1
|
Rahmanian N, Hosseinimehr SJ, Khalaj A. The paradox role of caspase cascade in ionizing radiation therapy. J Biomed Sci 2016; 23:88. [PMID: 27923354 PMCID: PMC5142153 DOI: 10.1186/s12929-016-0306-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy alone or in combination with chemotherapy/surgery is widely used for treatment of cancers. It reduces tumor growth and prevents metastasis. While ionizing radiation activates caspase cascade resulted in apoptosis in cancer cells, it also stimulates tumor cell re-population that leads to reduce the effectiveness of the radiation therapy. This review describes the mechanisms for paradox role of caspase cascade in cancer therapy and discusses the logical and practical strategies for improvement the therapeutic index of radiotherapy through enhancement of radiosensitivity and decreasing the rate of tumor recurrence.
Collapse
Affiliation(s)
- Najmeh Rahmanian
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Khalaj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhou DH, Yang LN, Roder C, Kalthoff H, Trauzold A. TRAIL-induced expression of uPA and IL-8 strongly enhanced by overexpression of TRAF2 and Bcl-xL in pancreatic ductal adenocarcinoma cells. Hepatobiliary Pancreat Dis Int 2013; 12:94-8. [PMID: 23392805 DOI: 10.1016/s1499-3872(13)60012-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The death ligand, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), induces apoptosis and non-apoptotic signaling in some tumor cells. The purpose of this study was to investigate the roles of the pro-apoptotic TRAIL receptors, TRAIL-R1 and TRAIL-R2, as well as Bcl-xL and TRAF2 in TRAIL-induced expression of the pro-inflammatory cytokine IL-8 and the invasion-promoting protein urokinase (uPA) in pancreatic ductal adenocarcinoma (PDAC) cells. METHODS Colo357wt, Colo357/TRAF2, Colo357/Bcl-xL, Panc89 and PancTuI cells were stimulated with TRAIL and uPA and IL-8 expression was detected using real-time PCR. Antagonistic, receptor-specific antibodies were used to investigate the effects of TRAIL-R1 or TRAIL-R2 inhibition. RESULTS Dose-dependent increases in uPA and IL-8 expression were detected following TRAIL stimulation in PDAC cells. These effects were inhibited when TRAIL-R1 but not TRAIL-R2 was blocked. Overexpression of TRAF2 or Bcl-xL strongly increased TRAIL-mediated upregulation of uPA and IL-8. CONCLUSIONS In PDAC cells, TRAIL strongly induced uPA and IL-8 via TRAIL-R1. This response was further enhanced in cells overexpressing TRAF2 and Bcl-xL. Therefore, inhibition of the non-apoptotic "side-effects" of TRAIL treatments by inactivation of TRAF2 and Bcl-xL might represent additional relevant strategies for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dong-Hui Zhou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | |
Collapse
|
3
|
Lauber K, Munoz LE, Berens C, Jendrossek V, Belka C, Herrmann M. Apoptosis induction and tumor cell repopulation: the yin and yang of radiotherapy. Radiat Oncol 2011; 6:176. [PMID: 22182804 PMCID: PMC3264523 DOI: 10.1186/1748-717x-6-176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/19/2011] [Indexed: 11/16/2022] Open
|
4
|
Ovadje P, Chatterjee S, Griffin C, Tran C, Hamm C, Pandey S. Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:86-91. [PMID: 20849941 DOI: 10.1016/j.jep.2010.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
AIM OF STUDY Dandelion extracts have been used in traditional Native American Medicine and Traditional Chinese Medicine (TCM) for treatment of leukemia and breast cancer; however, the mechanism of action remains unknown. Today, DRE is mainly marketed for management of gastrointestinal and liver disorders. The current study aims to determine the anti-cancer activity of dandelion root extract (DRE) against human leukemia, and to evaluate the specificity and mechanism of DRE-induced apoptosis. MATERIALS AND METHODS The effect of DRE on cell viability was evaluated using the colorimetric-based WST-1 assay. Apoptotic cell death was monitored by nuclear condensation and confirmed by exposure of phosphatidylserine to outer leaflet of plasma membrane. Activation of caspases was detected using a fluorogenic substrate specific to either caspase-8 or -3. Loss of mitochondrial membrane potential was observed by microscopy using JC-1 dye. The apoptotic effect of DRE was also evaluated on a dominant-negative FADD (Fas-associated death domain) cell line and non-cancerous peripheral blood mononuclear cells (PBMCs). RESULTS Aqueous DRE effectively induces apoptosis in human leukemia cell lines in a dose and time dependent manner. Very early activation of caspase-8 and the subsequent activation of caspase-3 indicate that DRE may be inducing extrinsic or receptor-mediated apoptosis. Caspase inhibition rendered this extract ineffective, thus DRE-induced apoptosis is caspase-dependent. Moreover, the dominant-negative FADD cells that are unable to form a complete DISC (death-inducing signaling complex) were resistant to DRE treatment, which further confirms our hypothesis that DRE induces receptor-mediated apoptosis. Interestingly, non-cancerous peripheral blood mononuclear cells (PBMCs) exposed to aqueous DRE under the same treatment conditions as leukemia cells were not significantly affected. CONCLUSION Our results suggest that aqueous DRE contains components that act to induce apoptosis selectively in cultured leukemia cells, emphasizing the importance of this traditional medicine and thus presents a potential novel non-toxic alternative to conventional leukemia therapy.
Collapse
Affiliation(s)
- P Ovadje
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Li M, Jung A, Ganswindt U, Marini P, Friedl A, Daniel PT, Lauber K, Jendrossek V, Belka C. Aurora kinase inhibitor ZM447439 induces apoptosis via mitochondrial pathways. Biochem Pharmacol 2010; 79:122-9. [DOI: 10.1016/j.bcp.2009.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
|
6
|
Combination of the pro-apoptotic TRAIL-receptor antibody mapatumumab with ionizing radiation strongly increases long-term tumor control under ambient and hypoxic conditions. Int J Radiat Oncol Biol Phys 2009; 75:198-202. [PMID: 19695436 DOI: 10.1016/j.ijrobp.2009.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/16/2009] [Accepted: 04/16/2009] [Indexed: 11/22/2022]
Abstract
PURPOSE Mapatumumab, an agonistic tumor necrosis factor-related apoptosis inducing ligand-receptor antibody, exerts highly synergistic apoptotic effects in vitro and in short-term growth delay assays when combined with irradiation. Because it remained unclear in how far these effects influence local tumor control, long-term experiments using a colorectal xenograft model were undertaken. MATERIAL AND METHODS Experiments were performed with irradiation (5 x 3 Gy, d1-5) and mapatumumab (10 mg/kg) in Colo205-xenograft-bearing NMRI (nu/nu) nude mice. Graded top up doses were delivered on the tumor-bearing hind leg under ambient and hypoxic conditions; follow-up was 270 days. Growth delay and local tumor control were end points of the study. Statistical analysis of the experiments included calculation of tumor regrowth and local tumor control. RESULTS After combined treatment, a pronounced tumor regrowth-delay was observed when compared with irradiation alone. Long-term experiments revealed a highly significant increase in local tumor control for ambient (p = 0.00076) and hypoxic treatment (p = 0.000069). CONCLUSIONS The present data demonstrate for the first time that combination of a pro-apoptotic antibody with irradiation results in evidently reduced tumor regrowth times and subsequently highly increased local tumor control under normoxic and hypoxic conditions in a xenograft mouse model.
Collapse
|
7
|
Abstract
The development of apoptosis resistance is a crucial step during the pathogenesis of malignant tumors. Thus, any treatment approach overcoming apoptosis resistance may be a valuable tool in oncology. Although a variety of treatments induce apoptosis, only very few specifically trigger programmed cell death. In this regard, the class of apoptosis inducing ligands may turn out to have a considerable potential in oncology. TNF-alpha-related apoptosis-inducing ligand (TRAIL/Apo2L) is the most promising candidate, either alone or in combination with established cancer therapies, since it induces apoptosis in a wide range of malignant cells while sparing most normal tissues. Since death-receptor induced apoptosis is mainly mediated via nonmitochondrial death pathways, it is possible to induce apoptosis in cancer cell systems which mainly harbor defects within the mitochondrial death cascades. Even more so it has been shown that conventional DNA damaging approaches reduced the killing threshold for receptor induced apoptosis, making TRAIL an ideal candidate for combined approaches. Thus, combined treatments might offer the chance to enhance therapeutic efficiency and overcome resistance. In combination, additive or synergistic apoptotic responses and substantially enhanced clonogenic cell kill has been documented. Furthermore, in several settings it has been shown that combined modality teatments were effective in malignant cells, which are highly resistant to either treatment, alone. Ionizing radiation is one of the most effective modalities in oncology. Thus, it is reasonable to test, how far combinations of TRAIL with ionizing radiation may increase the efficacy. Indeed, the combination of TRAIL with ionizing radiation in several in vitro settings as well as xenograft models resulted in highly increased rates of cell kill and long-term tumor control. No increase in the rate and severity of side effects has been documented, indicating that the combination really increases the therapeutic ratio. It is important to note that TRAIL and TRAIL receptor agonistic antibodies, either as single
Collapse
Affiliation(s)
- Olivier Niemöller
- Department of Radiation Oncology, Ludwig-Maximilians Universität Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | |
Collapse
|
8
|
Estrugo D, Fischer A, Hess F, Scherthan H, Belka C, Cordes N. Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS One 2007; 2:e269. [PMID: 17342203 PMCID: PMC1800908 DOI: 10.1371/journal.pone.0000269] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/12/2007] [Indexed: 11/18/2022] Open
Abstract
Background Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which β1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with β1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. Methodology/Principal Findings Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN), laminin, collagen-1; 5–100 µg/cm2 coating concentration) cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP), caspase activation, and protein analysis. Overexpression of β1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti β1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K) inhibitors, coprecipitation experiments and siRNA-mediated β1 integrin silencing provided further data showing an interaction between FN-ligated β1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. Conclusions/Significance The presented data suggest that the ligand status of β1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a β1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting β1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies.
Collapse
Affiliation(s)
- Doris Estrugo
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | | | - Claus Belka
- Department of Radiation Oncology, University Tübingen, Tübingen, Germany
| | - Nils Cordes
- OncoRay–Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
- Bundeswehr Institute of Radiobiology, Munich, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Nagane M, Cavenee WK, Shiokawa Y. Synergistic cytotoxicity through the activation of multiple apoptosis pathways in human glioma cells induced by combined treatment with ionizing radiation and tumor necrosis factor–related apoptosis-inducing ligand. J Neurosurg 2007; 106:407-16. [PMID: 17367063 DOI: 10.3171/jns.2007.106.3.407] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Object
Malignant gliomas remain incurable despite modern multimodality treatments. Tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL), also known as Apo2L, a member of the TNF family, preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, suggesting that it may serve as a potential therapeutic agent for intractable malignant gliomas. Here, the authors show that genotoxic ionizing radiation synergistically enhances TRAIL-induced cell death in human glioma cells expressing DR5.
Methods
Combination treatment with soluble human TRAIL plus radiation induced robust cell death, while each of them singly led to only limited cytotoxicity. The combination resulted in cleavage and activation of the apoptotic initiator caspase-8 and the effector caspase-3 as well as cleavage of Bid and another initiator caspase-9, a downstream component of the apoptosome. Accordingly, it augmented the release of cytochrome c from the mitochondria into the cytosol, as well as apoptosis-inducing factor. Synergistic cell death was suppressed by TRAIL-neutralizing DR5-Fc, caspase inhibitors, expression of dominant-negative Fasassociated protein with death domain and CrmA, which selectively blocks caspase-8, and overexpression of Bcl-XL. Finally, combination treatment had no influence on the viability of normal human astrocytes.
Conclusions
These results suggest that combination treatment with TRAIL and ionizing radiation kills human glioma cells through the activation of DR5-mediated death receptor pathways. This therapy involves direct activation of effector caspases as well as mitochondria-mediated pathways and provides a novel strategy in which TRAIL could be synergistically combined with DNA-damaging radiation.
Collapse
Affiliation(s)
- Motoo Nagane
- Department of Neurosurgery, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | |
Collapse
|
10
|
Mundle SD. Par-4: A common facilitator/enhancer of extrinsic and intrinsic pathways of apoptosis. Leuk Res 2006; 30:515-7. [PMID: 16289745 DOI: 10.1016/j.leukres.2005.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Indexed: 11/24/2022]
Abstract
Par-4 overexpression has been shown by Boehrer et al. to augment the apoptotic death of Jurkat T cells induced by TNF related Apoptosis Inducing Ligand (TRAIL). Previously, the same authors have demonstrated a parallel augmentation of chemotherapeutic drug-induced apoptosis in the same cell line overexpressing Par-4. Through these and other studies, Par-4 appears to emerge as a general intracellular facilitator of both extrinsic and intrinsic pathways of apoptosis. The ability of Par-4 to modulate relevant inhibitors of apoptosis and to facilitate activation of alternative initiator or executioner caspases in contingent situations may support its role as a common facilitator/enhancer of apoptotic cell death. Further understanding of Par-4 biology will have significant clinical implications especially in overcoming drug resistance phenomenon in cancer.
Collapse
|
11
|
Boehrer S, Nowak D, Puccetti E, Ruthardt M, Sattler N, Trepohl B, Schneider B, Hoelzer D, Mitrou PS, Chow KU. Prostate-apoptosis-response-gene-4 increases sensitivity to TRAIL-induced apoptosis. Leuk Res 2006; 30:597-605. [PMID: 16513168 DOI: 10.1016/j.leukres.2005.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 09/12/2005] [Indexed: 12/17/2022]
Abstract
The capacity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) to preferentially induce apoptosis in malignant cells while sparing normal tissues renders it an attractive therapeutic agent. Nevertheless, the molecular determinants governing sensitivity towards TRAIL remain to be defined. Acknowledging the previously demonstrated deregulation of prostate-apoptosis-response-gene-4 (par-4) in ex vivo cells of patients suffering from acute and chronic lymphatic leukemia, we here tested the hypothesis that expression of par-4 influences sensitivity to TRAIL. Evaluating this hypothesis we show, that par-4-transfected T-lymphoblastic Jurkat cells exhibit a considerably increased rate of apoptosis upon incubation with an agonistic TRAIL-antibody as compared to their mock-transfected counterparts. Defining the underlying molecular mechanisms we provide evidence, that par-4 enhances sensitivity towards TRAIL by employing crucial members of the extrinsic pathway. Thus, par-4-overexpressing Jurkat clones show an enforced cleavage of c-Flip(L) together with an increased activation of the initiator caspases-8 and -10. In addition, expression of par-4 enables cells to down-regulate the inhibitor-of-apoptosis proteins cIAP-1, cIAP-2, XIAP and survivin with a concomitantly enhanced activation of the executioner caspases-6 and -7. Supporting the crucial role of caspase-8 in par-4-promoted apoptosis we demonstrate that inhibition of caspase-8 considerably reduces TRAIL-induced apoptosis in par-4 and mock-transfected Jurkat clones and reverses the described molecular changes. In conclusion, we here provide first evidence that expression of par-4 in neoplastic lymphocytes augments sensitivity to TRAIL-induced cell death and outline the responsible molecular mechanisms, in particular the crucial role of caspase-8 activation.
Collapse
Affiliation(s)
- Simone Boehrer
- Department of Medicine II, Johann Wolfgang Goethe-University Hospital, Theodor-Stern-Kai-7, 60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Marini P, Denzinger S, Schiller D, Kauder S, Welz S, Humphreys R, Daniel PT, Jendrossek V, Budach W, Belka C. Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 2006; 25:5145-54. [PMID: 16636678 DOI: 10.1038/sj.onc.1209516] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We and others have demonstrated already that TRAIL (TNF-related apoptosis-inducing ligand) is a very promising candidate for molecular targeted anticancer therapy, especially when combined with ionizing radiation or other DNA-damaging agents. Agonist monoclonal antibodies that activate and are specific for the death signaling TRAIL receptors are an alternative method to stimulate the programmed cell death pathway. Phase 1 clinical trials have subsequently been conducted and shown a very good tolerability of these antibodies. In order to assess the efficacy of TRAIL receptor stimulation to induce cell death by this alternate method, we studied the combination of the agonistic-TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 with radiation in vitro and in vivo. Induction of apoptosis after combined treatment with TRAIL receptor antibodies HGS-ETR1 and/or HGS-ETR2 (0.01, 0.1, 1.0 mg/ml) and irradiation with 2, 5 or 10 Gy was determined by fluorescence microscopy and Western blot analysis of caspase-8 and PARP. The colorectal tumour cell lines Colo 205, HCT 116 and HCT-15 were used for in vitro experiments. Growth delay experiments were performed with combined treatment with fractionated irradiation (days 1-5 and 3 Gy single dose/day) and the receptor antibodies (intraperitonially, three different concentrations, application on days 1, 4 and 8) on Colo 205 xenograft-bearing NMRI (nu/nu) nude mice. HGS-ETR1 and HGS-ETR2 induced apoptotic cell death in a dose-dependent fashion and significantly increased cell death in combination with irradiation in vitro when compared to either irradiation or antibody treatment alone. The efficacy of the combined treatment seems to be at least partially Bax-dependent. Similar to the results from cell culture experiments, in vivo experiments demonstrated a dose-dependent delay in tumour growth after combined treatment. In vivo, in the Colo205 xenograft model, HGS-ETR2 revealed a higher activity than HGS-ETR1. This is the first study to demonstrate significant efficacy of combined treatment with the monoclonal agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and ionising radiation in in vitro and in vivo models. We postulate that HGS-ETR1 and HGS-ETR2 will be very promising new agents in the field of molecular targeted multi-modality anticancer therapy.
Collapse
Affiliation(s)
- P Marini
- CCC Tübingen, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ganswindt U, Budach W, Jendrossek V, Becker G, Bamberg M, Belka C. Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer - a phase I study. Radiat Oncol 2006; 1:9. [PMID: 16722607 PMCID: PMC1464385 DOI: 10.1186/1748-717x-1-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/10/2006] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Current approaches for the improvement of bNED for prostate cancer patients treated with radiotherapy mainly focus on dose escalation. However molecularly targeted approaches may also turn out to be of value. In this regard cyclooxygenase (COX)-2 inhibitors have been shown to exert some anti-tumour activities in human prostate cancer in vivo and in vitro. Although in vitro data indicated that the combination of COX-2 inhibition and radiation was not associated with an increased toxicity, we performed a phase I trial using high dose celecoxib together with percutaneous radiation therapy. METHODS In order to rule out any increases of more than 20% incidence for a given side effect level 22 patients were included in the trial. Celecoxib was given 400 mg twice daily with onset of the radiation treatment. Risk adapted radiation doses were between 70 and 74 Gy standard fractionation. RTOG based gastrointestinal (GI) and genitourinary (GU) acute toxicity scoring was performed weekly during radiation therapy, at six weeks after therapy and three month after completing radiation treatment. RESULTS Generally no major increase in the level and incidence of side effects potentially caused by the combined treatment was observed. In two cases a generalised skin rash occurred which immediately resolved upon discontinuation of the drug. No grade 3 and 4 toxicity was seen. Maximal GI toxicity grade 1 and 2 was observed in 85% and 10%, respectively. In terms of GU toxicity 80% of the patients experienced a grade 1 toxicity and 10 % had grade 2 symptoms. CONCLUSION The combination of irradiation to the prostate with concurrent high dose celecoxib was not associated with an increased level of side effects.
Collapse
Affiliation(s)
- U Ganswindt
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - W Budach
- Department of Radiation Oncology, University of Düsseldorf, Düsseldorf, Germany
| | - V Jendrossek
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - G Becker
- Department of Radiation Oncology, Klinik am Eichert, Göppingen, Germany
| | - M Bamberg
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - C Belka
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Liu P, Mao H, Hou P. Synergistic antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand combined with cisplatin in ovarian carcinoma cell lines in vitro and in vivo. Int J Gynecol Cancer 2006; 16:538-48. [PMID: 16681723 DOI: 10.1111/j.1525-1438.2006.00507.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to exert selectively cytotoxic activity against many tumor cells but not normal cells. In this study, we evaluated the antitumor activity of TRAIL and cisplatin (CDDP) both separately and combined in the human ovarian cancer cell lines. In vitro study showed that TRAIL elicited significant cell apoptosis of cell lines 3AO, SKOV3, and OVCAR3 in a dose- and time-dependent manner (P < 0.05), while normal ovarian epithelial cells were resistant; this toxicity-free effect may be the result of upregulation of TRAIL receptors DcR1 and DcR2. Combined TRAIL and CDDP therapy produced more profound cell killing in 3AO cells than each alone (P < 0.05), and CDDP could upregulate the expression of both death and decoy TRAIL receptors. To further evaluate the apoptosis-inducing effects of TRAIL and the combination therapy, the abdominally and subcutaneously spread tumors in nude mice via inoculation of 3AO cells were established, and treatment of TRAIL resulted in a dose- and time-dependent inhibition of tumor growth while slight damage was observed in normal tissues. Furthermore, combined TRAIL and CDDP therapy had a synergistic effect in the regression of established ovarian cancer xenografts than TRAIL treatment alone (P < 0.05). We also examined the apoptosis-related gene expression in the transplantation tumors after TRAIL treatment, and the data suggested that the intracellular mechanism of TRAIL may be associated with downregulation of Bcl-2 and upregulation of CD95 and Apo2.7.
Collapse
Affiliation(s)
- P Liu
- Department of Obstetrics and Gynecology, QiLu Hospital of ShanDong University, Jinan, ShanDong, China
| | | | | |
Collapse
|
15
|
Qin K, Zhao L, Tang Y, Bhatta S, Simard JM, Zhao RY. Doppel-induced apoptosis and counteraction by cellular prion protein in neuroblastoma and astrocytes. Neuroscience 2006; 141:1375-88. [PMID: 16766127 DOI: 10.1016/j.neuroscience.2006.04.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 01/05/2023]
Abstract
Expression of a prion-like protein, doppel, induces apoptosis-like changes in cerebellar neuronal granule and Purkinje cells of prion-knockout mice and this effect can be rescued by re-introduction of cellular prion. Since most of those studies were done in transgenic mice, in the present study, we have established a murine neuro-2a cell line and the primary rat adult reactive astrocyte model for studying doppel-induced apoptosis and possible prion counteraction. We demonstrate that expression of doppel in neuro-2a cells causes apoptosis, during which DNA fragmentation occurs as visualized by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling staining and other intracellular changes characteristic of apoptosis are observed in the electron microscope. Using immunoblot analyses, we further demonstrate that doppel expression activates caspase-10 as well as caspase-3, but does not activate caspase-9. Addition of purified doppel to cultures of neuro-2a cells and the primary astrocytes causes similar apoptotic changes. Significantly, apoptosis induced by doppel is enhanced when cellular prion protein is depleted by RNA interference, suggesting a protective effect of cellular prion against doppel-induced apoptosis. The antagonistic interaction between cellular prion and doppel appears to involve direct protein-protein interaction possibly on cell membrane as cellular prion and doppel physically interact with each other and co-localize on cell membranes. Together, our data show that doppel induces apoptosis in neuroblastoma neuro-2a and rat primary astrocytes via a caspase-10 mediated pathway and that this effect is counteracted by cellular prion through direct interaction with doppel possibly on cell membrane.
Collapse
Affiliation(s)
- K Qin
- Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF 700A, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kim R. Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 2005; 333:336-43. [PMID: 15922292 DOI: 10.1016/j.bbrc.2005.04.161] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 01/12/2023]
Abstract
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.
Collapse
Affiliation(s)
- Ryungsa Kim
- International Radiation Information Center, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
17
|
Wendt J, von Haefen C, Hemmati P, Belka C, Dörken B, Daniel PT. TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 2005; 24:4052-64. [PMID: 15806163 DOI: 10.1038/sj.onc.1208580] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The death ligand TRAIL has been suggested as a suitable biological agent for the selective induction of cell death in cancer cells. Moreover, TRAIL synergizes with DNA-damaging therapies such as chemotherapeutic drugs or ionizing irradiation (IR). Here, we show that synergy of TRAIL and IR, that is, crosssensitization between TRAIL and IR for induction of apoptosis, entirely depends on Bax proficiency in human DU145 and HCT116 carcinoma cells. DU145 prostate carcinoma cells that have lost Bax protein expression due to mutation fail to activate caspase-3 and -9 when exposed to TRAIL and IR. In contrast, TRAIL sensitized for IR-induced apoptosis and vice versa upon reconstitution of Bax expression. Notably, both DU145 and HCT116 still express significant levels of the multidomain proapoptotic Bcl-2 homolog Bak. This indicates that Bak is not sufficient to mediate crosssensitization and synergism between IR and TRAIL. These data clearly establish distinct roles for Bax and Bak in linking the TRAIL death receptor pathway to the mitochondrial apoptosis signaling cascade upon DNA damage by IR.
Collapse
Affiliation(s)
- Jana Wendt
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Jendrossek V, Belka C, Bamberg M. Novel chemotherapeutic agents for the treatment of glioblastoma multiforme. Expert Opin Investig Drugs 2005; 12:1899-924. [PMID: 14640936 DOI: 10.1517/13543784.12.12.1899] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During the last few decades, the discovery of novel targets for therapeutic intervention led to the development of chemotherapeutic agents that specifically interfere with altered cellular functions of tumour cells. Genetic alterations in glioblastoma affect cell proliferation and cell cycle control, as well as invasive and metastatic growth. Therefore, innovative therapeutic strategies have been based on drugs targeting cellular proliferation, invasion, angiogenesis, metastasis and differentiation of tumour cells. Furthermore, disruption of cell-death pathways also contributes to the pathogenesis of glioblastoma and may result in resistance to chemotherapy and radiation. Therefore, additional treatment strategies that target intracellular survival and/or apoptotic pathways are under current laboratory investigation. The progress in the understanding of glioblastoma tumour biology and the refined diagnosis of individual patients together with the exploration of targeted drugs may allow a risk-adapted, individualised therapeutic strategy and will hopefully improve prognosis of glioblastoma patients in the future.
Collapse
Affiliation(s)
- Verena Jendrossek
- Department of Radiation Oncology, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
19
|
Rudner J, Jendrossek V, Lauber K, Daniel PT, Wesselborg S, Belka C. Type I and type II reactions in TRAIL-induced apoptosis -- results from dose-response studies. Oncogene 2005; 24:130-40. [PMID: 15531922 DOI: 10.1038/sj.onc.1208191] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death receptor-induced apoptosis is paradigmatically mediated via the recruitment of FADD adapter molecule to the ligand/receptor complex and subsequent activation of caspase-8. However, several observations provided evidence that components of the mitochondrial apoptosis pathway are involved in death receptor-mediated apoptosis. In this regard, caspase-8-mediated activation of Bid induces the release of cytochrome c from the mitochondria, which, in turn, triggers the formation of the apoptosome protein complex, resulting in the activation of caspase-9. Whereas Bax or Bak were shown to be required for the proapoptotic effect of Bid, Bcl-2 was described to interfere with its action. Up to now, contradictory results regarding the role of Bcl-2 in TRAIL-induced apoptosis have been published. In order to study the influence of Bcl-2 on TRAIL-induced cell death more detailed, we utilized a tetracycline-regulated Bcl-2 expression system in Jurkat T cells. After having analysed the dose response for TRAIL-induced activation of caspase-8, -9, -3, breakdown of the mitochondrial membrane potential, and changes in the apoptotic morphology in cells expressing different Bcl-2 levels, we conclude that overexpression of Bcl-2 mediates a partial resistance towards lower doses of TRAIL that can be overcome when higher doses of TRAIL are applied. Thus, the requirement of the mitochondrial pathway for death receptor-induced apoptosis in type II cells should be reconsidered, since the protective effect of Bcl-2 is limited to lower TRAIL doses or early observation time points.
Collapse
Affiliation(s)
- Justine Rudner
- Department of Radiation Oncology, University of Tuebingen, Hoppe-Seyler-Str. 3, Tuebingen D-72076, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Shankar S, Srivastava RK. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 2004; 7:139-56. [PMID: 15158769 DOI: 10.1016/j.drup.2004.03.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/28/2022]
Abstract
Activation of cell surface death receptors by their cognate ligands triggers apoptosis. Several human death receptors (Fas, TNF-R1, TRAMP, DR4, DR5, DR6, EDA-R and NGF-R) have been identified. The most promising cytokine for anticancer therapy is TRAIL/APO-2L, which induces apoptosis in cancer cells by binding to death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. The cytotoxic activity of TRAIL is relatively selective to cancer cells compared to normal cells. Signaling by TRAIL and its receptors is tightly regulated process essential for key physiological functions in a variety of organs, as well as the maintenance of immune homeostasis. Despite early promising results, recent studies have identified several TRAIL-resistant cancer cells of various origins. Based on molecular analysis of death-receptor signaling pathways several new approaches have been developed to increase the efficacy of TRAIL. Resistance of cancer cells to TRAIL appears to occur through the modulation of various molecular targets. They may include differential expression of death receptors, constitutively active Akt and NFkappaB, overexpression of cFLIP and IAPs, mutations in Bax and Bak genes, and defects in the release of mitochondrial proteins in resistant cells. Conventional chemotherapeutic and chemopreventive drugs, and irradiation can sensitize TRAIL-resistant cells to undergo apoptosis. Thus, these agents enhance the therapeutic potential of TRAIL in TRAIL-sensitive cells and sensitize TRAIL-resistant cells. TRAIL and TRAIL-receptor antibodies may prove to be useful for cancer therapy, either alone or in association with conventional approaches such as chemotherapy or radiation therapy. This review discusses intracellular mechanisms of TRAIL resistance and various approaches that can be taken to sensitize TRAIL-resistant cancer cells.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pharmaceutical Sciences, Greenebaum Cancer Center, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
21
|
Weinmann M, Jendrossek V, Güner D, Goecke B, Belka C. Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J 2004; 18:1906-8. [PMID: 15456741 DOI: 10.1096/fj.04-1918fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The negative influence of hypoxia on the outcome of malignant tumors may be caused by direct oxygen effects, and potentially, the selection of resistant tumor cells under repetitive hypoxia. To evaluate whether cyclic hypoxia selects for resistant cells and to analyze the underlying mechanisms, the influence of cyclic hypoxia on intracellular death pathways was determined in tumor cells. It could be demonstrated that cyclic hypoxia selects for cells with increased resistance against hypoxia-induced apoptosis. These cells exhibited a cross-resistance against paradigmatic triggers of mitochondrial apoptotic pathways (ionizing radiation/etoposide). In contrast, TRAIL-receptor mediated apoptosis remained unaffected. Thus, cyclic hypoxia selects for cells with defects of the mitochondrial rather than receptor-mediated pathways. Selection of p53-defective cells has been described as a consequence of cyclic hypoxia; therefore, we evaluated the impact of hypoxic selection on activation of p21 and downstream mediators of p53-dependent apoptosis. p53 function and protein levels of key mediators of mitochondrial apoptosis remained unaffected by hypoxic selection. However, radiation-induced conformational changes of Bax were reduced after cyclic hypoxia. In summary, it could be demonstrated that hypoxic stress confers a selection pressure on mitochondrial apoptotic pathways and, consecutively, to an increased resistance toward mitochondrial death triggers.
Collapse
Affiliation(s)
- Martin Weinmann
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
22
|
Marini P, Schmid A, Jendrossek V, Faltin H, Daniel PT, Budach W, Belka C. [Haptoglobin and orosomucoid in the blood in a case of congenital afibrinogenemia and in the family of the patient]. BMC Cancer 1968; 5:5. [PMID: 15651986 PMCID: PMC547906 DOI: 10.1186/1471-2407-5-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 01/14/2005] [Indexed: 12/21/2022] Open
Abstract
Background TRAIL (tumor necrosis factor related apoptosis inducing ligand) is an apoptosis inducing ligand with high specificity for malignant cell systems. Combined treatment modalities using TRAIL and cytotoxic drugs revealed highly additive effects in different tumour cell lines. Little is known about the efficacy and underlying mechanistic effects of a combined therapy using TRAIL and ionising radiation in solid tumour cell systems. Additionally, little is known about the effect of TRAIL combined with radiation on normal tissues. Methods Tumour cell systems derived from breast- (MDA MB231), lung- (NCI H460) colorectal- (Colo 205, HCT-15) and head and neck cancer (FaDu, SCC-4) were treated with a combination of TRAIL and irradiation using two different time schedules. Normal tissue cultures from breast, prostate, renal and bronchial epithelia, small muscle cells, endothelial cells, hepatocytes and fibroblasts were tested accordingly. Apoptosis was determined by fluorescence microscopy and western blot determination of PARP processing. Upregulation of death receptors was quantified by flow cytometry. Results The combined treatment of TRAIL with irradiation strongly increased apoptosis induction in all treated tumour cell lines compared to treatment with TRAIL or irradiation alone. The synergistic effect was most prominent after sequential application of TRAIL after irradiation. Upregulation of TRAIL receptor DR5 after irradiation was observed in four of six tumour cell lines but did not correlate to tumour cell sensitisation to TRAIL. TRAIL did not show toxicity in normal tissue cell systems. In addition, pre-irradiation did not sensitise all nine tested human normal tissue cell cultures to TRAIL. Conclusions Based on the in vitro data, TRAIL represents a very promising candidate for combination with radiotherapy. Sequential application of ionising radiation followed by TRAIL is associated with an synergistic induction of cell death in a large panel of solid tumour cell lines. However, TRAIL receptor upregulation may not be the sole mechanism by which sensitation to TRAIL after irradiation is induced.
Collapse
Affiliation(s)
- Patrizia Marini
- Department of Radiation Oncology, University of Tübingen, Experimental Radiation Oncology, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | - Angelika Schmid
- Department of Radiation Oncology, University of Tübingen, Experimental Radiation Oncology, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | - Verena Jendrossek
- Department of Radiation Oncology, University of Tübingen, Experimental Radiation Oncology, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | - Heidrun Faltin
- Department of Radiation Oncology, University of Tübingen, Experimental Radiation Oncology, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | - Peter T Daniel
- Clinical and Molecular Oncology, University Medical Center Charité, Lindenberger Weg 80, D-13125 Berlin-Buch, Germany
| | - Wilfried Budach
- Department of Radiotherapy and Radiation Oncology, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Claus Belka
- Department of Radiation Oncology, University of Tübingen, Experimental Radiation Oncology, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| |
Collapse
|