1021/jacs.6b07663] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.
Collapse
Affiliation(s)
- María Medrano
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Miguel Ángel Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Pablo J P Carrillo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| |
Collapse
|
7
|
Abstract
Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.
Collapse
Affiliation(s)
| | - Adam Zlotnick
- Department of Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
8
|
Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. J Virol 2016; 90:3994-4004. [PMID: 26842475 PMCID: PMC4810570 DOI: 10.1128/jvi.03058-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle-assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions-making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid "breathes" and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.
Collapse
|
9
|
Mateu MG. Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:83-120. [PMID: 27677510 DOI: 10.1007/978-3-319-39196-0_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses and their protein capsids can be regarded as biologically evolved nanomachines able to perform multiple, complex biological functions through coordinated mechano-chemical actions during the infectious cycle. The advent of nanoscience and nanotechnology has opened up, in the last 10 years or so, a vast number of novel possibilities to exploit engineered viral capsids as protein-based nanoparticles for multiple biomedical, biotechnological or nanotechnological applications. This chapter attempts to provide a broad, updated overview on the self-assembly and engineering of virus capsids, and on applications of virus-based nanoparticles. Different sections provide outlines on: (i) the structure, functions and properties of virus capsids; (ii) general approaches for obtaining assembled virus particles; (iii) basic principles and events related to virus capsid self-assembly; (iv) genetic and chemical strategies for engineering virus particles; (v) some applications of engineered virus particles being developed; and (vi) some examples on the engineering of virus particles to modify their physical properties, in order to improve their suitability for different uses.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain. .,Department of Molecular Biology, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
10
|
Harms ZD, Selzer L, Zlotnick A, Jacobson SC. Monitoring Assembly of Virus Capsids with Nanofluidic Devices. ACS NANO 2015; 9:9087-96. [PMID: 26266555 PMCID: PMC4753561 DOI: 10.1021/acsnano.5b03231] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Virus assembly is a coordinated process in which typically hundreds of subunits react to form complex, symmetric particles. We use resistive-pulse sensing to characterize the assembly of hepatitis B virus core protein dimers into T = 3 and T = 4 icosahedral capsids. This technique counts and sizes intermediates and capsids in real time, with single-particle sensitivity, and at biologically relevant concentrations. Other methods are not able to produce comparable real-time, single-particle observations of assembly reactions below, near, and above the pseudocritical dimer concentration, at which the dimer and capsid concentrations are approximately equal. Assembly reactions across a range of dimer concentrations reveal three distinct patterns. At dimer concentrations as low as 50 nM, well below the pseudocritical dimer concentration of 0.5 μM, we observe a switch in the ratio of T = 3 to T = 4 capsids, which increases with decreasing dimer concentration. Far above the pseudocritical dimer concentration, kinetically trapped, incomplete T = 4 particles assemble rapidly, then slowly anneal into T = 4 capsids. At all dimer concentrations tested, T = 3 capsids form more rapidly than T = 4 capsids, suggesting distinct pathways for the two forms.
Collapse
Affiliation(s)
- Zachary D. Harms
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Lisa Selzer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | | |
Collapse
|
11
|
Cheng S, Brooks CL. Protein-Protein Interfaces in Viral Capsids Are Structurally Unique. J Mol Biol 2015; 427:3613-3624. [PMID: 26375252 DOI: 10.1016/j.jmb.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/08/2015] [Accepted: 09/04/2015] [Indexed: 01/20/2023]
Abstract
Viral capsids exhibit elaborate and symmetrical architectures of defined sizes and remarkable mechanical properties not seen with cellular macromolecular complexes. Given the uniqueness of the higher-order organization of viral capsid proteins in the virosphere, we explored the question of whether the patterns of protein-protein interactions within viral capsids are distinct from those in generic protein complexes. Our comparative analysis involving a non-redundant set of 551 inter-subunit interfaces in viral capsids from VIPERdb and 20,014 protein-protein interfaces in non-capsid protein complexes from the Protein Data Bank found 418 generic protein-protein interfaces that share similar physicochemical patterns with some protein-protein interfaces in the capsid set, using the program PCalign we developed for comparing protein-protein interfaces. This overlap in the structural space of protein-protein interfaces is significantly small, with a p-value <0.0001, based on a permutation test on the total set of protein-protein interfaces. Furthermore, the generic protein-protein interfaces that bear similarity in their spatial and chemical arrangement with capsid ones are mostly small in size with fewer than 20 interfacial residues, which results from the relatively limited choices of natural design for small interfaces rather than having significant biological implications in terms of functional relationships. We conclude based on this study that protein-protein interfaces in viral capsids are non-representative of patterns in the smaller, more compact cellular protein complexes. Our finding highlights the design principle of building large biological containers from repeated, self-assembling units and provides insights into specific targets for antiviral drug design for improved efficacy.
Collapse
Affiliation(s)
- Shanshan Cheng
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109-2218, USA.
| | - Charles L Brooks
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109-2218, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
12
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
13
|
Jiang J, Yang J, Sereda YV, Ortoleva PJ. Early stage P22 viral capsid self-assembly mediated by scaffolding protein: atom-resolved model and molecular dynamics simulation. J Phys Chem B 2015; 119:5156-62. [PMID: 25815608 DOI: 10.1021/acs.jpcb.5b00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics simulation of an atom-resolved bacteriophage P22 capsid model is used to delineate the underlying mechanism of early stage P22 self-assembly. A dimer formed by the C-terminal fragment of scaffolding protein with a new conformation is demonstrated to catalyze capsomer (hexamer and pentamer) aggregation efficiently. Effects of scaffolding protein/coat protein binding patterns and scaffolding protein concentration on efficiency, fidelity, and capsid curvature of P22 self-assembly are identified.
Collapse
Affiliation(s)
- Jiajian Jiang
- Center for Theoretical and Computational Nanoscience, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jing Yang
- Center for Theoretical and Computational Nanoscience, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yuriy V Sereda
- Center for Theoretical and Computational Nanoscience, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Peter J Ortoleva
- Center for Theoretical and Computational Nanoscience, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
15
|
Marreiros R, Müller-Schiffmann A, Bader V, Selvarajah S, Dey D, Lingappa VR, Korth C. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Res 2014; 207:155-64. [PMID: 25451064 DOI: 10.1016/j.virusres.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
Abstract
Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Marreiros
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Müller-Schiffmann
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verian Bader
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | - Carsten Korth
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Zhang R, Linse P. Icosahedral capsid formation by capsomers and short polyions. J Chem Phys 2013; 138:154901. [PMID: 23614442 DOI: 10.1063/1.4799243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetical and structural aspects of the capsomer-polyion co-assembly into icosahedral viruses have been simulated by molecular dynamics using a coarse-grained model comprising cationic capsomers and short anionic polyions. Conditions were found at which the presence of polyions of a minimum length was necessary for capsomer formation. The largest yield of correctly formed capsids was obtained at which the driving force for capsid formation was relatively weak. Relatively stronger driving forces, i.e., stronger capsomer-capsomer short-range attraction and∕or stronger electrostatic interaction, lead to larger fraction of kinetically trapped structures and aberrant capsids. The intermediate formation was investigated and different evolving scenarios were found by just varying the polyion length.
Collapse
Affiliation(s)
- Ran Zhang
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
17
|
Anjum S, Afzal MS, Ahmad T, Aslam B, Waheed Y, Shafi T, Qadri I. Mutations in the STAT1‑interacting domain of the hepatitis C virus core protein modulate the response to antiviral therapy. Mol Med Rep 2013; 8:487-492. [PMID: 23799612 DOI: 10.3892/mmr.2013.1541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
RNA viruses, such as hepatitis C virus (HCV), have markedly error-prone replication, resulting in high rates of mutagenesis. In addition, the standard treatment includes ribavirin, a base analog that is likely to cause mutations in different regions of the HCV genome, resulting in deleterious effects on HCV itself. The N-terminal region of the core protein is reported to block interferon (IFN) signaling by interaction with the STAT1‑SH2 domain, resulting in HCV resistance to IFN therapy. In this study, mutations in the HCV core protein from IFN/ribavirin‑treated patients were analyzed, with particular focus on the N‑terminal domain of the HCV core which is reported to interact with STAT1. HCV PCR positive patients enrolled in this study were either undergoing pegylated IFN/ribavirin bitherapy and had completed 12 weeks of initial treatment or were treatment‑naïve patients. The HCV core protein was cloned and sequenced from these patients and mutations observed in the STAT1‑interacting domain of the core protein from treated patients were characterized using in silico interaction to depict the role of these mutations in disease outcomes. Our results suggest that the amino acids at positions 2, 3, 8, 16 and 23 of the HCV core protein are critical for core-STAT1 interaction and ribavirin-induced mutations at these positions interfere with the interaction, resulting in a better response of the treated patients. In conclusion, this study anticipates that HCV core residues 2, 3, 8, 16 and 23 directly interact with STAT1. We propose that IFN/ribavirin bitherapy‑induced mutations in the STAT1‑interacting domain of the HCV core protein may be responsible for the improved therapeutic response and viral clearance, thus amino acids 1-23 of the N-terminus of the core protein are an ideal antiviral target. However, this treatment may give rise to resistant variants that are able to escape the current therapy. We propose similar studies in responsive and non-responsive genotypes in order to gain a broader picture of this proposed mechanism of viral clearance.
Collapse
Affiliation(s)
- Sadia Anjum
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Phase diagrams map the properties of antiviral agents directed against hepatitis B virus core assembly. Antimicrob Agents Chemother 2012. [PMID: 23208717 DOI: 10.1128/aac.01766-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Assembly effectors are small molecules that induce inappropriate virus capsid assembly to antiviral effect. To identify attributes of hepatitis B virus (HBV) assembly effectors, assembly reaction products (normal capsid, noncapsid polymer, intermediates, and free dimeric core protein) were quantified in the presence of three experimental effectors: HAP12, HAP13, and AT-130. Effectors bound stoichiometrically to capsid protein polymers, but not free protein. Thermodynamic and kinetic effects, not aberrant assembly, correlate with maximal antiviral activity.
Collapse
|
19
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Castellanos M, Pérez R, Carrillo PJP, de Pablo PJ, Mateu MG. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory. Biophys J 2012; 102:2615-24. [PMID: 22713577 DOI: 10.1016/j.bpj.2012.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 01/22/2023] Open
Abstract
New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.
Collapse
Affiliation(s)
- Milagros Castellanos
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Departamento de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Tsiang M, Niedziela-Majka A, Hung M, Jin D, Hu E, Yant S, Samuel D, Liu X, Sakowicz R. A trimer of dimers is the basic building block for human immunodeficiency virus-1 capsid assembly. Biochemistry 2012; 51:4416-28. [PMID: 22564075 DOI: 10.1021/bi300052h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) capsid protein (CA) has become a target of antiviral drug design in recent years. The recognition that binding of small molecules to the CA protein can result in the perturbation of capsid assembly or disassembly has led to mathematical modeling of the process. Although a number of capsid assembly models have been developed using biophysical parameters of the CA protein obtained experimentally, there is currently no model of CA polymerization that can be practically used to analyze in vitro CA polymerization data to facilitate drug discovery. Herein, we describe an equilibrium model of CA polymerization for the kinetic analysis of in vitro assembly of CA into polymer tubes. This new mathematical model has been used to assess whether a triangular trimer of dimers rather than a hexagonal hexamer can be the basic capsomere building block of CA polymer. The model allowed us to quantify for the first time the affinity for each of the four crucial interfaces involved in the polymerization process and indicated that the trimerization of CA dimers is a relatively slow step in CA polymerization in vitro. For wild-type CA, these four interfaces include the interface between two monomers of a CA dimer (K(D) = 6.6 μM), the interface between any two dimers within a CA trimer of dimers (K(D) = 32 nM), and two types of interfaces between neighboring trimers of dimers, either within the same ring around the perimeter of the polymer tube (K(D) = 438 nM) or from two adjacent rings (K(D) = 147 nM). A comparative analysis of the interface dissociation constants between wild-type and two mutant CA proteins, cross-linked hexamer (A14C/E45C/W184A/M185A) and A14C/E45C, yielded results that are consistent with the trimer of dimers with a triangular geometry being the capsomere building block involved in CA polymer growth. This work provides additional insights into the mechanism of HIV-1 CA assembly and may prove useful in elucidating how small molecule CA binding agents may disturb this essential step in the HIV-1 life cycle.
Collapse
Affiliation(s)
- Manuel Tsiang
- Gilead Sciences, Foster City, California 94404, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Singh L, Hallan V, Zaidi AA. Intermolecular Interactions of Chrysanthemum virus B Coat Protein: Implications for Capsid Assembly. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2011; 22:111-6. [PMID: 23637512 DOI: 10.1007/s13337-011-0049-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/12/2011] [Indexed: 11/25/2022]
Abstract
Chrysanthemum virus B coat protein constitutes the viral capsid which, besides other functions, encapsulates and protects the viral nucleic acid. We have demonstrated homotypic interaction of the coat protein subunits, essentially important for dimer formation, which is the first step during capsid assembly in vivo and in vitro. Interaction capacity of full length and truncated protein has been investigated and important regions have been identified through protein-protein interaction in yeast and by co-immunoprecipitation assays. Complete coat protein was found to interact strongly with similar subunits. Constructs with 102 amino acids from the N-terminal and 64 amino acids from C-terminal were found to be inconsequential for dimer formation as they did not show any interaction with similar subunits or with full length protein when analysed for β-galactosidase or histidine prototrophy. Results suggest that the region of 98-184 amino acids from the middle plays an important role in the process, probably without the involvement of N- and C- terminals.
Collapse
Affiliation(s)
- Lakhmir Singh
- Plant Virology Lab, Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| | | | | |
Collapse
|
23
|
The main Hepatitis B virus (HBV) mutants resistant to nucleoside analogs are susceptible in vitro to non-nucleoside inhibitors of HBV replication. Antiviral Res 2011; 92:271-6. [DOI: 10.1016/j.antiviral.2011.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 02/07/2023]
|
24
|
Prevelige PE. New approaches for antiviral targeting of HIV assembly. J Mol Biol 2011; 410:634-40. [PMID: 21762804 PMCID: PMC3139149 DOI: 10.1016/j.jmb.2011.03.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 01/28/2023]
Abstract
The pressing need to develop antivirals active against resistant strains of HIV-1 has led to efforts to target steps in the virus life cycle other than reverse transcription and Gag proteolysis. Among those steps are entry, integration, and assembly and/or maturation. Advances in understanding the structural biology of both the immature and the mature forms of the HIV capsid have made it possible to design or discover small molecules and peptides that interfere with both assembly and maturation. Here, we review the current state of the art in assembly and maturation inhibitors.
Collapse
Affiliation(s)
- Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35216, USA.
| |
Collapse
|
25
|
Affiliation(s)
- Adam Zlotnick
- Department of Biology, Indiana University Bloomington IN 47405 USA
| | - Bentley A. Fane
- Division of Plant Pathology and Microbiology, Department of Plant Sciences and The BIO5 Institute, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
26
|
Moisant P, Neeman H, Zlotnick A. Exploring the paths of (virus) assembly. Biophys J 2010; 99:1350-7. [PMID: 20816046 PMCID: PMC2931725 DOI: 10.1016/j.bpj.2010.06.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022] Open
Abstract
Assembly of viruses that have hundreds of subunits or folding of proteins that have hundreds of amino acids-complex biological reactions-are often spontaneous and rapid. Here, we examine the complete set of intermediates available for the assembly of a hypothetical viruslike particle and the connectivity between these intermediates in a graph-theory-inspired study. Using a build-up procedure, assuming ideal geometry, we enumerated the complete set of 2,423,313 species for formation of an icosahedron from 30 dimeric subunits. Stability of each n-subunit intermediate was defined by the number of contacts between subunits. The probability of forming an intermediate was based on the number of paths to it from its precedecessors. When defining population subsets predicted to have the greatest impact on assembly, both stability- and probability-based criteria select a small group of compact and degenerate species; ergo, only a few hundred intermediates make a measurable contribution to assembly. Though the number of possible intermediates grows combinatorially with the number of subunits in the capsid, the number of intermediates that make a significant contribution to the reaction grows by a much smaller function, a result that may contribute to our understanding of assembly and folding reactions.
Collapse
Affiliation(s)
- Paul Moisant
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Henry Neeman
- Oklahoma University Supercomputing Center for Education and Research, University of Oklahoma, Norman, Oklahoma
| | - Adam Zlotnick
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Departments of Molecular and Cellular Biochemistry and Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
27
|
Strosberg AD, Kota S, Takahashi V, Snyder JK, Mousseau G. Core as a novel viral target for hepatitis C drugs. Viruses 2010; 2:1734-1751. [PMID: 21994704 PMCID: PMC3185734 DOI: 10.3390/v2081734] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/06/2010] [Accepted: 08/16/2010] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infects over 130 million people worldwide and is a major cause of liver disease. No vaccine is available. Novel specific drugs for HCV are urgently required, since the standard-of-care treatment of pegylated interferon combined with ribavirin is poorly tolerated and cures less than half of the treated patients. Promising, effective direct-acting drugs currently in the clinic have been described for three of the ten potential HCV target proteins: NS3/NS4A protease, NS5B polymerase and NS5A, a regulatory phosphoprotein. We here present core, the viral capsid protein, as another attractive, non-enzymatic target, against which a new class of anti-HCV drugs can be raised. Core plays a major role in the virion's formation, and interacts with several cellular proteins, some of which are involved in host defense mechanisms against the virus. This most conserved of all HCV proteins requires oligomerization to function as the organizer of viral particle assembly. Using core dimerization as the basis of transfer-of-energy screening assays, peptides and small molecules were identified which not only inhibit core-core interaction, but also block viral production in cell culture. Initial chemical optimization resulted in compounds active in single digit micromolar concentrations. Core inhibitors could be used in combination with other HCV drugs in order to provide novel treatments of Hepatitis C.
Collapse
Affiliation(s)
- Arthur Donny Strosberg
- Department of Infectology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, FL-33458, USA; E-Mails: (S.K.); (V.T.); (G.M.)
| | - Smitha Kota
- Department of Infectology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, FL-33458, USA; E-Mails: (S.K.); (V.T.); (G.M.)
| | - Virginia Takahashi
- Department of Infectology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, FL-33458, USA; E-Mails: (S.K.); (V.T.); (G.M.)
| | - John K. Snyder
- Department of Chemistry, The Center for Chemical Methodology and Library Development, Boston University, Boston, MA 02215, USA; E-Mail:
| | - Guillaume Mousseau
- Department of Infectology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, FL-33458, USA; E-Mails: (S.K.); (V.T.); (G.M.)
| |
Collapse
|
28
|
Wilber AW, Doye JPK, Louis AA, Lewis ACF. Monodisperse self-assembly in a model with protein-like interactions. J Chem Phys 2009; 131:175102. [DOI: 10.1063/1.3243581] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Mannige RV, Brooks CL. Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling. Proc Natl Acad Sci U S A 2009; 106:8531-6. [PMID: 19439655 PMCID: PMC2688982 DOI: 10.1073/pnas.0811517106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Indexed: 11/18/2022] Open
Abstract
Spherical capsids are shells of protein subunits that protect the genomes of many viral strains. Although nature displays a range of spherical capsid sizes (reflected by the number of subunits in the formation), specific strains display stringent requirements for forming capsids of specific sizes, a requirement that appears crucial to infectivity. Despite its importance in pathogenicity, little is known regarding the determinants of capsid size. Still less is known about exactly which capsids can undergo maturation events such as buckling transitions--postcapsid-assembly events that are crucial to some virus strains. We show that the exclusive determinant of capsid size is hexamer shape, as defined by subunit-subunit dihedral angles. This conclusion arises from considering the dihedral angle patterns within hexamers belonging to natural canonical capsids and geometric capsid models (deltahedra). From simple geometric models and an understanding of endo angle propagation discussed here, we then suggest that buckling transitions may be available only to capsids of certain size (specifically, T < 7 capsids are precluded from such transformations) and that T > 7 capsids require the help of auxiliary mechanisms for proper capsid formation. These predictions, arising from simple geometry and modeling, are backed by a body of empirical evidence, further reinforcing the extent to which the evolution of the atomistically complex virus capsid may be principled around simple geometric design/requirements.
Collapse
Affiliation(s)
- Ranjan V. Mannige
- Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, 10550 North Torrey Pines Court, TPC 6, La Jolla, CA 92037; and
- Department of Chemistry and Biophysics Program, University of Michigan, 930 North University, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, 930 North University, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Bourne CR, Katen SP, Fultz MJ, Packianathan C, Zlotnick A. A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly. Biochemistry 2009; 48:1736-42. [PMID: 19196007 PMCID: PMC2880625 DOI: 10.1021/bi801814y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding self-assembly of icosahedral virus capsids is critical to developing assembly directed antiviral approaches and will also contribute to the development of self-assembling nanostructures. One approach to controlling assembly would be through the use of assembly inhibitors. Here we use Cp149, the assembly domain of the hepatitis B virus capsid protein, together with an assembly defective mutant, Cp149-Y132A, to examine the limits of the efficacy of assembly inhibitors. By itself, Cp149-Y132A will not form capsids. However, Cp-Y132A will coassemble with the wild-type protein on the basis of light scattering and size exclusion chromatography. The resulting capsids appear to be indistinguishable from normal capsids. However, coassembled capsids are more fragile, with disassembly observed by chromatography under mildly destabilizing conditions. The relative persistence of capsids assembled under conditions where association energy is weak compared to the fragility of those where association is strong suggests a mechanism of "thermodynamic editing" that allows replacement of defective proteins in a weakly associated complex. There is fine line between weak assembly, where assembly defective protein is edited from a growing capsid, and relatively strong assembly, where assembly defective subunits may dramatically compromise virus stability. Thus, attempts to control virus self-assembly (with small molecules or defective proteins) must take into account the competing process of thermodynamic editing.
Collapse
Affiliation(s)
- Christina R. Bourne
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
| | - Sarah P. Katen
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Matthew J. Fultz
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
| | | | - Adam Zlotnick
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
31
|
Bourne C, Lee S, Venkataiah B, Lee A, Korba B, Finn MG, Zlotnick A. Small-molecule effectors of hepatitis B virus capsid assembly give insight into virus life cycle. J Virol 2008; 82:10262-70. [PMID: 18684823 PMCID: PMC2566253 DOI: 10.1128/jvi.01360-08] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 07/30/2008] [Indexed: 02/07/2023] Open
Abstract
The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors.
Collapse
Affiliation(s)
- Christina Bourne
- Indiana University, Department of Biology, Simon Hall MSB, Room 220D, 212 S. Hawthorne Drive, Bloomington, IN 47405-7003, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
We use discrete event stochastic simulations to characterize the parameter space of a model of icosahedral viral capsid assembly as functions of monomer-monomer binding rates. The simulations reveal a parameter space characterized by three major assembly mechanisms, a standard nucleation-limited monomer-accretion pathway and two distinct hierarchical assembly pathways, as well as unproductive regions characterized by kinetically trapped species. Much of the productive parameter space also consists of border regions between these domains where hybrid pathways are likely to operate. A simpler octamer system studied for comparison reveals three analogous pathways, but is characterized by much lesser sensitivity to parameter variations in contrast to the sharp changes visible in the icosahedral model. The model suggests that modest changes in assembly conditions, consistent with expected differences between in vitro and in vivo assembly environments, could produce substantial shifts in assembly pathways. These results suggest that we must be cautious in drawing conclusions about in vivo capsid self-assembly dynamics from theoretical or in vitro models, as the nature of the basic assembly mechanisms accessible to a system can substantially differ between simple and complex model systems, between theoretical models and simulation results, and between in vitro and in vivo assembly conditions.
Collapse
|
33
|
Zhang T, Kim WT, Schwartz R. Investigating Scaling Effects on Virus Capsid-Like Self-Assembly Using Discrete Event Simulations. IEEE Trans Nanobioscience 2007; 6:235-41. [DOI: 10.1109/tnb.2007.903484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Zlotnick A, Lee A, Bourne CR, Johnson JM, Domanico PL, Stray SJ. In vitro screening for molecules that affect virus capsid assembly (and other protein association reactions). Nat Protoc 2007; 2:490-8. [PMID: 17406612 PMCID: PMC2099249 DOI: 10.1038/nprot.2007.60] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein self-assembly is critical for numerous biological processes. Yet, assembly is rarely targeted by therapeutic agents, in part because it is hard to identify molecules that interfere with protein-protein interactions. Here, we describe a simple fluorescence-based screen for self-association and its application to the assembly of hepatitis B virus capsids. These data are analyzed to identify kinetic and thermodynamic effects--both of which are critical for the viral lifecycle and for understanding the mechanism of assembly effectors. Suggestions are made for modification of this protocol so that it can be applied to other self-assembling systems. With manual pipetting, setting up a plate takes about 2 h, the initial reading takes 1 h and the end point reading the following day takes about 5 min.
Collapse
Affiliation(s)
- Adam Zlotnick
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
A virus capsid is constructed from many copies of the same protein(s). Molecular recognition is central to capsid assembly. The capsid protein must polymerize in order to create a three-dimensional protein polymer. More than structure is required to understand this self-assembly reaction: one must understand how the pieces come together in solution.
Collapse
Affiliation(s)
- Adam Zlotnick
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
36
|
Zandi R, van der Schoot P, Reguera D, Kegel W, Reiss H. Classical nucleation theory of virus capsids. Biophys J 2005; 90:1939-48. [PMID: 16387781 PMCID: PMC1386774 DOI: 10.1529/biophysj.105.072975] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental step in the replication of a viral particle is the self-assembly of its rigid shell (capsid) from its constituent proteins. Capsids play a vital role in genome replication and intercellular movement of viruses, and as such, understanding viral assembly has great potential in the development of new antiviral therapies and a systematic treatment of viral infection. In this article, we assume that nucleation is the underlying mechanism for self-assembly and combine the theoretical methods of the physics of equilibrium polymerization with those of the classical nucleation to develop a theory for the kinetics of virus self-assembly. We find expressions for the size of the critical capsid, the lag time, and the steady-state nucleation rate of capsids, and how they depend on both protein concentration and binding energy. The latter is a function of the acidity of the solution, the ionic strength, and the temperature, explaining why capsid nucleation is a sensitive function of the ambient conditions.
Collapse
Affiliation(s)
- Roya Zandi
- Department of Physics, University of California, Riverside, California, USA.
| | | | | | | | | |
Collapse
|
37
|
Zhang T, Schwartz R. Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics. Biophys J 2005; 90:57-64. [PMID: 16214864 PMCID: PMC1367037 DOI: 10.1529/biophysj.105.072207] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process by which hundreds of identical capsid proteins self-assemble into icosahedral structures is complex and poorly understood. Establishing constraints on the assembly pathways is crucial to building reliable theoretical models. For example, it is currently an open question to what degree overall assembly kinetics are dominated by one or a few most efficient pathways versus the enormous number theoretically possible. The importance of this question, however, is often overlooked due to the difficulties of addressing it in either theoretical or experimental practice. We apply a computer model based on a discrete-event simulation method to evaluate the contributions of nondominant pathways to overall assembly kinetics. This is accomplished by comparing two possible assembly models: one allowing growth to proceed only by the accretion of individual assembly subunits and the other allowing the binding of sterically compatible assembly intermediates any sizes. Simulations show that the two models perform almost identically under low binding rate conditions, where growth is strongly nucleation-limited, but sharply diverge under conditions of higher association rates or coat protein concentrations. The results suggest the importance of identifying the actual binding pattern if one is to build reliable models of capsid assembly or other complex self-assembly processes.
Collapse
Affiliation(s)
- Tiequan Zhang
- Department of Biological Sciences and Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
38
|
Endres D, Miyahara M, Moisant P, Zlotnick A. A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Protein Sci 2005; 14:1518-25. [PMID: 15930000 PMCID: PMC2253392 DOI: 10.1110/ps.041314405] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The capsids of spherical viruses may contain from tens to hundreds of copies of the capsid protein(s). Despite their complexity, these particles assemble rapidly and with high fidelity. Subunit and capsid represent unique end states. However, the number of intermediate states in these reactions can be enormous-a situation analogous to the protein folding problem. Approaches to accurately model capsid assembly are still in their infancy. In this paper, we describe a sail-shaped reaction landscape, defined by the number of subunits in each species, the predicted prevalence of each species, and species stability. Prevalence can be calculated from the probability of synthesis of a given intermediate and correlates well with the appearance of intermediates in kinetics simulations. In these landscapes, we find that only those intermediates along the leading edge make a significant contribution to assembly. Although the total number of intermediates grows exponentially with capsid size, the number of leading-edge intermediates grows at a much slower rate. This result suggests that only a minute fraction of intermediates needs to be considered when describing capsid assembly.
Collapse
Affiliation(s)
- Dan Endres
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond 73034, USA
| | | | | | | |
Collapse
|
39
|
Stray SJ, Bourne CR, Punna S, Lewis WG, Finn MG, Zlotnick A. A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. Proc Natl Acad Sci U S A 2005; 102:8138-43. [PMID: 15928089 PMCID: PMC1149411 DOI: 10.1073/pnas.0409732102] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 04/07/2005] [Indexed: 12/14/2022] Open
Abstract
Heteroaryldihydropyrimidines (HAPs) are a new class of antivirals inhibiting production of hepatitis B virus (HBV) virions in tissue culture. Here, we examine the effect of a representative HAP molecule, methyl 4-(2-chloro-4-fluorophenyl)-6-methyl-2-(pyridin-2-yl)-1,4-dihydropyrimidine-5-carboxylate (HAP-1), on the in vitro assembly of HBV capsid protein (Cp). HAP-1 enhances the rate and extent of Cp assembly over a broad concentration range. Aberrant particles, dominated by hexagonal arrays of Cp, were observed from assembly reactions with high HAP-1 concentrations. HAP-1 also led to dissociation of metastable HBV capsids, overcoming a kinetic barrier to dissociation by scavenging Cp and redirecting its assembly into hexamer-rich structures. Thus, HAP drugs act as allosteric effectors that induce an assembly-active state and, at high concentration, preferentially stabilize noncapsid polymers of Cp. HAP compounds may have multiple effects in vivo stemming from inappropriate assembly of Cp. These results show that activating and deregulating virus assembly may be a powerful general approach for antiviral therapeutics.
Collapse
Affiliation(s)
- Stephen J Stray
- Department of Biochemistry and Molecular Biology BRC 464, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190, USA
| | | | | | | | | | | |
Collapse
|
40
|
Bothner B, Taylor D, Jun B, Lee KK, Siuzdak G, Schultz CP, Schlutz CP, Johnson JE. Maturation of a tetravirus capsid alters the dynamic properties and creates a metastable complex. Virology 2005; 334:17-27. [PMID: 15749119 DOI: 10.1016/j.virol.2005.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 11/06/2004] [Accepted: 01/06/2005] [Indexed: 11/30/2022]
Abstract
The assembly of monomeric protein subunits into a viral capsid is a finely tuned molecular process. In response to subtle changes in environmental conditions, this supramolecular complex can dramatically reorganize. Defining the forces that control this structure and the cooperative action of subunits has implications for biology and nanotechnology. The small icosahedral RNA tetravirus family members Nudaurelia omega capensis (NomegaV) and Helicoverpa armigera stunt virus (HaSV) can be purified as provirions, and maturation to capsids can be induced by a drop in pH. In this study, a comparison of capsid secondary structure using FT-IR revealed that the procapsid has more alpha-helical content than the capsid, supporting the proposal that helix to coil transition may be important for maturation. The dynamic properties of the two states were probed using limited proteolysis and peptide mass mapping to identify regions of significant flexibility. Interestingly, the initial sites of protease cleavage were the N and C terminal domains that are internal in high-resolution models, and to inter-subunit surfaces. Further comparison of the two particle forms using FT-IR revealed that in response to thermal stress, the provirion disassembles and unfolds in a cooperative manner over a narrow temperature range (approximately 5 degrees C). Paradoxically, the capsid form, which is stable in a wide range of pH and ionic conditions and is more resistant to proteolysis, responds to thermal stress at a lower temperature than the procapsid form. This suggests that a metastable state is the end product of assembly.
Collapse
Affiliation(s)
- Brian Bothner
- Scripps Research Institute, Department of Molecular Biology, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Benjamin J, Ganser-Pornillos BK, Tivol WF, Sundquist WI, Jensen GJ. Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. J Mol Biol 2005; 346:577-88. [PMID: 15670606 PMCID: PMC6608732 DOI: 10.1016/j.jmb.2004.11.064] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/18/2004] [Accepted: 11/23/2004] [Indexed: 11/22/2022]
Abstract
While the structures of nearly every HIV-1 protein are known in atomic detail from X-ray crystallography and NMR spectroscopy, many questions remain about how the individual proteins are arranged in the mature infectious viral particle. Here, we report the three-dimensional structures of individual HIV-1 virus-like particles (VLPs) as obtained by electron cryotomography. These reconstructions revealed that while the structures and positions of the conical cores within each VLP were unique, they exhibited several surprisingly consistent features, including similarities in the size and shape of the wide end of the capsid (the "base"), uniform positioning of the base and other regions of the capsid 11nm away from the envelope/MA layer, a cone angle that typically varied from 24 degrees to 18 degrees around the long axis of the cone, and an internal density (presumably part of the NC/RNA complex) cupped within the base. Multiple and nested capsids were observed. These results support the fullerene cone model for the viral capsid, indicate that viral maturation involves a free re-organization of the capsid shell rather than a continuous condensation, imply that capsid assembly is both concentration-driven and template-driven, suggest that specific interactions exist between the capsid and the adjacent envelope/MA and NC/RNA layers, and show that a particular capsid shape is favored strongly in-vivo.
Collapse
Affiliation(s)
- Jordan Benjamin
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125, USA
| | | | - William F. Tivol
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125, USA
| | - Wesley I. Sundquist
- Department of Biochemistry University of Utah School of Medicine, 20 N, 1900 E, Salt Lake City, UT 84132-3201 USA
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125, USA
| |
Collapse
|
42
|
Abstract
Local rules theory describes virus capsid self-assembly in terms of simple local binding preferences of discrete subunit conformations. The theory offered a parsimonious explanation for the complexity and regularity of virus capsids that resolved several inconsistencies between experimental observations and prior theories. Simultaneously, it provided a valuable practical abstraction for simulating the assembly process. Local rule models offered important advantages over other methods in rapidly developing simulations of complex geometries and assembly processes. Subsequent extensions considerably augmented the range of assembly phenomena amenable to simulation studies. Here we review the development of local rule-based simulation models and their applications to basic biology and medicine. We conclude by discussing the future prospects of local rule models forin silicoexperimentation with capsid assembly.
Collapse
Affiliation(s)
- R. Schwartz
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15217, USA
| | - P. W. Shor
- Department of Mathematics and Computer Science, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - B. Berger
- Department of Mathematics and Computer Science, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Affiliation(s)
- Vijay S Reddy
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- Adam Zlotnick
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
45
|
Xu W, Patrick MK, Hazelton PR, Coombs KM. Avian reovirus temperature-sensitive mutant tsA12 has a lesion in major core protein sigmaA and is defective in assembly. J Virol 2004; 78:11142-51. [PMID: 15452234 PMCID: PMC521821 DOI: 10.1128/jvi.78.20.11142-11151.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/18/2004] [Indexed: 11/20/2022] Open
Abstract
Members of our laboratory previously generated and described a set of avian reovirus (ARV) temperature-sensitive (ts) mutants and assigned 11 of them to 7 of the 10 expected recombination groups, named A through G (M. Patrick, R. Duncan, and K. M. Coombs, Virology 284:113-122, 2001). This report presents a more detailed analysis of two of these mutants (tsA12 and tsA146), which were previously assigned to recombination group A. The capacities of tsA12 and tsA146 to replicate at a variety of temperatures were determined. Morphological analyses indicated that cells infected with tsA12 at a nonpermissive temperature produced approximately 100-fold fewer particles than cells infected at a permissive temperature and accumulated core particles. Cells infected with tsA146 at a nonpermissive temperature also produced approximately 100-fold fewer particles, a larger proportion of which were intact virions. We crossed tsA12 with ARV strain 176 to generate reassortant clones and used them to map the temperature-sensitive lesion in tsA12 to the S2 gene. S2 encodes the major core protein sigmaA. Sequence analysis of the tsA12 S2 gene showed a single alteration, a cytosine-to-uracil transition, at nucleotide position 488. This alteration leads to a predicted amino acid change from proline to leucine at amino acid position 158 in the sigmaA protein. An analysis of the core crystal structure of the closely related mammalian reovirus suggested that the Leu(158) substitution in ARV sigmaA lies directly under the outer face of the sigmaA protein. This may cause a perturbation in sigmaA such that outer capsid proteins are incapable of condensing onto nascent cores. Thus, the ARV tsA12 mutant represents a novel assembly-defective orthoreovirus clone that may prove useful for delineating virus assembly.
Collapse
Affiliation(s)
- Wanhong Xu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | | | | | | |
Collapse
|
46
|
Zlotnick A, Stray SJ. How does your virus grow? Understanding and interfering with virus assembly. Trends Biotechnol 2004; 21:536-42. [PMID: 14624862 DOI: 10.1016/j.tibtech.2003.09.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Adam Zlotnick
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | |
Collapse
|
47
|
Lee KK, Tang J, Taylor D, Bothner B, Johnson JE. Small compounds targeted to subunit interfaces arrest maturation in a nonenveloped, icosahedral animal virus. J Virol 2004; 78:7208-16. [PMID: 15194797 PMCID: PMC421682 DOI: 10.1128/jvi.78.13.7208-7216.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nudaurelia omega capensis virus (N omega V) capsids were previously characterized in two morphological forms, a T=4, 485-A-diameter round particle with large pores and a tightly sealed 395-A icosahedrally shaped particle with the same quasi-symmetric surface lattice. The large particle converts to the smaller particle when the pH is lowered from 7.6 to 5, and this activates an autocatalytic cleavage of the viral subunit at residue 570. Here we report that both 1-anilino-8 naphthalene sulfonate (ANS) and the covalent attachment of the thiol-reactive fluorophore, maleimide-ANS (MIANS), inhibit the structural transition and proteolysis at the lower pH. When ANS is exhaustively washed from the particles, the maturation proceeds normally; however, MIANS-modified particles are still inhibited after the same washing treatment, indicating that covalent attachment targets MIANS to a critical location for inhibition. Characterization of the low-pH MIANS product by electron cryo-microscopy (cryo-EM) and image reconstruction demonstrated a morphology intermediate between the two forms previously characterized. A pseudoatomic model of the intermediate configuration was generated by rigid body refinement of the X-ray structure of the subunits (previously determined in the assembled capsid) into the cryo-EM density, allowing a quantitative description of the inhibited intermediate and a hypothesis for the mechanism of the inhibition.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Molecular Biology and Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Carreira A, Menéndez M, Reguera J, Almendral JM, Mateu MG. In vitro disassembly of a parvovirus capsid and effect on capsid stability of heterologous peptide insertions in surface loops. J Biol Chem 2003; 279:6517-25. [PMID: 14660623 DOI: 10.1074/jbc.m307662200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the in vitro disassembly of the capsid of the minute virus of mice, and the stability of capsid chimeras carrying heterologous epitope insertions. Upon heating in a physiological buffer, empty capsids formed by 60 copies of protein VP2 underwent first a reversible conformational change with a small enthalpy change detected by fluorescence. This change was associated with, but not limited to, externalization of the VP2 N terminus. Irreversible capsid dissociation as detected by changes in fluorescence, hemagglutination activity, and electrophoretic mobility occurred at much higher temperatures. Differential scanning calorimetry in the same conditions indicated that the dissociation/denaturation transition involved a high enthalpy change and proceeded through one or more intermediates. In contrast, in the presence of 1.5 M guanidinium chloride, heat-induced disassembly fitted a two-state irreversible process. Both thermally and chemically induced dissociation/denaturation yielded a form that had lost a part of the tertiary structure, but still retained the native secondary structure. Data from chemical dissociation indicates this form may correspond to a molten globule-like monomeric state of the capsid protein. All five antigenic peptide insertions attempted in exposed loops, despite being perhaps among the least disruptive, led to defects in folding/assembly of the capsid and, in most cases, to reduced capsid stability against thermal dissociation. The results with one of the simplest viral capsids reveal a complex pathway for disassembly, and a reduction in capsid assembly and stability upon insertion of peptides, even within the most exposed capsid loops.
Collapse
Affiliation(s)
- Aura Carreira
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Wakeham DE, Chen CY, Greene B, Hwang PK, Brodsky FM. Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation. EMBO J 2003; 22:4980-90. [PMID: 14517237 PMCID: PMC204494 DOI: 10.1093/emboj/cdg511] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The clathrin triskelion self-assembles into a polyhedral coat surrounding membrane vesicles that sort receptor cargo to the endocytic pathway. A triskelion comprises three clathrin heavy chains joined at their C-termini, extending into proximal and distal leg segments ending in a globular N-terminal domain. In the clathrin coat, leg segments entwine into parallel and anti-parallel interactions. Here we define the contributions of segmental interactions to the clathrin assembly reaction and measure the strength of their interactions. Proximal and distal leg segments were found to lack sufficient affinity to form stable homo- or heterodimers under assembly conditions. However, chimeric constructs of proximal or distal leg segments, trimerized by replacement of the clathrin trimerization domain with that of the invariant chain protein, were able to self-assemble in reversible reactions. Thus clathrin assembly occurs because weak leg segment affinities are coordinated through trimerization, sharing a dependence on multiple weak interactions with other biopolymers. Such polymerization is sensitive to small environmental changes and is therefore compatible with cellular regulation of assembly, disassembly and curvature during formation of clathrin-coated vesicles.
Collapse
Affiliation(s)
- Diane E Wakeham
- The G. W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0552, USA
| | | | | | | | | |
Collapse
|
50
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|