1
|
Chi W, Zhang H, Li X, Zhou Y, Meng Q, He L, Yang Y, Liu S, Shi K. Comparative genomic analysis of 255 Oenococcus oeni isolates from China: unveiling strain diversity and genotype-phenotype associations of acid resistance. Microbiol Spectr 2025:e0326524. [PMID: 40261018 DOI: 10.1128/spectrum.03265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Oenococcus oeni, the only species of lactic acid bacteria capable of fully completing malolactic fermentation under challenging wine conditions, continues to intrigue researchers owing to its remarkable adaptability, particularly in combating acid stress. However, the mechanism underlying its superior adaptation to wine stresses still remains elusive due to the lack of viable genetic manipulation tools for this species. In this study, we conducted genomic sequencing and acid resistance phenotype analysis of 255 O. oeni isolates derived from diverse wine regions across China, aiming to elucidate their strain diversity and genotype-phenotype associations of acid resistance through comparative genomics. A significant correlation between phenotypes and evolutionary relationships was observed. Notably, phylogroup B predominantly consisted of acid-resistant isolates, primarily originating from Shandong and Shaanxi wine regions. Furthermore, we uncovered a noteworthy linkage between prophage genomic islands and acid resistance phenotype. Using genome-wide association studies, we identified key genes correlated with acid resistance, primarily involved in carbohydrates and amino acid metabolism processes. This study offers profound insights into the genetic diversity and genetic basis underlying adaptation mechanisms to acid stress in O. oeni.IMPORTANCEThis study provides valuable insights into the genetic basis of acid resistance in Oenococcus oeni, a key lactic acid bacterium in winemaking. By analyzing 255 isolates from diverse wine regions in China, we identified significant correlations between strain diversity, genomic islands, and acid resistance phenotypes. Our findings reveal that certain prophage-related genomic islands and specific genes are closely linked to acid resistance, offering a deeper understanding of how O. oeni adapts to acidic environments. These discoveries not only advance our knowledge of microbial stress responses but also pave the way for selecting and engineering acid-resistant strains, enhancing malolactic fermentation efficiency and wine quality. This research underscores the importance of genomics in improving winemaking practices and addressing challenges posed by high-acidity wines.
Collapse
Affiliation(s)
- Wei Chi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Hanwen Zhang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Li
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Yeqin Zhou
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Ling He
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Yafan Yang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Kan Shi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Eicher C, Tran T, Munier E, Coulon J, Favier M, Alexandre H, Reguant C, Grandvalet C. Influence of pH on Oenococcus oeni metabolism: Can the slowdown of citrate consumption improve its acid tolerance? Food Res Int 2024; 179:114027. [PMID: 38342547 DOI: 10.1016/j.foodres.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.
Collapse
Affiliation(s)
- Camille Eicher
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France.
| | - Thierry Tran
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France
| | - Edouard Munier
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France
| | | | | | - Hervé Alexandre
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Tarragona, Catalonia, Spain
| | | |
Collapse
|
3
|
Palud A, Roullier-Gall C, Alexandre H, Weidmann S. Mixed biofilm formation by Oenococcus oeni and Saccharomyces cerevisiae: A new strategy for the wine fermentation process. Food Microbiol 2024; 117:104386. [PMID: 37919010 DOI: 10.1016/j.fm.2023.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Bacterial biofilms have attracted much attention in the food industry since this phenotype increases microbial resistance to environmental stresses. In wine-making, the biofilm produced by Oenococcus oeni is able to persist in this harsh environment and perform malolactic fermentations. Certain viticultural practices are interested in the simultaneous triggering of alcoholic fermentation by yeasts of the species Saccharomyces cerevisiae and malolactic fermentation by lactic acid bacteria. As yet, no data is available on the ability of these micro-organisms to produce mixed biofilms and promote fermentations. Here, the ability of S. cerevisiae and O. oeni to form mixed biofilms on different surfaces found in vinification was observed and analyzed using scanning electron microscopy experiments. Then, following co-inoculation with biofilm or planktonic cells microvinifications were carried out to demonstrate that the mixed biofilms developed on oak allow the efficient completion of fermentations because of their high resistance to stress. Finally, comparisons of the different metabolic profiles obtained by LC-MS were made to assess the impact of the mode of life of biofilms on wine composition.
Collapse
Affiliation(s)
- Aurore Palud
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Chloé Roullier-Gall
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Hervé Alexandre
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
4
|
Use of Fumaric Acid to Inhibit Malolactic Fermentation in Bottled Rioja Wines: Effect in pH and Volatile Acidity Control. BEVERAGES 2023. [DOI: 10.3390/beverages9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Fumaric acid (FH2) is an additive allowed by the Codex Alimentarius and the International Organization of Vine and Wine (OIV) that can be used for wine acidification but also to inhibit malolactic fermentation (MLF). FH2 has a positive effect in the reduction in SO2 doses by controlling LAB and other bacteria and by preserving molecular SO2 due to pH effect. This article reports the use of FH2 at 600 mg/L in wines produced with 3 varieties of Vitis vinifera L. grapes (Tempranillo, Garnacha and Viura) made in vintages 2018, 2020 and 2021. Wines treated with 600 mg/L of FH2 were more stable in the long term and showed lower pH by the preservation of malic acid due to both the absence of MLF (which reduced the pH in 0.1–0.2 units compared with controls) and the effect of FH2 acidification (what produced and additional reduction of 0.05–0.1 pH units). The wines treated with FH2 also remained with very low volatile acidity contents close to 0.2 mg/L or lower. These results corroborate that FH2 can be used to successfully control malolactic fermentation in all still wine types (red, white, and rose) from either of the studied varieties.
Collapse
|
5
|
Improved Tolerance of Lactiplantibacillus plantarum in the Presence of Acid by the Heterologous Expression of trxA from Oenococcus oeni. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oenococcus oeni is the main microorganism that undergoes malolactic fermentation (MLF) in the winemaking industry due to its excellent adaptability to harsh wine environments. The start of MLF is often delayed or even fails, and low pH appears to be a crucial parameter. To study the function of the trxA gene in acid stress, a plasmid containing the trxA gene of O. oeni SD-2a was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The recombinant strain (WCFS1-trxA) grew better than the control strain (WCFS1-Vector) under acid stress. The expression of thioredoxin system genes was much higher in the recombinant strain compared with the control strain under acid stress. In addition, a series of physiological and biochemical assays were conducted. The ATP content was lower in the recombinant strain, while the cell membrane fluidity and integrity improved in the recombinant strain. Moreover, reactive oxygen species (ROS) accumulation, intracellular GSH level, and superoxide dismutase (SOD) activity assays showed that the recombinant strain decreased the intracellular reactive oxygen species (ROS) accumulation by improving the SOD activity. In conclusion, heterologous expression of trxA improves the SOD activity of L. plantarum WCFS1, reducing bacterial ROS and increasing cell membrane fluidity and integrity, enhancing the tolerance of Lactiplantibacillus plantarum WCFS1 under acid stress.
Collapse
|
6
|
Balmaseda A, Rozès N, Bordons A, Reguant C. Molecular adaptation response of Oenococcus oeni in non-Saccharomyces fermented wines: A comparative multi-omics approach. Int J Food Microbiol 2022; 362:109490. [PMID: 34844030 DOI: 10.1016/j.ijfoodmicro.2021.109490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Oenococcus oeni is the main agent responsible for malolactic fermentation (MLF) in wine. This usually takes place in red wines after alcoholic fermentation (AF) carried out by Saccharomyces cerevisiae. In recent years, there is an increasing interest in using non-Saccharomyces yeast, usually in combination with S. cerevisiae, to improve wine quality. Current studies report a stimulatory effect of non-Saccharomyces on MLF, generally related to a decrease in the inhibitor compounds found in wine. In this work, we followed a comparative multi-omics approach, including transcriptomic and proteomic analysis, to study the molecular adaptation of O. oeni in wines fermented with Torulaspora delbrueckii and Metschnikowia pulcherrima, two of the most frequently used non-Saccharomyces, in sequential inoculation with S. cerevisiae. We compared the results to the adaptation of O. oeni in S. cerevisiae wine to determine the main changes arising from the use of non-Saccharomyces. The duration of MLF was shortened when using non-Saccharomyces, to half the time with T. delbrueckii and to a quarter with M. pulcherrima. In this work, we observed for the first time how O. oeni responds at molecular level to the changes brought about by non-Saccharomyces. We showed a differential adaptation of O. oeni in the wines studied. In this regard, the main molecular functions affected were amino acid and carbohydrate transport and metabolism, from which peptide metabolism appeared as a key feature under wine-like conditions. We also showed that the abundance of Hsp20, a well-known stress protein, depended on the duration time. Thus, the use of non-Saccharomyces reduced the abundance of Hsp20, which could mean a less stressful wine-like condition for O. oeni.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
7
|
Bommasamudram J, Muthu A, Devappa S. Effect of sub-lethal heat stress on viability of Lacticaseibacillus casei N in spray-dried powders. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
9
|
Bartle L, Sumby K, Sundstrom J, Jiranek V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res 2020; 19:5513997. [PMID: 31187141 DOI: 10.1093/femsyr/foz040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
The diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Krista Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Joanna Sundstrom
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
10
|
Coelho C, Gougeon RD, Perepelkine L, Alexandre H, Guzzo J, Weidmann S. Chemical Transfers Occurring Through Oenococcus oeni Biofilm in Different Enological Conditions. Front Nutr 2019; 6:95. [PMID: 31294028 PMCID: PMC6603213 DOI: 10.3389/fnut.2019.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
Chardonnay wine malolactic fermentations were carried out to evaluate the chemical transfers occurring at the wood/wine interface in the presence of two different bacterial lifestyles. To do this, Oenococcus oeni was inoculated into must and wine in its planktonic and biofilm lifestyles, whether adhering or not to oak chips, leading to three distinct enological conditions: (i) post-alcoholic fermentation inoculation in wine in the absence of oak chips, (ii) post-alcoholic fermentation inoculation in wine in the presence of oak chips, and (iii) co-inoculation of both Saccharomyces cerevisiae and O. oeni directly in Chardonnay musts in the presence of oak chips. Classical microbiological and physico-chemical parameters analyzed during the fermentation processes confirmed that alcoholic fermentation was completed identically regardless of the enological conditions, and that once O. oeni had acquired a biofilm lifestyle in the presence or absence of oak, malolactic fermentation occurred faster and with better reproducibility compared to planktonic lifestyles. Analyses of volatile components (higher alcohols and wood aromas) and non-volatile components (Chardonnay grape polyphenols) carried out in the resulting wines revealed chemical differences, particularly when bacterial biofilms were present at the wood interface. This study revealed the non-specific trapping activity of biofilm networks in the presence of wood and grape compounds regardless of the enological conditions. Changes of concentrations in higher alcohols reflected the fermentation bioactivity of bacterial biofilms on wood surfaces. These chemical transfers were statistically validated by an untargeted approach using Excitation Emission Matrices of Fluorescence combined with multivariate analysis to discriminate innovative enological practices during winemaking and to provide winemakers with an optical tool for validating the biological and chemical differentiations occurring in wine that result from their decisions.
Collapse
Affiliation(s)
- Christian Coelho
- UMR A 02.102 PAM Laboratoire PCAV AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Régis D Gougeon
- UMR A 02.102 PAM Laboratoire PCAV AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Luc Perepelkine
- SAAT Sayens, Maison Régionale de l'Innovation, Dijon, France
| | - Hervé Alexandre
- UMR A 02.102 PAM Laboratoire VAlMiS AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Jean Guzzo
- UMR A 02.102 PAM Laboratoire VAlMiS AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Stéphanie Weidmann
- UMR A 02.102 PAM Laboratoire VAlMiS AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| |
Collapse
|
11
|
Roy M, Gupta S, Patranabis S, Ghosh A. The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2549-2565. [PMID: 30293966 DOI: 10.1016/j.bbamem.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that rescue misfolded proteins from irreversible aggregation during cellular stress. Many such sHsps exist as large polydisperse species in solution, and a rapid dynamic subunit exchange between oligomeric and dissociated forms modulates their function under a variety of stress conditions. Here, we investigated the structural and functional properties of Hsp20 from thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. To provide a framework for investigating the structure-function relationship of Hsp20 and understanding its dynamic nature, we employed several biophysical and biochemical techniques. Our data suggested the existence of a ~24-mer of Hsp20 at room temperature (25 °C) and a higher oligomeric form at higher temperature (50 °C-70 °C) and lower pH (3.0-5.0). To our surprise, we identified a dimeric form of protein as the functional conformation in the presence of aggregating substrate proteins. The hydrophobic microenvironment mainly regulates the oligomeric plasticity of Hsp20, and it plays a key role in the protection of stress-induced protein aggregation. In Sulfolobus sp., Hsp20, despite being a non-secreted protein, has been reported to be present in secretory vesicles and it is still unclear whether it stabilizes substrate proteins or membrane lipids within the secreted vesicles. To address such an issue, we tested the ability of Hsp20 to interact with membrane lipids along with its ability to modulate membrane fluidity. Our data revealed that Hsp20 interacts with membrane lipids via a hydrophobic interaction and it lowers the propensity of in vitro phase transition of bacterial and archaeal lipids.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Sayandeep Gupta
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Somi Patranabis
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India.
| |
Collapse
|
12
|
Dimopoulou M, Raffenne J, Claisse O, Miot-Sertier C, Iturmendi N, Moine V, Coulon J, Dols-Lafargue M. Oenococcus oeni Exopolysaccharide Biosynthesis, a Tool to Improve Malolactic Starter Performance. Front Microbiol 2018; 9:1276. [PMID: 29946314 PMCID: PMC6006919 DOI: 10.3389/fmicb.2018.01276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Oenococcus oeni is the lactic acid bacterium that most commonly drives malolactic fermentation (MLF) in wine. Though the importance of MLF in terms of wine microbial stability and sensory improvement is well established, it remains a winemaking step not so easy to control. O. oeni displays many adaptation tools to resist the harsh wine conditions which explain its natural dominance at this stage of winemaking. Previous findings showed that capsular polysaccharides and endogenous produced dextran increased the survival rate and the conservation time of malolactic starters. In this paper, we showed that exopolysaccharides specific production rates were increased in the presence of single stressors relevant to wine (pH, ethanol). The transcription of the associated genes was investigated in distinct O. oeni strains. The conditions in which eps genes and EPS synthesis were most stimulated were then evaluated for the production of freeze dried malolactic starters, for acclimation procedures and for MLF efficiency. Sensory analysis tests on the resulting wines were finally performed.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | - Jerôme Raffenne
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | - Olivier Claisse
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | - Cécile Miot-Sertier
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | | | | | | | - Marguerite Dols-Lafargue
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| |
Collapse
|
13
|
Peng S, Liu L, Zhao H, Wang H, Li H. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a. Front Microbiol 2018; 9:892. [PMID: 29780378 PMCID: PMC5946679 DOI: 10.3389/fmicb.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
The powerful Quantitative real-time PCR (RT-qPCR) was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni), as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB) species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII) were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v) ethanol). The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.
Collapse
Affiliation(s)
- Shuai Peng
- College of Enology, Northwest A & F University, Yangling, China
| | - Longxiang Liu
- College of Enology, Northwest A & F University, Yangling, China
| | - Hongyu Zhao
- College of Enology, Northwest A & F University, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| | - Hua Li
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| |
Collapse
|
14
|
Bonomo MG, Di Tomaso K, Calabrone L, Salzano G. Ethanol stress in Oenococcus oeni: transcriptional response and complex physiological mechanisms. J Appl Microbiol 2018; 125:2-15. [PMID: 29377375 DOI: 10.1111/jam.13711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
Oenococcus oeni is the dominant species able to cope with a hostile environment of wines, comprising cumulative effects of low pH, high ethanol and SO2 content, nonoptimal growth temperatures and growth inhibitory compounds. Ethanol tolerance is a crucial feature for the activity of O. oeni cells in wine because ethanol acts as a disordering agent of its cell membrane and negatively affects metabolic activity; it damages the membrane integrity, decreases cell viability and, as other stress conditions, delays the start of malolactic fermentation with a consequent alteration of wine quality. The cell wall, cytoplasmic membrane and metabolic pathways are the main sites involved in physiological changes aimed to ensure an adequate adaptive response to ethanol stress and to face the oxidative damage caused by increasing production of reactive oxygen species. Improving our understanding of the cellular impact of ethanol toxicity and how the cell responds to ethanol stress can facilitate the development of strategies to enhance microbial ethanol tolerance; this allows to perform a multidisciplinary endeavour requiring not only an ecological study of the spontaneous process but also the characterization of useful technological and physiological features of the predominant strains in order to select those with the highest potential for industrial applications.
Collapse
Affiliation(s)
- M G Bonomo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - K Di Tomaso
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy.,Ph.D School in Applied and Environmental Safeguard, Università degli Studi della Basilicata, Potenza, Italy
| | - L Calabrone
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - G Salzano
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
15
|
Application of directed evolution to develop ethanol tolerant Oenococcus oeni for more efficient malolactic fermentation. Appl Microbiol Biotechnol 2017; 102:921-932. [PMID: 29150706 DOI: 10.1007/s00253-017-8593-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Malolactic fermentation (MLF) is an important step in winemaking, which can be notoriously unreliable due to the fastidious nature of Oenococcus oeni. This study aimed to use directed evolution (DE) to produce a more robust strain of O. oeni having the ability to withstand high ethanol concentrations. DE involves an organism mutating and potentially adapting to a high stress environment over the course of extended cultivation. A continuous culture of O. oeni was established and exposed to progressively increasing ethanol content such that after approximately 330 generations, an isolate from this culture was able to complete MLF in high ethanol content medium earlier than its parent. The ethanol tolerance of a single isolate, A90, was tested to confirm the phenotype and its fermentation performance in wine. In order to investigate the genotypic differences in the evolved strain that led to the ethanol tolerance phenotype, the relative expression of a number of known stress response genes was compared between SB3 and A90. Notably, there was increase in hsp18 expression in 20% (v/v) ethanol by both strains with A90 exhibiting a higher degree of expression. This study is the first to use directed evolution for O. oeni strain improvement and confirms that this technique can be used successfully for the development of new candidate strains for the wine industry. This study also adds to the current knowledge on the genetic basis of ethanol tolerance in this bacterium.
Collapse
|
16
|
Margalef-Català M, Felis GE, Reguant C, Stefanelli E, Torriani S, Bordons A. Identification of variable genomic regions related to stress response in Oenococcus oeni. Food Res Int 2017; 102:625-638. [PMID: 29195994 DOI: 10.1016/j.foodres.2017.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 01/24/2023]
Abstract
The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions.
Collapse
Affiliation(s)
- Mar Margalef-Català
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Giovanna E Felis
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Elena Stefanelli
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
17
|
Bonomo M, Cafaro C, Guerrieri A, Crispo F, Milella L, Calabrone L, Salzano G. Flow cytometry and capillary electrophoresis analyses in ethanol-stressedOenococcus oenistrains and changes assessment of membrane fatty acid composition. J Appl Microbiol 2017; 122:1615-1626. [DOI: 10.1111/jam.13466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 02/11/2017] [Accepted: 03/21/2017] [Indexed: 12/01/2022]
Affiliation(s)
- M.G. Bonomo
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - C. Cafaro
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - A. Guerrieri
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - F. Crispo
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - L. Milella
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - L. Calabrone
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - G. Salzano
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
18
|
D'Angelo L, Cicotello J, Zago M, Guglielmotti D, Quiberoni A, Suárez V. Leuconostoc strains isolated from dairy products: Response against food stress conditions. Food Microbiol 2017; 66:28-39. [PMID: 28576370 DOI: 10.1016/j.fm.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/24/2017] [Accepted: 04/02/2017] [Indexed: 11/29/2022]
Abstract
A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes.
Collapse
Affiliation(s)
- Luisa D'Angelo
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Joaquín Cicotello
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Miriam Zago
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero Casearie (CREA-FLC), Via Lombardo 11, 26900 Lodi, Italy
| | - Daniela Guglielmotti
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Andrea Quiberoni
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Viviana Suárez
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina.
| |
Collapse
|
19
|
Weidmann S, Maitre M, Laurent J, Coucheney F, Rieu A, Guzzo J. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. Int J Food Microbiol 2017; 247:18-23. [DOI: 10.1016/j.ijfoodmicro.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 11/17/2022]
|
20
|
Costantini A, Doria F, Saiz JC, Garcia-Moruno E. Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine. Int J Food Microbiol 2017; 246:12-19. [DOI: 10.1016/j.ijfoodmicro.2017.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 11/26/2022]
|
21
|
Margalef-Català M, Stefanelli E, Araque I, Wagner K, Felis GE, Bordons A, Torriani S, Reguant C. Variability in gene content and expression of the thioredoxin system in Oenococcus oeni. Food Microbiol 2017; 61:23-32. [DOI: 10.1016/j.fm.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022]
|
22
|
Protective role of glutathione addition against wine-related stress in Oenococcus oeni. Food Res Int 2016; 90:8-15. [DOI: 10.1016/j.foodres.2016.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
|
23
|
Margalef-Català M, Araque I, Bordons A, Reguant C, Bautista-Gallego J. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions. Front Microbiol 2016; 7:1554. [PMID: 27746771 PMCID: PMC5044463 DOI: 10.3389/fmicb.2016.01554] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF.
Collapse
Affiliation(s)
- Mar Margalef-Català
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Isabel Araque
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Joaquín Bautista-Gallego
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
24
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
25
|
Bastard A, Coelho C, Briandet R, Canette A, Gougeon R, Alexandre H, Guzzo J, Weidmann S. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine. Front Microbiol 2016; 7:613. [PMID: 27199942 PMCID: PMC4846790 DOI: 10.3389/fmicb.2016.00613] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/13/2016] [Indexed: 11/25/2022] Open
Abstract
The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O. oeni forms biofilms consisting of stress-tolerant cells capable of efficient MLF under winemaking conditions. Therefore surface-associated behaviors should be considered in the development of improved strategies for the control of MLF in wine.
Collapse
Affiliation(s)
- Alexandre Bastard
- UMR A PAM Université Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie Dijon, France
| | - Christian Coelho
- UMR A PAM Université Bourgogne Franche-Comté - AgroSup Dijon - Equipe Procédés Alimentaires et Physico-Chimie Dijon, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Régis Gougeon
- UMR A PAM Université Bourgogne Franche-Comté - AgroSup Dijon - Equipe Procédés Alimentaires et Physico-Chimie Dijon, France
| | - Hervé Alexandre
- UMR A PAM Université Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie Dijon, France
| | - Jean Guzzo
- UMR A PAM Université Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie Dijon, France
| | - Stéphanie Weidmann
- UMR A PAM Université Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie Dijon, France
| |
Collapse
|
26
|
Cyclopropane fatty acid synthase from Oenococcus oeni: expression in Lactococcus lactis subsp. cremoris and biochemical characterization. Arch Microbiol 2015; 197:1063-74. [DOI: 10.1007/s00203-015-1143-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/09/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
27
|
Olguín N, Champomier-Vergès M, Anglade P, Baraige F, Cordero-Otero R, Bordons A, Zagorec M, Reguant C. Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock. Food Microbiol 2015; 51:87-95. [PMID: 26187832 DOI: 10.1016/j.fm.2015.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 12/01/2014] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
The correct development of malolactic fermentation depends on the capacity of Oenococcus oeni to survive under harsh wine conditions. The presence of ethanol is one of the most stressful factors affecting O. oeni performance. In this study, the effect of ethanol addition (12% vol/vol) on O. oeni PSU-1 has been evaluated using a transcriptomic and proteomic approach. Transcriptomic analysis revealed that the main functional categories of the genes affected by ethanol were metabolite transport and cell wall and membrane biogenesis. It was also observed that some genes were over-expressed in response to ethanol stress (for example, the heat shock protein Hsp20 and a dipeptidase). Proteomic analysis showed that several proteins are affected by the presence of ethanol. Functions related to protein synthesis and stability are the main target of ethanol damage. In some cases the decrease in protein concentration could be due to the relocation of cytosolic proteins in the membrane, as a protective mechanism. The omic approach used to study the response of O. oeni to ethanol highlights the importance of the cell membrane in the global stress response and opens the door to future studies on this issue.
Collapse
Affiliation(s)
- Nair Olguín
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | | | - Patricia Anglade
- Unité MICALIS (UMR1319) équipe FLEC, INRA, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Fabienne Baraige
- Unité MICALIS (UMR1319) équipe FLEC, INRA, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Ricardo Cordero-Otero
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Monique Zagorec
- Unité MICALIS (UMR1319) équipe FLEC, INRA, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
28
|
Bordas M, Araque I, Bordons A, Reguant C. Differential expression of selected Oenococcus oeni genes for adaptation in wine-like media and red wine. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1069-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Development of a SCAR (sequence-characterised amplified region) marker for acid resistance-related gene in Lactobacillus plantarum. Extremophiles 2014; 19:355-61. [PMID: 25515368 DOI: 10.1007/s00792-014-0721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A sequence characterised amplified region marker was developed to determine an acid resistance-related gene in Lactobacillus plantarum. A random amplified polymorphic DNA marker named S116-680 was reported to be closely related to the acid resistance of the strains. The DNA band corresponding to this marker was cloned and sequenced with the induction of specific designed PCR primers. The results of PCR test helped to amplify a clear specific band of 680 bp in the tested acid-resistant strains. S116-680 marker would be useful to explore the acid-resistant mechanism of L. plantarum and to screen desirable malolactic fermentation strains.
Collapse
|
30
|
Fahimi N, Brandam C, Taillandier P. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni. World J Microbiol Biotechnol 2014; 30:3163-72. [PMID: 25248866 DOI: 10.1007/s11274-014-1743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains.
Collapse
Affiliation(s)
- N Fahimi
- Laboratoire de Génie Chimique, Université de Toulouse, INPT, UPS, 4, Allée Emile Monso, BP 83234, 31432, Toulouse Cedex 4, France,
| | | | | |
Collapse
|
31
|
Implications of new research and technologies for malolactic fermentation in wine. Appl Microbiol Biotechnol 2014; 98:8111-32. [PMID: 25142694 DOI: 10.1007/s00253-014-5976-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/11/2023]
Abstract
The initial conversion of grape must to wine is an alcoholic fermentation (AF) largely carried out by one or more strains of yeast, typically Saccharomyces cerevisiae. After the AF, a secondary or malolactic fermentation (MLF) which is carried out by lactic acid bacteria (LAB) is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid and carbon dioxide. The ability to metabolise L-malic acid is strain specific, and both individual Oenococcus oeni strains and other LAB strains vary in their ability to efficiently carry out MLF. Aside from impacts on acidity, LAB can also metabolise other precursors present in wine during fermentation and, therefore, alter the chemical composition of the wine resulting in an increased complexity of wine aroma and flavour. Recent research has focused on three main areas: enzymatic changes during MLF, safety of the final product and mechanisms of stress resistance. This review summarises the latest research and technological advances in the rapidly evolving study of MLF and investigates the directions that future research may take.
Collapse
|
32
|
Wine. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity. Appl Environ Microbiol 2014; 80:2973-80. [PMID: 24584255 DOI: 10.1128/aem.04178-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malolactic fermentation in wine is often carried out by Oenococcus oeni. Wine is a stressful environment for bacteria because ethanol is a toxic compound that impairs the integrity of bacterial membranes. The small heat shock protein (sHsp) Lo18 is an essential actor of the stress response in O. oeni. Lo18 prevents the thermal aggregation of proteins and plays a crucial role in membrane quality control. Here, we investigated the interaction between Lo18 and four types of liposomes: one was prepared from O. oeni grown under optimal growth conditions (here, control liposomes), one was prepared from O. oeni grown in the presence of 8% ethanol (here, ethanol liposomes), one was prepared from synthetic phospholipids, and one was prepared from phospholipids from Bacillus subtilis or Lactococcus lactis. We observed the strongest interaction between Lo18 and control liposomes. The lipid binding activity of Lo18 required the dissociation of oligomeric structures into dimers. Protein protection experiments carried out in the presence of the liposomes from O. oeni suggested that Lo18 had a higher affinity for control liposomes than for a model protein. In anisotropy experiments, we mimicked ethanol action by temperature-dependent fluidization of the liposomes. Results suggest that the principal determinant of Lo18-membrane interaction is lipid bilayer phase behavior rather than phospholipid composition. We suggest a model to describe the ethanol adaptation of O. oeni. This model highlights the dual role of Lo18 in the protection of proteins from aggregation and membrane stabilization and suggests how modifications of phospholipid content may be a key factor determining the balance between these two functions.
Collapse
|
34
|
Cafaro C, Bonomo M, Salzano G. Adaptive changes in geranylgeranyl pyrophosphate synthase gene expression level under ethanol stress conditions in Oenococcus oeni. J Appl Microbiol 2013; 116:71-80. [DOI: 10.1111/jam.12351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Cafaro
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - M.G. Bonomo
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - G. Salzano
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
35
|
González-Arenzana L, Santamaría P, López R, López-Alfaro I. Indigenous lactic acid bacteria communities in alcoholic and malolactic fermentations of Tempranillo wines elaborated in ten wineries of La Rioja (Spain). Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
The oligomer plasticity of the small heat-shock protein Lo18 from Oenococcus oeni influences its role in both membrane stabilization and protein protection. Biochem J 2012; 444:97-104. [PMID: 22360742 DOI: 10.1042/bj20120066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of the small Hsp (heat-shock protein) Lo18 from Oenococcus oeni to modulate the membrane fluidity of liposomes or to reduce the thermal aggregation of proteins was studied as a function of the pH in the range 5-9. We have determined by size-exclusion chromatography and analytical ultracentrifugation that Lo18 assembles essentially as a 16-mer at acidic pH. Its quaternary structure evolves to a mixture of lower molecular mass oligomers probably in dynamic equilibrium when the pH increases. The best Lo18 activities are observed at pH 7 when the particle distribution contains a major proportion of dodecamers. At basic pH, particles corresponding to a dimer prevail and are thought to be the building blocks leading to oligomerization of Lo18. At acidic pH, the dimers are organized in a double-ring of stacked octamers to form the 16-mer as shown by the low-resolution structure determined by electron microscopy. Experiments performed with a modified protein (A123S) shown to preferentially form dimers confirm these results. The α-crystallin domain of Methanococcus jannaschii Hsp16.5, taken as a model of the Lo18 counterpart, fits with the electron microscopy envelope of Lo18.
Collapse
|
37
|
Guzzo J. Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell Biol 2012; 44:1698-705. [PMID: 22706478 DOI: 10.1016/j.biocel.2012.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023]
Abstract
The stress responses of most bacteria are thought to involve the upregulation of small heat shock proteins. We describe here some of the most pertinent aspects of small heat shock proteins, to highlight their potential for use in various applications. Bacterial species have between one and 13 genes encoding small heat shock proteins, the precise number depending on the species considered. Major efforts have recently been made to characterize the protein protection and membrane stabilization mechanisms involving small heat shock proteins in bacteria. These proteins seem to be involved in the acquisition of cellular heat tolerance. They could therefore potentially be used to maintain cell viability under unfavorable conditions, such as heat shock or chemical treatments. This review highlights the potential roles of applications of small heat shock proteins in stabilizing overproduced heterologous proteins in Escherichia coli, purified bacterial small heat shock proteins in protein biochip technology, proteomic analysis and food technology and the potential impact of these proteins on some diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Jean Guzzo
- UMR A PAM Université de Bourgogne/Agrosup Dijon Equipe Valmis Institut Jules Guyot, 1 Rue Claude Ladrey, BP27877, 21078 Dijon, France.
| |
Collapse
|
38
|
González-Arenzana L, Santamaría P, López R, Tenorio C, López-Alfaro I. Ecology of indigenous lactic acid bacteria along different winemaking processes of Tempranillo red wine from La Rioja (Spain). ScientificWorldJournal 2012; 2012:796327. [PMID: 22489202 PMCID: PMC3317608 DOI: 10.1100/2012/796327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022] Open
Abstract
Ecology of the lactic acid bacteria (LAB) during alcoholic fermentation (AF) and spontaneous malolactic fermentation (MLF) of Tempranillo wines from four wineries of La Rioja has been studied analyzing the influence of the winemaking method, processing conditions, and geographical origin. Five different LAB species were isolated during AF, while, during MLF, only Oenococcus oeni was detected. Although the clonal diversity of O. oeni strains was moderate, mixed populations were observed, becoming at least one strain with distinct PFGE profile the main responsible for MLF. Neither the winemaking method nor the cellar situation was correlated with the LAB diversity. However, processing conditions influenced the total number of isolates and the percentage of each isolated species and strains. The winemaking method could cause that genotypes found in semicarbonic maceration did not appear in other wineries. Four genotypes of O. oeni were isolated in more than one of the rest wineries. These four together with other dominant strains might be included in a future selection process.
Collapse
Affiliation(s)
- Lucía González-Arenzana
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC, Universidad de La Rioja, Gobierno de La Rioja, C/Madre de Dios 51, La Rioja, 26006 Logroño, Spain
| | - Pilar Santamaría
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC, Universidad de La Rioja, Gobierno de La Rioja, C/Madre de Dios 51, La Rioja, 26006 Logroño, Spain
| | - Rosa López
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC, Universidad de La Rioja, Gobierno de La Rioja, C/Madre de Dios 51, La Rioja, 26006 Logroño, Spain
| | - Carmen Tenorio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC, Universidad de La Rioja, Gobierno de La Rioja, C/Madre de Dios 51, La Rioja, 26006 Logroño, Spain
| | - Isabel López-Alfaro
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC, Universidad de La Rioja, Gobierno de La Rioja, C/Madre de Dios 51, La Rioja, 26006 Logroño, Spain
| |
Collapse
|
39
|
Zhou M, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010; 11:651. [PMID: 21092245 PMCID: PMC3017865 DOI: 10.1186/1471-2164-11-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific environmental niches. Results We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by integrating protein subcellular location prediction and homology clustering methods. The initial clusters were further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes. A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly when new bacterial genomes become available. Conclusions The LAB-Secretome database could be used to understand the evolution and adaptation of lactic acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for targeted experimental studies.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Multigenic expression analysis as an approach to understanding the behaviour of Oenococcus oeni in wine-like conditions. Int J Food Microbiol 2010; 144:88-95. [DOI: 10.1016/j.ijfoodmicro.2010.08.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 11/22/2022]
|
41
|
Capozzi V, Russo P, Beneduce L, Weidmann S, Grieco F, Guzzo J, Spano G. Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Lett Appl Microbiol 2010; 50:327-34. [PMID: 20408255 DOI: 10.1111/j.1472-765x.2010.02795.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To isolate indigenous Oenococcus oeni strains suitable as starters for malolactic fermentation (MLF), using a reliable polyphasic approach. METHODS AND RESULTS Oenococcus oeni strains were isolated from Nero di Troia wines undergoing spontaneous MLF. Samples were taken at the end of alcoholic fermentation and during MLF. Wine samples were diluted in a sterile physiological solution and plated on MRS and on modified FT80. Identification of O. oeni strains was performed by a polymerase chain reaction (PCR) experiment using strain-specific primers. Strains were further grouped using a multiplex RAPD-PCR analysis. Then, six strains were inoculated in two winelike media with two different ethanol concentrations (11 and 13% vol / vol) with a view to evaluate their capacity to grow and to perform MLF. In addition, a quantitative PCR (qRT-PCR) approach was adapted to monitor the physiological state of the strains selected. CONCLUSION A positive correlation between the malolactic activity performance and the ability to develop and tolerate stress conditions was observed for two selected O. oeni strains. SIGNIFICANCE AND IMPACT OF THE STUDY The results reported are useful for the selection of indigenous MLF starter cultures with desired oenological traits from typical regional wines. It should be the base for the improvement in organoleptic quality of typical red wine.
Collapse
Affiliation(s)
- V Capozzi
- Dipartimento di Scienze degli Alimenti, Facoltà di Agraria, Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Cecconi D, Milli A, Rinalducci S, Zolla L, Zapparoli G. Proteomic analysis ofOenococcus oenifreeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine. Electrophoresis 2009; 30:2988-2995. [DOI: 10.1002/elps.200900228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Sico MA, Bonomo MG, D'Adamo A, Bochicchio S, Salzano G. Fingerprinting analysis ofOenococcus oenistrains under stress conditions. FEMS Microbiol Lett 2009; 296:11-7. [DOI: 10.1111/j.1574-6968.2009.01611.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
Grandvalet C, Assad-García JS, Chu-Ky S, Tollot M, Guzzo J, Gresti J, Tourdot-Maréchal R. Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation. Microbiology (Reading) 2008; 154:2611-2619. [DOI: 10.1099/mic.0.2007/016238-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cosette Grandvalet
- Laboratoire Recherche en Vigne et Vin, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, 1, Rue Claude Ladrey – Campus Montmuzard, BP27877, F-21078 Dijon, France
| | - Juan Simón Assad-García
- Laboratoire Recherche en Vigne et Vin, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, 1, Rue Claude Ladrey – Campus Montmuzard, BP27877, F-21078 Dijon, France
| | - Son Chu-Ky
- Laboratoire Recherche en Vigne et Vin, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, 1, Rue Claude Ladrey – Campus Montmuzard, BP27877, F-21078 Dijon, France
| | - Marie Tollot
- Laboratoire Recherche en Vigne et Vin, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, 1, Rue Claude Ladrey – Campus Montmuzard, BP27877, F-21078 Dijon, France
| | - Jean Guzzo
- Laboratoire Recherche en Vigne et Vin, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, 1, Rue Claude Ladrey – Campus Montmuzard, BP27877, F-21078 Dijon, France
| | - Joseph Gresti
- UMR 866 Equipe Physiopathologie des Dyslipidémies, Faculté des Sciences Gabriel, 6, Bd Gabriel, F-21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- Laboratoire Recherche en Vigne et Vin, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, 1, Rue Claude Ladrey – Campus Montmuzard, BP27877, F-21078 Dijon, France
| |
Collapse
|
45
|
Nehme N, Mathieu F, Taillandier P. Quantitative study of interactions between Saccharomyces cerevisiae and Oenococcus oeni strains. J Ind Microbiol Biotechnol 2008; 35:685-93. [PMID: 18317828 DOI: 10.1007/s10295-008-0328-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 02/08/2008] [Indexed: 12/01/2022]
Abstract
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained.
Collapse
Affiliation(s)
- Nancy Nehme
- Laboratoire de Génie Chimique/INP-ENSIACET, 5 rue Paulin Talabot, BP 1301, 31106 Toulouse Cedex, France.
| | | | | |
Collapse
|
46
|
Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 2007; 77:909-15. [DOI: 10.1007/s00253-007-1228-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
|
47
|
Correlation between indigenous Oenococcus oeni strain resistance and the presence of genetic markers. J Ind Microbiol Biotechnol 2007; 35:27-33. [DOI: 10.1007/s10295-007-0262-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
|
48
|
Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J. Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 2007; 73:6125-33. [PMID: 17675424 PMCID: PMC2075002 DOI: 10.1128/aem.00608-07] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the agrBDCA operon in the pathogenic bacterium Listeria monocytogenes EGD-e. In-frame deletion of agrA and agrD resulted in an altered adherence and biofilm formation on abiotic surfaces, suggesting the involvement of the agr system of L. monocytogenes during the early stages of biofilm formation. Real-time PCR experiments indicated that the transcript levels of agrBDCA depended on the stage of biofilm development, since the levels were lower after the initial attachment period than during biofilm growth, whereas transcription during planktonic growth was not growth phase dependent. The mRNA quantification data also suggested that the agr system was autoregulated and pointed to a differential expression of the agr genes during sessile and planktonic growth. Although the reverse transcription-PCR experiments revealed that the four genes were transcribed as a single messenger, chemical half-life and 5' RACE (rapid amplification of cDNA ends) experiments indicated that the full size transcript underwent cleavage followed by degradation of the agrC and agrA transcripts, which suggests a complex regulation of agr transcription.
Collapse
Affiliation(s)
- Aurélie Rieu
- UMR 1229 Microbiologie du Sol et de l'Environnement, Université de Bourgogne, INRA, F-21000 Dijon, France
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Spano G, Massa S. Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 2006; 32:77-86. [PMID: 16809231 DOI: 10.1080/10408410600709800] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lactic acid bacteria (LAB) constitute a heterogeneous group of bacteria that are traditionally used to produce fermented foods. The industrialization of food transformations has increased the economical importance of LAB, as they play a crucial role in the development of the organoleptic and hygienic quality of fermented products. However, the strains selected for industrial purposes, should tolerate adverse conditions encountered in industrial processes, either during starter handling and storage (freeze-drying, freezing, or spray-drying) or during food processing in which abiotic stresses such as heat, cold, acidity, and high concentration of NaCl or ethanol are common. Wine LAB have to deal with several stresses including an acidic pH, a high alcoholic content, non optimal growth temperatures, and growth-inhibitory compounds such as fatty acids and tannins, originated from yeast and bacteria metabolism. Wine LAB have developed several mechanisms to escape or to tolerate wine conditions. They carry out a malolactic fermentation in this stressful environment. In addition to the regulation of the expression of specific genes, bacteria have evolved adaptive networks to face the challenges of a changing environment and to survive under conditions of stress. The so called Global Regulatory Systems control the simultaneous expression of a large number of genes in response to a variety of environmental stress factors. CIRCE sequences able to bind the HrcA repressor, sigma(B) dependent promoters and CtsR regulatory elements have been observed in several genes identified from wine LAB. Improved knowledge of regulators and a better understanding of LAB stress responses could constitute a basis of comparison with the well known model microorganisms, Escherichia coli and Bacillus subtilis. Moreover, it can provide an important insight into improving current industrial starter strains.
Collapse
Affiliation(s)
- G Spano
- Department of Food Science, Foggia University, via Napoli 25, 71100 Foggia, Italy.
| | | |
Collapse
|