1
|
Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, Li H, Xu H, Lao X, Zheng H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 2019; 6:148. [PMID: 31409791 PMCID: PMC6692298 DOI: 10.1038/s41597-019-0154-y] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Data Repository of Antimicrobial Peptides (DRAMP, http://dramp.cpu-bioinfor.org/ ) is an open-access comprehensive database containing general, patent and clinical antimicrobial peptides (AMPs). Currently DRAMP has been updated to version 2.0, it contains a total of 19,899 entries (newly added 2,550 entries), including 5,084 general entries, 14,739 patent entries, and 76 clinical entries. The update covers new entries, structures, annotations, classifications and downloads. Compared with APD and CAMP, DRAMP contains 14,040 (70.56% in DRAMP) non-overlapping sequences. In order to facilitate users to trace original references, PubMed_ID of references have been contained in activity information. The data of DRAMP can be downloaded by dataset and activity, and the website source code is also available on dedicatedly designed download webpage. Although thousands of AMPs have been reported, only a few parts have entered clinical stage. In the paper, we described several AMPs in clinical trials, including their properties, indications and clinicaltrials.gov identifiers. Finally, we provide the applications of DRAMP in the development of AMPs.
Collapse
Affiliation(s)
- Xinyue Kang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China
| | - Fanyi Dong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China
| | - Cheng Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China
| | - Shicai Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P.R. China
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Jiaxin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China
| | - Haiqi Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211100, P.R. China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, P.R. China.
| |
Collapse
|
2
|
Abubakar M, Saeed A, Kul O. Modification of Animal Products for Fat and Other Characteristics. THE ROLE OF BIOTECHNOLOGY IN IMPROVEMENT OF LIVESTOCK 2015. [PMCID: PMC7121827 DOI: 10.1007/978-3-662-46789-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter includes information about modification of animal products using biotechnology and the importance of different modifications on the natural composition. The species considered for modified products include beef and dairy cattle, sheep, goats, poultry, and a wide variety of fishes. Moreover, the discussion includes the importance of animal food, nongenetically engineered animal modified food products, genetically engineered animal modified food items primarily for meat, milk, or egg and genetically engineered animal food along the transgenic approach for animal welfare. Modern biotechnology can improve productivity, consistency, and quality of alter animal food, fiber, and medical products. The transgenic technology is potentially valuable to alter characters of economic importance in a rapid and precise way. The food safety issue related to genetic engineering is also included in this chapter. The harm of such modified food and transgenic strategy should also be understood by the reader along with its advantages. In this context, transgenic approaches in animal biotechnology are under discussion that ranges from animal food production to their adverse effects.
Collapse
Affiliation(s)
| | - Ali Saeed
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oguz Kul
- Veterinary Faculty, Kirikkale University, Yahsihan, Turkey
| |
Collapse
|
3
|
Zhang Y, Dai Z, Wu G, Zhang R, Dai Y, Li N. Expression of threonine-biosynthetic genes in mammalian cells and transgenic mice. Amino Acids 2014; 46:2177-88. [PMID: 24893662 DOI: 10.1007/s00726-014-1769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
Threonine is a nutritionally essential amino acid (EAA) for the growth and development of humans and other nonruminant animals and must be provided in diets to sustain life. The aim of this study was to synthesize threonine in mammalian cells through transgenic techniques. To achieve this goal, we combined the genes involved in bacterial threonine biosynthesis pathways into a single open reading frame separated by self-cleaving peptides (2A) and then linked it into a transposon system (piggyBac). The plasmids pEF1a-IRES-GFP-E2F-his and pEF1a-IRES-GFP-M2F-his expressed Escherichia coli homoserine kinase and threonine synthase efficiently in mouse cells and enabled cells to synthesize threonine from homoserine. This biosynthetic pathway occurred with a low level of efficiency in transgenic mice. Three transgenic mice were identified by Southern blot from 72 newborn mice, raising the possibility that a high level of expression of these genes in mouse embryos might be lethal. The results indicated that it is feasible to synthesize threonine in animal cells using genetic engineering technology. Further work is required to improve the efficiency of this method for introducing genes into mammals. We propose that the transgenic technology provides a promising means to enhance the synthesis of nutritionally EAAs in farm animals and to eliminate or reduce supplementation of these nutrients in diets for livestock, poultry and fish.
Collapse
Affiliation(s)
- Yurui Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
4
|
Yu DW, Zhu HB, DU WH. [Advances of transgenic breeding in livestock]. YI CHUAN = HEREDITAS 2011; 33:459-68. [PMID: 21586393 DOI: 10.3724/sp.j.1005.2011.00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transgenic technology represents a revolutionary way to produce elite livestock breeds, allowing introduction of alien gene into livestock genome. Currently, pronuclear microinjection of DNA and somatic cell nuclear transfer are two popular methods used to make transgenic farm animals. Transgenic technology can be used in livestock breeding for improving disease resistance, carcass composition, lactational performance, wool production, growth rate, and reproductive performance, as well as reducing negative environmental impact. In addition to introduction of animal transgenic technologies, this review described the status and the future perspective of transgenic breeding in livestock.
Collapse
Affiliation(s)
- Da-Wei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | |
Collapse
|
5
|
Enhancing livestock through genetic engineering—Recent advances and future prospects. Comp Immunol Microbiol Infect Dis 2009; 32:123-37. [DOI: 10.1016/j.cimid.2007.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2007] [Indexed: 11/23/2022]
|
6
|
|
7
|
Rogers GE. Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered. Exp Dermatol 2007; 15:931-49. [PMID: 17083360 DOI: 10.1111/j.1600-0625.2006.00512.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wool fibres are hairs and the term 'wool' is usually restricted to describe the fine curly hairs that constitute the fleece produced by sheep. In a broader sense, it can be used to describe the fleeces produced by related species such as goat or yak. Research into the biology of wool growth and the structure of the wool fibre has been driven by the demands of the wool industry to improve both the efficiency of growing wool and the quality of the product. Well beyond this very applied perspective however, the wool follicle is a unique basic research model for the life sciences in general. These unique features include, to name just a few selected examples, accessibility for studying the molecular controls involved in branching of secondary epithelial-mesenchymal structures, the photoperiod-dependence of regenerating tissue interaction systems, the origin of fibre curliness and follicle wave pattern formation, and the effect of alterations in nutrient supply on epithelial growth and fibre structure. In this review, investigation of growth processes in the formation of the wool fibre is broadly surveyed. The relevance and potential for practical outcomes through characterization of wool follicle genes are discussed and particular features of the wool follicle contributing to our knowledge of the biology of hair growth are highlighted. The practical potential of gene discovery in wool research is the provision of molecular markers for selective breeding and for altering wool growth and wool structure by other biological pathways such as sheep transgenesis that could lead to novel wool properties. In this background, the current review attempts to revive general interest in the fascinating biology of the wool follicle which is not only of profound economic and practical importance but offers an exquisite, highly instructive research model for addressing key questions of modern biology.
Collapse
Affiliation(s)
- George E Rogers
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Oback B, Wells DN. Cloning cattle: the methods in the madness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:30-57. [PMID: 17176553 DOI: 10.1007/978-0-387-37754-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.
Collapse
Affiliation(s)
- Björn Oback
- Björn Oback-Reproductive Technologies, AgResearch Ltd., Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand.
| | | |
Collapse
|
9
|
Golovan SP, Hayes MA, Phillips JP, Forsberg CW. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 2001; 19:429-33. [PMID: 11329011 DOI: 10.1038/88091] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed transgenic mouse models to determine whether endogenous expression of phytase transgenes in the digestive tract of monogastric animals can increase the bioavailability of dietary phytate, a major but indigestible form of dietary phosphorus. We constructed phytase transgenes composed of the appA phytase gene from Escherichia coli regulated for expression in salivary glands by the rat R15 proline-rich protein promoter or by the mouse parotid secretory protein promoter. Transgenic phytase is highly expressed in the parotid salivary glands and secreted in saliva as an enzymatically active 55 kDa glycosylated protein. Expression of salivary phytase reduces fecal phosphorus by 11%. These results suggest that the introduction of salivary phytase transgenes into monogastric farm animals offers a promising biological approach to relieving the requirement for dietary phosphate supplements and to reducing phosphorus pollution from animal agriculture.
Collapse
Affiliation(s)
- S P Golovan
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|