1
|
Wang KC, Yde CC, Anglenius H, Salli K, Morovic W, Poore M, Gerdes S, Meier S, Jensen HM, Jensen PR. Synergistic Effect of Formate and Cell-Free Supernatant Fermented by Two Probiotics, Bifidobacterium animalis spp. lactis HN019 and Lacticaseibacillus rhamnosus HN001, against Shigella flexneri Growth. ACS Infect Dis 2025. [PMID: 40371449 DOI: 10.1021/acsinfecdis.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The interplay between probiotic metabolites, host health, and inhibition of pathogens has increasingly attracted interest but remains unresolved due to the complex molecular interactions among these factors. We investigated the action of cell-free supernatants (CFSs) from two probiotic bacteria, Bifidobacterium animalis spp. lactis (B. lactis) HN019 and Lacticaseibacillus rhamnosus (L. rhamnosus) HN001 and their effect against the bacterial pathogen Shigella flexneri 2457T (S. flexneri). The CFSs from B. lactis HN019 exhibited a higher antibacterial effect against S. flexneri growth than the CFSs from L. rhamnosus HN001, independent of the carbon source utilized. This effect correlated with higher formate within the CFSs from B. lactis HN019. As expected, the antimicrobial effects of CFSs were stronger against free S. flexneri cells than for S. flexneri infecting host cells. A synergistic effect of the CFSs with additional small organic molecules such as indole-3-lactate and formate was found. Such interplay between CFSs, indole-3-lactate, and formate was reflected by altered metabolic rates by S. flexneri in the presence of B. lactis HN019 CFSs both in the solution and under biofilm-forming conditions. The synergistic effect between different components acting on S. flexneri gives reasons to believe that suitably designed mixtures of probiotic metabolic products and small-molecule effectors bear promise for successfully combating pathogens.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Hypermag, Department of Health Technology, Technical University of Denmark, Ørsteds Plads 349, Lyngby 2800, Denmark
| | | | - Heli Anglenius
- IFF Health, Global Health & Nutrition Science, Sokeritehtaantie 20, Kantvik 02460, Finland
| | - Krista Salli
- IFF Health, Global Health & Nutrition Science, Sokeritehtaantie 20, Kantvik 02460, Finland
| | - Wesley Morovic
- Health & Biosciences, International Flavors & Fragrances, Madison, Wisconsin 53716, United States
| | - Matthew Poore
- Health & Biosciences, International Flavors & Fragrances, Madison, Wisconsin 53716, United States
| | - Svetlana Gerdes
- Health & Biosciences, International Flavors & Fragrances, Madison, Wisconsin 53716, United States
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, Lyngby 2800, Denmark
| | - Henrik Max Jensen
- IFF Enabling Technologies, Edwin Rahrsvej 38, Brabrand 8220, Denmark
| | - Pernille Rose Jensen
- Hypermag, Department of Health Technology, Technical University of Denmark, Ørsteds Plads 349, Lyngby 2800, Denmark
| |
Collapse
|
2
|
Iqbal MZ, He P, He P, Wu Y, Munir S, He Y. The Response of Murine Gut Microbiome in the Presence of Altered rpoS Gene of Klebsiella pneumoniae. Int J Mol Sci 2024; 25:9222. [PMID: 39273171 PMCID: PMC11395600 DOI: 10.3390/ijms25179222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The murine model is invaluable for studying intricate interactions among gut microbes; hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp; an opportunistic global pathogen; is becoming increasingly prevalent in regions like Asia; especially China. This study explored the role of the gut microbiota during Kp infection using mouse model; including wild-type and rpoS mutants of Kp138; KpC4; and KpE4 from human; maize; and ditch water; respectively. Under stress conditions; RpoS reconfigures global gene expression in bacteria; shifting the cells from active growth to survival mode. Our study examined notable differences in microbiome composition; finding that Lactobacillus and Klebsiella (particularly in WKp138) were the most abundant genera in mice guts at the genus level in all wild-type treated mice. In contrast; Firmicutes were predominant in the healthy control mice. Furthermore; Clostridium was the dominant genus in all mutants; mainly in ∆KpC4; and was absent in wild-type treated mice. Differential abundance analysis identified that these candidate taxa potentially influence disease progression and pathogen virulence. Functional prediction analysis showed that most bacterial groups were functionally involved in biosynthesis; precursor metabolites; degradation; energy generation; and metabolic cluster formation. These findings challenge the conventional understanding and highlight the need for nuanced interpretations in murine studies. Additionally; this study sheds light on microbiome-immune interactions in K. pneumoniae infection and proposes new potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Shivani TM, Sathiavelu M. Probiotic evaluation, adherence capability and safety assessment of Lactococcus lactis strain isolated from an important herb "Murraya koenigii". Sci Rep 2024; 14:15565. [PMID: 38971851 PMCID: PMC11227525 DOI: 10.1038/s41598-024-66597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Lactic acid bacteria (LAB) isolated from medicinal herb Murraya koenigii, commonly known as curry leaf, which promotes the growth and maintenance of gut microbiota, were studied for their probiotic potential. The key objective of this research was to isolate and evaluate probiotic characteristics, test adherence capabilities, and confirm their safety. Lactococcus lactis (MKL8), isolated from Murraya koenigii, was subjected to in vitro analysis to assess its resistance to the gastric environment, ability to adhere Caco-2 cells, anti-microbial activity, hydrophobicity, auto-aggregation, and safety profiling through MTT assay and hemolytic. MKL8 exhibited growth at 0.5% phenol concentrations (> 80%) and was able to survive in conditions with high bile concentrations (> 79%) and a relatively low pH (72%-91%). It shows high tolerance to high osmotic conditions (> 73%) and simulated gastric juice (> 72%). Additionally, MKL8 demonstrated strong hydrophobicity (85%), auto-aggregation (87.3%-91.7%), and adherence to Caco-2 cells. Moreover, it had an inhibitory effect against pathogens too. By performing the hemolytic and MTT assays, the non-toxicity of MKL8 isolate was examined, and it exhibited no harmful characteristics. Considering MKL8's resistance to gastrointestinal tract conditions, high surface hydrophobicity, non-toxicity, and ability to inhibit the tested pathogens, it can be concluded that MKL8 demonstrated promising probiotic properties and has potential for use in the food industry.
Collapse
Affiliation(s)
- Tholla Madana Shivani
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Mythili Sathiavelu
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms 2024; 12:1026. [PMID: 38792855 PMCID: PMC11124445 DOI: 10.3390/microorganisms12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy animal intestine hosts a diverse population of bacteria in a symbiotic relationship. These bacteria utilize nutrients in the host's intestinal environment for growth and reproduction. In return, they assist the host in digesting and metabolizing nutrients, fortifying the intestinal barrier, defending against potential pathogens, and maintaining gut health. Bacterial colonization is a crucial aspect of this interaction between bacteria and the intestine and involves the attachment of bacteria to intestinal mucus or epithelial cells through nonspecific or specific interactions. This process primarily relies on adhesins. The binding of bacterial adhesins to host receptors is a prerequisite for the long-term colonization of bacteria and serves as the foundation for the pathogenicity of pathogenic bacteria. Intervening in the adhesion and colonization of bacteria in animal intestines may offer an effective approach to treating gastrointestinal diseases and preventing pathogenic infections. Therefore, this paper reviews the situation and mechanisms of bacterial colonization, the colonization characteristics of various bacteria, and the factors influencing bacterial colonization. The aim of this study was to serve as a reference for further research on bacteria-gut interactions and improving animal gut health.
Collapse
Affiliation(s)
- Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Zitao Fan
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| |
Collapse
|
5
|
Paterniti I, Scuderi SA, Cambria L, Nostro A, Esposito E, Marino A. Protective Effect of Probiotics against Pseudomonas aeruginosa Infection of Human Corneal Epithelial Cells. Int J Mol Sci 2024; 25:1770. [PMID: 38339047 PMCID: PMC10855269 DOI: 10.3390/ijms25031770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Probiotic therapy needs consideration as an alternative strategy to prevent and possibly treat corneal infection. This study aimed to assess the preventive effect of Lactobacillus reuteri and Bifidobacterium longum subsp. infantis on reducing the infection of human corneal epithelial (HCE) cells caused by Pseudomonas aeruginosa. The probiotics' preventive effect against infection was evaluated in cell monolayers pretreated with each probiotic 1 h and 24 h prior to P. aeruginosa challenge followed by 1 h and 24 h of growth in combination. Cell adhesion, cytotoxicity, anti-inflammatory, and antinitrosative activities were evaluated. L. reuteri and B. longum adhered to HCE cells, preserved occludin tight junctions' integrity, and increased mucin production on a SkinEthicTM HCE model. Pretreatment with L. reuteri or B. longum significantly protected HCE cells from infection at 24 h, increasing cell viability at 110% (110.51 ± 5.15; p ≤ 0.05) and 137% (137.55 ± 11.97; p ≤ 0.05), respectively. Each probiotic showed anti-inflammatory and antinitrosative activities, reducing TNF-α level (p ≤ 0.001) and NOx amount (p ≤ 0.001) and reestablishing IL-10 level (p ≤ 0.001). In conclusion, this study demonstrated that L. reuteri and B. longum exert protective effects in the context of corneal infection caused by P. aeruginosa by restoring cell viability and modulating inflammatory cytokine release.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (I.P.); (S.A.S.); (L.C.); (A.N.); (E.E.)
| |
Collapse
|
6
|
Pahumunto N, Teanpaisan R. Anti-cancer Properties of Potential Probiotics and Their Cell-free Supernatants for the Prevention of Colorectal Cancer: an In Vitro Study. Probiotics Antimicrob Proteins 2023; 15:1137-1150. [PMID: 35895217 DOI: 10.1007/s12602-022-09972-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
This study aimed to characterize the anti-cancer properties of potential probiotics (Lacticaseibacillus paracasei SD1, Lacticaseibacillus rhamnosus SD4, Lacticaseibacillus rhamnosus SD11, and Lacticaseibacillus rhamnosus GG) and their cell-free supernatants (CFS) for the prevention of colorectal cancer (CRC), which including anti-bacterial and anti-inflammation activities against pathogens associated with CRC (Fusobacterium nucleatum, Porphyromonas gingivalis, ETEC, and Salmonella enterica). The expression of human β-defensin (2-4) and IL-10 after being stimulated with probiotics was also examined. In addition, anti-cancer activity of CFS and probiotic growth under intestinal conditions were determined. An in vitro study was conducted in the Caco-2 and HIEC-6 cells. Results showed that probiotic cells and their CFS displayed different antibacterial activity, and L. rhamnosus SD11 showed the strongest inhibition of the growth of pathogens. Additionally, both probiotic cell walls and their CFS suppressed pro-inflammatory cytokines after being stimulated with pathogens in Caco-2 and HIEC-6 cells. L. paracasei SD1 and L. rhamnosus SD11 showed significantly higher suppression levels than others and also both strains can stimulate highly expression of hBD (2-4) and IL-10. The CFS of L. paracasei SD1 and L. rhamnosus SD11 inhibited significantly high growth of Caco-2 cells but not much in HIEC-6 cells. Furthermore, all probiotics adhered to Caco-2 and HIEC-6 cells, and L. rhamnosus SD4 showed the highest adhesion to both cells. They could survive more than 70% in intestinal conditions. In conclusion, results indicate that potential probiotics tested exhibited various anti-cancer properties, which may be good candidates used as biotherapy for the prevention or to delay the progression of CRC.
Collapse
Affiliation(s)
- Nuntiya Pahumunto
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand.
- Common Oral Diseases and Epidemiology Research Center, Hat-Yai, Thailand.
| | - Rawee Teanpaisan
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand
- Common Oral Diseases and Epidemiology Research Center, Hat-Yai, Thailand
| |
Collapse
|
7
|
Yang CS, Lai YY, Tsai CC. Investigating the Effectiveness of Exopolysaccharide-Producing Lactic Acid Bacteria in Biosorbing Lead (II), Attaching to Caco-2 Cells, and Provoking Antiinflammatory Responses. J Food Prot 2023; 86:100106. [PMID: 37211248 DOI: 10.1016/j.jfp.2023.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Lead is a common toxic heavy metal with harmful effects on the human body and is widely used in several industries. It can contaminate the environment by air and water emissions and can enter the human body through the respiratory tract, ingestion, or skin contact. Lead is considered as a persistent environmental pollutant, with a half-life of 30 days in the blood, and exists in the skeletal system for decades and causes damage to other systems. Biosorption is receiving increasing attention. Due to its high efficiency and economic value in removing heavy metals from the environment, a variety of biosorption methods can be used for the removal of heavy metals. Lactic acid bacteria (LAB) strains were capable of attaching to both human skin stratum corneum HaCaT cells and human rectal cancer Caco-2 cells. NBM-04-10-001 and NBM-01-07-003 significantly reduced the secretion of IL-6 and IL-8 after coculture with HaCaT cells. In the immune response of RAW264.7 mouse macrophages, high bacterial counts reduced the concentrations of IL-6 and TNF-α in a dose-dependent manner. The results of animal experiments revealed that feeding lead solution exerted no effect on the animal's food intake, and feeding PURE LAC NBM11 powder could effectively remove lead content in the blood. The group fed with PURE LAC NBM11 powder showed significantly less damage and lesions to liver cells. The LAB powder developed in this study has the potential to bind metals, preventing them from entering the body and protecting the host. LAB can be an ideal strain for future bioadsorption chelators.
Collapse
Affiliation(s)
- Chieh-Sheng Yang
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| | - Yong-Yu Lai
- Native Biomedical Co., Ltd., Xinshi District, Tainan City 74442, Taiwan
| | - Cheng-Chih Tsai
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan.
| |
Collapse
|
8
|
Taufer CR, Rampelotto PH. The Role of Bifidobacterium in COVID-19: A Systematic Review. Life (Basel) 2023; 13:1847. [PMID: 37763251 PMCID: PMC10532519 DOI: 10.3390/life13091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, mainly causes respiratory and intestinal symptoms and changes in the microbiota of patients. We performed a systematic search in major databases using "Bifidobacterium" and "COVID-19" or "SARS-CoV-2" as key terms to assess the relationship of the genus to COVID-19. After the selection steps, 25 articles were analyzed. Of these, eighteen were observational, and seven were interventional articles that evaluated the use of Bifidobacterium alone or in mix as probiotics for additional treatment of patients with COVID-19. All stages and severities were contemplated, including post-COVID-19 patients. Overall, Bifidobacterium was associated with both protective effects and reduced abundance in relation to the disease. The genus has been found to be abundant in some cases and linked to disease severity. The studies evaluating the use of Bifidobacterium as probiotics have demonstrated the potential of this genus in reducing symptoms, improving pulmonary function, reducing inflammatory markers, alleviating gastrointestinal symptoms, and even contributing to better control of mortality. In summary, Bifidobacterium may offer protection against COVID-19 through its ability to modulate the immune response, reduce inflammation, compete with pathogenic microbes, and maintain gut barrier function. The findings provide valuable insights into the relationship between the disease and the genus Bifidobacterium, highlighting the potential of microbiota modulation in the treatment of COVID-19.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
9
|
Summer M, Ali S, Fiaz U, Tahir HM, Ijaz M, Mumtaz S, Mushtaq R, Khan R, Shahzad H, Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol 2023; 205:296. [PMID: 37486419 DOI: 10.1007/s00203-023-03632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer has become the most prevalent and noxious type of malignancy around the globe (Giaquinto et al., 2022). Multiple clinical strategies including chemotherapy, radiotherapy, and immunotherapy have been in practice to manage breast cancer. Besides the protective roles of conventional remedial approaches, and non-reversible and deteriorative impacts like healthy cell damage, organ failure, etc., the world scientific community is in a continuous struggle to find some alternative biocompatible and comparatively safe solutions. Among novel breast cancer management/treatment options, the role of probiotics has become immensely important. The current review encompasses the prevalence statistics of breast cancer across the globe concerning developed and undeveloped counties, intestinal microbiota linkage with breast cancer, and association of breast microbiome with breast carcinoma. Furthermore, this review also narrates the role of probiotics against breast cancer and their mode of action. In Vivo and In Vitro studies under breast cancer research regarding probiotics are mechanistically explained. The current review systematically explains the immunomodulatory role of probiotics to prevent breast cancer. Last, but not the least, current review concludes the use of probiotics in the treatment of breast cancer through various mechanisms and future recommendations for molecular basis studies.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rabia Mushtaq
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rida Khan
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hashim Fiaz
- Department of Medicine and Surgery, Ammer-ul-din Medical College Lahore, Lahore, Pakistan
| |
Collapse
|
10
|
Gao Q, Fan T, Luo S, Zheng J, Zhang L, Cao L, Zhang Z, Li L, Huang Z, Zhang H, Huang L, Xiao Q, Qiu F. Lactobacillus gasseri LGV03 isolated from the cervico-vagina of HPV-cleared women modulates epithelial innate immune responses and suppresses the growth of HPV-positive human cervical cancer cells. Transl Oncol 2023; 35:101714. [PMID: 37331103 PMCID: PMC10366645 DOI: 10.1016/j.tranon.2023.101714] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/24/2022] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Persistent human papillomavirus (HPV) infections is necessary for the development of cervical cancers. An increasing number of retrospective studies have found the depletion of Lactobacillus microbiota in the cervico-vagina facilitate HPV infection and might be involved in viral persistence and cancer development. However, there have been no reports confirming the immunomodulatory effects of Lactobacillus microbiota isolated from cervico-vaginal samples of HPV clearance in women. Using cervico-vaginal samples from HPV persistent infection and clearance in women, this study investigated the local immune properties in cervical mucosa. As expected, type I interferons, such as IFN-α and IFN-β, and TLR3 globally downregulated in HPV+ persistence group. Luminex cytokine/chemokine panel analysis revealed that L. jannaschii LJV03, L. vaginalis LVV03, L. reuteri LRV03, and L. gasseri LGV03 isolated from cervicovaginal samples of HPV clearance in women altered the host's epithelial immune response, particularly L. gasseri LGV03. Furthermore, L. gasseri LGV03 enhanced the poly (I:C)-induced production of IFN by modulating the IRF3 pathway and attenuating poly (I:C)-induced production of proinflammatory mediators by regulating the NF-κB pathway in Ect1/E6E7 cells, indicating that L. gasseri LGV03 keeps the innate system alert to potential pathogens and reduces the inflammatory effects during persistent pathogen infection. L. gasseri LGV03 also markedly inhibited the proliferation of Ect1/E6E7 cells in a zebrafish xenograft model, which may be attributed to an increased immune response mediated by L. gasseri LGV03.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Tao Fan
- Department of Obstetrics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Siying Luo
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Jieting Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Longbing Cao
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Zikang Zhang
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Li Li
- Department of Gynecology, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, 518000, China
| | - Zhu Huang
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Huifen Zhang
- Department of Obstetrics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Liuxuan Huang
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Qing Xiao
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China.
| |
Collapse
|
11
|
Wan J, Wu P, Huang J, Huang S, Huang Q, Tang X. Characterization and evaluation of the cholesterol-lowering ability of Lactiplantibacillus plantarum HJ-S2 isolated from the intestine of Mesoplodon densirostris. World J Microbiol Biotechnol 2023; 39:199. [PMID: 37193825 DOI: 10.1007/s11274-023-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
In this study, ten strains of lactic acid bacteria were isolated from the intestine of Blainville's beaked whale (Mesoplodon densirostris),and their cholesterol-lowering activities in vitro and in vivo were investigated. The among these strains, HJ-S2 strain, which identified as Lactiplantibacillus plantarum, showed a high in vitro cholesterol-lowering rate (48.82%). Strain HJ-S2 was resistant to acid and bile salts, with a gastrointestinal survival rate of more than 80%, but was sensitive to antibiotics. Strain HJ-S2 was found to be able to adhere to HT-29 cells in an adhesion test. The number of cell adhesion was 132.52. In addition, we also performed the cholesterol-lowering activities in vivo using high-fat diet feed mouse models. Our results indicated that HJ-S2 reduced total cholesterol (TC), total glycerol (TG), and low-density lipoprotein cholesterol (LDLC) levels while increasing the high-density lipoprotein cholesterol (HDLC) level. It also alleviated the lipid accumulation in high-fat diet feed mouse liver and pancreas. Hence, HJ-S2 demonstrated appropriate cholesterol-lowering ability and has the potential to be used as a probiotic in functional foods.
Collapse
Affiliation(s)
- Jingliang Wan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Peng Wu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Jiaqi Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shixin Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Qinmiao Huang
- Fujian Huisheng Biological Technology Co., Ltd, Zhangzhou, China
| | - Xu Tang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
12
|
Cerutti Martellet M, Majolo F, Cima L, Goettert MI, Volken de Souza CF. Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Soltani N, Abbasi S, Baghaeifar S, Taheri E, Farhoudi Sefidan Jadid M, Emami P, Abolhasani K, Aslanshirzadeh F. Antibacterial and antibiofilm activity of Lactobacillus strains secretome and extraction against Escherichia coli isolated from urinary tract infection. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00760. [PMID: 36081611 PMCID: PMC9445990 DOI: 10.1016/j.btre.2022.e00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to antibacterial, and antibiofilm activity of two Lactobacillus strains secretome and extraction against E. coli isolated from women with urinary tract infection (UTI). We isolated 100 E. coli samples from women with UTI. Lactobacillus acidophilus and Lactobacillus casei characteristics were evaluated, and their secretome and extraction were prepared. The antibacterial and antibiofilm activity of secretome and extraction of both Lactobacillus strains were evaluated against isolated E. coli samples. L. acidophilus and L. casei were able to tolerate pH 3, bile salts, and pancreatic enzymes. Both probiotics were not resistant to antibiotics and demonstrated an appropriate ability to adhere to the intestinal epithelial cells. Secretome and extraction of L. acidophilus and L. casei strains showed a good antibacterial and antibiofilm against E. coli isolates. Generally, present study suggested that the secretome and extraction of L. acidophilus and L. casei strains exhibits a good antimicrobial activity.
Collapse
Affiliation(s)
- Nayemeh Soltani
- Department of Microbiology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Samane Abbasi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Sevda Baghaeifar
- Department of Biotechnology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Elham Taheri
- Department of Pharmaceutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parisa Emami
- Department of Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Kamilia Abolhasani
- Department of Anesthesia, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouz Aslanshirzadeh
- Department of Infectious Disease, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Food for the mind: The journey of probiotics from foods to ANTI-Alzheimer’s disease therapeutics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Swe ZM, Chumphon T, Panya M, Pangjit K, Promsai S. Evaluation of Nano-Wall Material for Production of Novel Lyophilized-Probiotic Product. Foods 2022; 11:foods11193113. [PMID: 36230189 PMCID: PMC9564142 DOI: 10.3390/foods11193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
Lyophilization is one of the most used methods for bacterial preservation. In this process, the cryoprotectant not only largely decreases cellular damage but also plays an important part in the conservation of viability during freeze-drying. This study investigated using cryoprotectant and a mixture of the cryoprotectant to maintain probiotic activity. Seven probiotic strains were considered: (Limosilactobacillus reuteri KUKPS6103; Lacticaseibacillus rhamnosus KUKPS6007; Lacticaseibacillus paracasei KUKPS6201; Lactobacillus acidophilus KUKPS6107; Ligilactobacillus salivarius KUKPS6202; Bacillus coagulans KPSTF02; Saccharomyces cerevisiae subsp. boulardii KUKPS6005) for the production of a multi-strain probiotic and the complex medium for the lyophilized synbiotic production. Cholesterol removal, antioxidant activity, biofilm formation and gamma aminobutyric acid (GABA) production of the probiotic strains were analyzed. The most biofilm formation occurred in L. reuteri KUKPS6103 and the least in B. coagulans KPSTF02. The multi-strain probiotic had the highest cholesterol removal. All the probiotic strains had GABA production that matched the standard of γ-aminobutyric acid. The lyophilized synbiotic product containing complex medium as a cryoprotectant and wall material retained a high viability of 7.53 × 108 CFU/g (8.89 log CFU/g) after 8 weeks of storage. We found that the survival rate of the multi-strain probiotic after freeze-drying was 15.37% in the presence of complex medium that was used as high performing wall material. Our findings provided a new type of wall material that is safer and more effective and, can be extensively applied in relevant food applications.
Collapse
Affiliation(s)
- Zin Myo Swe
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Thapakorn Chumphon
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Saran Promsai
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Correspondence: ; Tel.: +66-3440-0481
| |
Collapse
|
16
|
Bai Y, Lyu M, Fukunaga M, Watanabe S, Iwatani S, Miyanaga K, Yamamoto N. Lactobacillus johnsonii enhances the gut barrier integrity via the interaction between GAPDH and the mouse tight junction protein JAM-2. Food Funct 2022; 13:11021-11033. [PMID: 36069670 DOI: 10.1039/d2fo00886f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commensal intestinal microbiota interacts with gut epithelial cells in the host by binding to specific host receptors. Several pattern recognition receptors on the gut that sense conserved microbial-associated molecular patterns have been reported; however, many of the gut receptor molecules involved in bacterial binding have not yet been identified. In this study, commensal intestinal bacteria interacting with mouse gut surface proteins were screened from fecal bacterial samples, to identify novel receptors on the epithelial cells in the mouse gut. Among the screened intestinal lactic acid bacteria, the frequently isolated Lactobacillus johnsonii MG was used for the purification of gut receptor proteins. An approximately 30 kDa protein was purified using affinity resin coupled surface layer proteins isolated from L. johnsonii MG. The purified gut protein was identified as a member of the tight junction protein family, junctional adhesion molecule-2 (JAM-2). As expected, the tight junctions of Caco-2 cells damaged by H2O2 were repaired by incubation with L. johnsonii MG. RNA sequence analysis showed significant upregulation of the expression of genes for tight junctions, anti-inflammatory effects, transcriptional regulation, and apoptosis in Caco-2 cells, following L. johnsonii MG treatment. In L. johnsonii MG, the surface layer 40 kDa protein was purified with gut protein-coupled affinity resin and identified as the moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH). These results suggest that L. johnsonii MG promotes the barrier function integrity in Caco-2 cells via GAPDH-JAM-2 binding. Here, we propose a promising approach to identify novel gut receptor molecules based on commensal bacterial interactions and understand host-bacterial communication in a mouse model.
Collapse
Affiliation(s)
- Yuying Bai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Mengying Lyu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Moe Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Shin Watanabe
- Department of Emergency and Disaster Medicine Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.,Tsukuba Biotechnology Research Center, 5-2-3, Tokodai, Tsukuba-shi, Ibaraki 300-2698, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.,Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
17
|
Use of the Probiotic Bifidobacterium animalis subsp. lactis HN019 in Oral Diseases. Int J Mol Sci 2022; 23:ijms23169334. [PMID: 36012597 PMCID: PMC9409207 DOI: 10.3390/ijms23169334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
The oral cavity is one of the environments on the human body with the highest concentrations of microorganisms that coexist harmoniously and maintain homeostasis related to oral health. Several local factors can shift the microbiome to a pathogenic state of dysbiosis. Existing treatments for infections caused by changes in the oral cavity aim to control biofilm dysbiosis and restore microbial balance. Studies have used probiotics as treatments for oral diseases, due to their ability to reduce the pathogenicity of the microbiota and immunoinflammatory changes. This review investigates the role of the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) HN019 in oral health, and its mechanism of action in pre-clinical and clinical studies. This probiotic strain is a lactic acid bacterium that is safe for human consumption. It mediates bacterial co-aggregation with pathogens and modulates the immune response. Studies using B. lactis HN019 in periodontitis and peri-implant mucositis have shown it to be a potential adjuvant treatment with beneficial microbiological and immunological effects. Studies evaluating its oral effects and mechanism of action show that this probiotic strain has the potential to be used in several dental applications because of its benefit to the host.
Collapse
|
18
|
Probiotic and Functional Characterization of Pediococcus acidilactici Isolated from Bhaati jaanr, Traditional Fermented Rice Porridge. Appl Biochem Biotechnol 2022; 194:5734-5747. [PMID: 35819693 DOI: 10.1007/s12010-022-04041-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Traditional fermented foods are the ideal source of novel probiotic isolates which are known to have significant therapeutic benefits and play a vital role as bioprotective agents. Bhaati jaanr is an ethnic fermented rice beverage popularly consumed in sub-Himalayan regions. The strain UAMS was isolated from Bhaati jaanr based on high butyrate production and evaluated for the potential probiotic characteristics. MALDI-TOF MS and 16 s rRNA gene sequencing revealed the identity of strains as Pediococcus acidilactici. The isolated strain exhibited high tolerance to gastric and bile stress, autoaggregation, hydrophobicity, and adherence to colon cells. Antibiotic susceptibility testing results showed the resistance of the isolated strain toward tested common antibiotics and the pathogenic determinants were absent in PCR-based detection. Moreover, the organism was able to inhibit the growth of Listeria, Salmonella, Staphylococcus, and Enterococcus species. The isolate was found to be a high butyrate producer along with other short-chain fatty acids and exhibited an anti-proliferative effect against colon cancer cells HT29 and SW480. Therefore, our study represents Pediococcus acidilactici UAMS as a potent putative probiotic with bioprotective abilities.
Collapse
|
19
|
Dewi G, Kollanoor Johny A. Lactobacillus in Food Animal Production—A Forerunner for Clean Label Prospects in Animal-Derived Products. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.831195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lactobacillus, the largest genus within the lactic acid bacteria group, has served diverse roles in improving the quality of foods for centuries. The heterogeneity within this genus has resulted in the industry's continued use of their well-known functions and exploration of novel applications. Moreover, the perceived health benefits in many applications have also made them fond favorites of consumers and researchers alike. Their familiarity lends to their utility in the growing “clean label” movement, of which consumers prefer fewer additions to the food label and opt for recognizable and naturally-derived substances. Our review primarily focuses on the historical use of lactobacilli for their antimicrobial functionality in improving preharvest safety, a critical step to validate their role as biocontrol agents and antibiotic alternatives in food animal production. We also explore their potential as candidates catering to the consumer-driven demand for more authentic, transparent, and socially responsible labeling of animal products.
Collapse
|
20
|
Zawistowska-Rojek A, Kośmider A, Stępień K, Tyski S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch Microbiol 2022; 204:285. [PMID: 35478049 PMCID: PMC9046290 DOI: 10.1007/s00203-022-02889-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
The adhesion and aggregation are characteristic attributes of probiotic strains belonging to Lactobacillaceae genus. Due to these properties the host organisms can avoid colonisation of the intestinal tract by enteropathogenic bacteria. The presented research includes a comparison of the properties of various strains belonging to different Lactobacillaceae species and isolated from different sources The aim of this study was to investigate the ability of Lactocaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Lactobacillus strains (L. acidophilus, L. gasseri, L. ultunensis) from probiotic products and clinical specimens to direct and competitive adherence to Caco-2 and HT-29 cell lines. Furthermore, the ability of lactobacilli and enteropathogenic bacteria, E. coli, E. faecalis, and S. Typhimurium, to auto- and co-aggregation was also investigated. The results showed that all tested strains adhered to Caco-2 and HT-29 cell lines. Though, the factor of adhesion depended on the species and origin of the strain. L. rhamnosus strains showed a lowest degree of adherence as compared to L. plantarum and Lactobacillus sp. strains. On the other side both, L. rhamnosus and L. acidophilus strains reduced the pathogenic bacteria in competition adherence test most effectively. All tested lactobacilli strains were characterised by auto- and co-aggregation abilities, to various degrees. The properties of Lactobacillaceae strains analysed in this study, like adhesion abilities, competitive adherence, auto- and co-aggregation, may affect the prevention of colonisation and elimination of pathogenic bacteria in gastrointestinal tract.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland. .,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Anita Kośmider
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland.,Department of Cancer Biology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Zhang WX, Xiao CL, Li SY, Bai XC, Qi H, Tian H, Wang N, Yang B, Li XM, Sun Y. Streptococcus strain C17 T as a potential probiotic candidate to modulate oral health. Lett Appl Microbiol 2022; 74:901-908. [PMID: 35218013 DOI: 10.1111/lam.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
In the microbiome, probiotics modulate oral diseases. In this study, Streptococcus strain C17T was isolated from the oropharynx of a five-year-old healthy child, and its potential probiotic properties were analysed using human bronchial epithelial cells (16-HBE) used as an in vitro oropharyngeal mucosal model. The results demonstrated that the C17T strain showed tolerance to moderate pH ranges of 4-5 and 0.5-1% bile. However, it was more tolerant to 0.5% bile than 1% bile. It also demonstrated an ability to accommodate maladaptive oropharyngeal conditions (i.e., tolerating lysozyme at 200 μg mL-1) . It was also resistant to hydrogen peroxide at 0.8 mM . In addition, we found out that the strain possesses inhibitory activities against various common pathogenic bacteria. Furthermore, C17T was not cytotoxic to 16-HBE cells at different multiplicities of infection. Scanning electron microscopy disclosed that C17T adhesion to 16-HBE cells. Competition, exclusion, and displacement assays showed that it had good anti-adhesive effect against S. aureus. The present study revealed that Streptococcus strain C17T is a potentially efficacious oropharyngeal probiotic.
Collapse
Affiliation(s)
- Wen Xiao Zhang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Chun Ling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Shu Yin Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Xiao Cui Bai
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - He Qi
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Han Tian
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Nan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Biao Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Xin Ming Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| | - Ye Sun
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China
| |
Collapse
|
22
|
Jeon MS, Choi YY, Mo SJ, Ha JH, Lee YS, Lee HU, Park SD, Shim JJ, Lee JL, Chung BG. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. NANO CONVERGENCE 2022; 9:8. [PMID: 35133522 PMCID: PMC8825925 DOI: 10.1186/s40580-022-00299-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/07/2023]
Abstract
The intestinal microbiome affects a number of biological functions of the organism. Although the animal model is a powerful tool to study the relationship between the host and microbe, a physiologically relevant in vitro human intestinal system has still unmet needs. Thus, the establishment of an in vitro living cell-based system of the intestine that can mimic the mechanical, structural, absorptive, transport and pathophysiological properties of the human intestinal environment along with its commensal bacterial strains can promote pharmaceutical development and potentially replace animal testing. In this paper, we present a microfluidic-based gut model which allows co-culture of human and microbial cells to mimic the gastrointestinal structure. The gut microenvironment is recreated by flowing fluid at a low rate (21 μL/h) over the microchannels. Under these conditions, we demonstrated the capability of gut-on-a-chip to recapitulate in vivo relevance epithelial cell differentiation including highly polarized epithelium, mucus secretion, and tight membrane integrity. Additionally, we observed that the co-culture of damaged epithelial layer with the probiotics resulted in a substantial responded recovery of barrier function without bacterial overgrowth in a gut-on-a-chip. Therefore, this gut-on-a-chip could promote explorations interaction with host between microbe and provide the insights into questions of fundamental research linking the intestinal microbiome to human health and disease.
Collapse
Affiliation(s)
- Min Seo Jeon
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
23
|
Wang H, Zhang X, Chen Z, Hao G, Li G. Two Potential Probiotic Bacillus with Proteolytic Activity to Dietary Protein from Adult Feces. Biocontrol Sci 2022; 26:221-224. [PMID: 35034931 DOI: 10.4265/bio.26.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Two Bacillus strains were screened and identified using 16S rRNA gene sequencing the phenotypic tests, and then characterized in vitro for the probiotic characteristics. They were able to tolerate pH 2.5 for 2.5 h, following 0.3% bile salts and 0.1% pancreatin treatment for 5 h. They exhibited good ability to attach to intestinal epithelial cells and were susceptible to most of the antibiotics and being killed by several. Further and more important, they showed good proteolytic activity to food protein as gelatin and milk, with even higher activity than the reference strain. Thus, these two Bacillus strains are considered as potential proteolytic probiotic strains to food proteins.
Collapse
Affiliation(s)
- Haiqi Wang
- Marine Food and Bioengineering College, Jimei University
| | - Xichun Zhang
- Marine Food and Bioengineering College, Jimei University
| | - Zhaohua Chen
- Marine Food and Bioengineering College, Jimei University
| | - Gengxin Hao
- Marine Food and Bioengineering College, Jimei University
| | - Guiling Li
- Marine Food and Bioengineering College, Jimei University
| |
Collapse
|
24
|
Cheng J, Laitila A, Ouwehand AC. Bifidobacterium animalis subsp. lactis HN019 Effects on Gut Health: A Review. Front Nutr 2022; 8:790561. [PMID: 34970580 PMCID: PMC8712437 DOI: 10.3389/fnut.2021.790561] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal gut motility is central to bowel function and gut health. The link between the gut dysmotility related disorders and dysfunctional-intestinal barriers has led to a hypothesis that certain probiotics could help in normalizing gut motility and maintain gut health. This review investigates the roles of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019™) on gut health, and its mechanisms of action in various pre-clinical and clinical studies. Research supports the hypothesis that B. lactis HN019™ has a beneficial role in maintaining intestinal barrier function during gastrointestinal infections by competing and excluding potential pathogens via different mechanisms; maintaining normal tight junction function in vitro; and regulating host immune defense toward pathogens in both in vitro and human studies. This has been observed to lead to reduced incidence of diarrhea. Interestingly, B. lactis HN019™ also supports normal physiological function in immunosenescent elderly and competes and excludes potential pathogens. Furthermore, B. lactis HN019™ reduced intestinal transit time and increased bowel movement frequency in functional constipation, potentially by modulating gut–brain–microbiota axis, mainly via serotonin signaling pathway, through short chain fatty acids derived from microbial fermentation. B. lactis HN019™ is thus a probiotic that can contribute to relieving gut dysmotility related disorders.
Collapse
Affiliation(s)
- Jing Cheng
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arja Laitila
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arthur C Ouwehand
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
25
|
Yu Y, Zong M, Lao L, Wen J, Pan D, Wu Z. Adhesion properties of the cell surface proteins in Lactobacillus strains under the GIT environment. Food Funct 2022; 13:3098-3109. [DOI: 10.1039/d1fo04328e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacteria (LAB) play an essential role in the epithelial barrier and the gut immune system. It can antagonize pathogens by producing antimicrobial substances like bacteriocins, and compete with...
Collapse
|
26
|
Wen Fang Wu Wu J, Redondo-Solano M, Uribe L, WingChing-Jones R, Usaga J, Barboza N. First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ 2021; 9:e12437. [PMID: 34909269 PMCID: PMC8641478 DOI: 10.7717/peerj.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background Agro-industrial waste from tropical environments could be an important source of lactic acid bacteria (LAB) with probiotic potential. Methods Twelve LAB isolates were isolated from pineapple silages. The species identification was carried out considering 16S rRNA and pheS genes. Experiments to evaluate the probiotic potential of the isolates included survival under simulated gastrointestinal environment, in vitro antagonistic activity (against Salmonella spp. and Listeria monocytogenes), auto-aggregation assays, antibiotic susceptibility, presence of plasmids, adhesiveness to epithelial cells, and antagonistic activity against Salmonella in HeLa cells. Results Lacticaseibacillus paracasei, Lentilactobacillus parafarraginis, Limosilactobacillus fermentum, and Weissella ghanensis were identified. Survival of one of the isolates was 90% or higher after exposure to acidic conditions (pH: 2), six isolates showed at least 61% survival after exposure to bile salts. The three most promising isolates, based on survivability tests, showed a strong antagonistic effect against Salmonella. However, only L. paracasei_6714 showed a strong Listeria inhibition pattern; this isolate showed a good auto-aggregation ability, was resistant to some of the tested antibiotics but was not found to harbor plasmids; it also showed a high capacity for adhesion to epithelial cells and prevented the invasion of Salmonella in HeLa cells. After further in vivo evaluations, L. paracasei_6714 may be considered a probiotic candidate for food industry applications and may have promising performance in acidic products due to its origin.
Collapse
Affiliation(s)
| | - Mauricio Redondo-Solano
- Research Center for Tropical Diseases (CIET) and Food Microbiology Research and Training Laboratory (LIMA), College of Microbiology, University of Costa Rica (UCR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Lidieth Uribe
- Agronomic Research Center (CIA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Rodolfo WingChing-Jones
- Animal Science Department, Animal Nutrition Research Center (CINA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Jessie Usaga
- National Center for Food Science and Technology (CITA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Natalia Barboza
- Food Technology Department, National Center for Food Science and Technology (CITA), Center for Research in Cellular and Molecular Biology (CIBCM), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
27
|
Ramireddy L, Tsen HY, Chiang YC, Hung CY, Wu SR, Young SL, Lin JS, Huang CH, Chiu SH, Chen CC, Chen CC. Molecular Identification and Selection of Probiotic Strains Able to Reduce the Serum TMAO Level in Mice Challenged with Choline. Foods 2021; 10:foods10122931. [PMID: 34945482 PMCID: PMC8700464 DOI: 10.3390/foods10122931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Trimethylamine oxide (TMAO) originates from trimethylamine (TMA), which is oxidized in the liver by hepatic flavin-containing monooxygenases (FMO3). TMA is produced by its dietary precursors such as choline, carnitine, and phosphatidylcholine by gut microbiota. TMAO attracts attention, identified as a novel and independent risk factor for promoting obesity, atherosclerosis and cardiovascular disease (CVD), chronic kidney disease (CKD), insulin tolerance, and colon cancer. Probiotics have been considered as live microorganisms, providing benefits to their host when they are given in sufficient quantities and administered continuously. The objective of this study is to suggest a method to select potential probiotic strains to reduce the serum concentration of TMAO in mice fed with choline. In this work, we chose three lactobacilli with strong adherence capability, and fed multistrain formula (MF) to the mice challenged with choline. On days 7, 14, and day 28, it was found that the MF-containing L. amylovorus LAM1345, Lpb. plantarum LP1145, and Lim. fermentum LF33 showed a significant reduction in serum TMAO and TMA levels. For the single strains, LP1145 reduced TMAO on days 14 and 28, and strain LAM1345 reduced TMAO significantly on days 7 and day 14. For strain LF1143 from strain LF33, it showed no significant effect on TMAO and TMA. Thus, MF showed the best effect, which may be due to the additive and synergetic effect and the contribution of strain LP1145 and LAM1345. Finally, for the LAM1345 and LP1145 strains, we used molecular identification and typing methods to assure that these two strains are unique strains. The methods used for LAM 1345 were leader peptidase A (lepA) gene analysis and phylogenetic analysis, while for strain LP 1145and other strains of Lpb. plantarum subsp. plantarum sequences were compared using the whole-genome multilocus sequence typing (wgMLST) method.
Collapse
Affiliation(s)
- Latha Ramireddy
- Department of Food Science and Technology, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan;
- Correspondence: (L.R.); (H.-Y.T.); Tel.: +886-4-26318652 (ext. 5085) (H.-Y.T.); Fax: 886-4-26527731 (H.-Y.T.)
| | - Hau-Yang Tsen
- Department of Food Science and Technology, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan;
- Correspondence: (L.R.); (H.-Y.T.); Tel.: +886-4-26318652 (ext. 5085) (H.-Y.T.); Fax: 886-4-26527731 (H.-Y.T.)
| | - Yu-Chen Chiang
- Department of Food Nutrition and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Chen-Ying Hung
- Department of Internal Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu 310, Taiwan;
| | - Shih-Rong Wu
- Department of Food Science and Technology, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan;
| | - San-Land Young
- Culture Collection and Research Institute, Synbio Tech Inc., Kaohsiung 82151, Taiwan; (S.-L.Y.); (J.-S.L.)
| | - Jin-Seng Lin
- Culture Collection and Research Institute, Synbio Tech Inc., Kaohsiung 82151, Taiwan; (S.-L.Y.); (J.-S.L.)
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (C.-C.C.)
| | - Shih-Hau Chiu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (C.-C.C.)
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (C.-C.C.)
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| |
Collapse
|
28
|
Genomic Stability and Phenotypic Characteristics of Industrially Produced Lacticaseibacillus rhamnosus GG in a Yogurt Matrix. Appl Environ Microbiol 2021; 87:e0157521. [PMID: 34613788 DOI: 10.1128/aem.01575-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG is a widely marketed probiotic with well-documented probiotic properties. Previously, deletion of the mucus-adhesive spaCBA-srtC1 genes in dairy isolates was reported. In this study, we examined the genome preservation of industrially produced L. rhamnosus GG (DSM 33156) cofermented in yogurts. In total, DNA of 66 samples, including 60 isolates, was sequenced. Population samples and 59 isolates exhibited an intact genome. One isolate exhibited loss of spaCBA-srtC1. In addition, we examined phenotypes related to the probiotic properties of L. rhamnosus GG either from frozen pellets or cofermented in yogurt. L. rhamnosus GG from frozen pellets induced a response in intestinal barrier function in vitro, in contrast to frozen pellets of the starter culture. Yogurt matrix, containing only the starter culture, induced a response, but cofermentation with L. rhamnosus GG induced a higher response. Conversely, only the starter culture stimulated cytokine secretion in dendritic cells, and it was observed that the addition of L. rhamnosus GG to the starter culture reduced the response. We conclude that the L. rhamnosus GG genome is preserved in yogurt and that common in vitro probiotic effects of L. rhamnosus GG are observed when examined in the yogurt matrix. IMPORTANCE Lacticaseibacillus rhamnosus GG is a well-documented probiotic strain recognized for its high acid and bile tolerance and properties of adhesion to enterocytes and mucus. The strain exhibits SpaCBA pili, which have been demonstrated to play an important role in adhesion and therefore are relevant for persistence in the gastrointestinal tract. Recently we demonstrated that the genome and phenotypes of L. rhamnosus GG are preserved throughout an industrial production pipeline. However, as gene deletions in L. rhamnosus GG were previously reported for isolates from dairy products, a key question on the genomic stability of L. rhamnosus GG in a yogurt matrix remained. The aim of this study was to analyze genome stability and phenotypic characteristics of L. rhamnosus GG in yogurt. We found that the genome of L. rhamnosus GG is well conserved when the organism is cofermented in yogurt. Some phenotypic characteristics are consistent in all product matrixes, while other characteristics are modulated.
Collapse
|
29
|
Mladenović KG, Grujović MŽ, Kiš M, Furmeg S, Tkalec VJ, Stefanović OD, Kocić-Tanackov SD. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Appl Microbiol Biotechnol 2021; 105:8615-8627. [PMID: 34731280 DOI: 10.1007/s00253-021-11655-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
There has been a growing interest in traditional dairy (such as raw milk cheeses) and meat products, in recent years. However, these products are suitable and nutrient medium and may be easily contaminated by microorganisms such as Enterobacteriaceae. Enterobacteriaceae are considered to be the indicator bacteria for microbiological quality of food and hygiene status of a production process. Additionally, the food contaminated by Enterobacteriaceae poses a microbiological risk for consumers. In fact, the contamination of raw milk and meat by Enterobacteriaceae amid manufacturing may easily occur from various environmental sources, and this group of bacteria is frequently detected in dairy and meat products. Therefore, monitoring the microbiological quality of the used raw material and maintaining high standards of hygiene in the production process are mandatory for a high quality of traditional products and the safety of the potential consumers. The goal of this review is to present the most recent survey on Enterobacteriaceae growth, number, and distribution in raw milk cheeses and meat, as well as to discuss the sources of contamination and methods of control. KEY POINTS: • Enterobacteriaceae: role and importance in milk and meat products, EU legal regulations • Dynamics, distribution, and survival of Enterobacteriaceae in milk and meat • Mechanisms of control of Enterobacteriaceae in dairy products.
Collapse
Affiliation(s)
- K G Mladenović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Republic of Serbia. .,Institute for Information Technologies, Department of Science, University of Kragujevac, JovanaCvijica Bb, 34000, Kragujevac, Republic of Serbia.
| | - M Ž Grujović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Republic of Serbia.,Institute for Information Technologies, Department of Science, University of Kragujevac, JovanaCvijica Bb, 34000, Kragujevac, Republic of Serbia
| | - M Kiš
- Laboratory for Food and Feed Microbiology, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260, Križevci, Croatia
| | - S Furmeg
- Laboratory for Food and Feed Microbiology, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260, Križevci, Croatia
| | - V Jaki Tkalec
- Laboratory for Food and Feed Microbiology, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260, Križevci, Croatia
| | - O D Stefanović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Republic of Serbia
| | - S D Kocić-Tanackov
- Faculty of Technology, University in Novi Sad, Cara Lazara 1, 21000, Novi Sad, Republic of Serbia
| |
Collapse
|
30
|
JIANG Q, XU N, KONG L, WANG M, LEI H. Promoting effects of 6-Gingerol on probiotic adhesion to colonic epithelial cells. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.17420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qian JIANG
- Nanjing University of Finance and Economics, China
| | - Na XU
- Nanjing University of Finance and Economics, China
| | - Lingyan KONG
- Nanjing University of Finance and Economics, China
| | - Mengxi WANG
- Nanjing University of Finance and Economics, China
| | - Hong LEI
- Nanjing University of Finance and Economics, China
| |
Collapse
|
31
|
Potential probiotic lactic acid bacteria isolated from fermented gilaburu and shalgam beverages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Dowdell P, Chankhamhaengdecha S, Panbangred W, Janvilisri T, Aroonnual A. Probiotic Activity of Enterococcus faecium and Lactococcus lactis Isolated from Thai Fermented Sausages and Their Protective Effect Against Clostridium difficile. Probiotics Antimicrob Proteins 2021; 12:641-648. [PMID: 30888623 PMCID: PMC7306037 DOI: 10.1007/s12602-019-09536-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactic acid bacteria, Enterococcus faecium and Lactococcus lactis, previously isolated from Thai fermented sausages were elucidated their probiotic properties especially in the control of Clostridium difficile 630. Both isolates survived in simulated gastric solution at pH 3 followed in simulated intestinal solution at pH 8. The presence of skimmed milk also helped the bacteria to survive through acidic and alkaline in gastrointestinal conditions. The adhesion properties of both isolates were tested using a human colon adenocarcinoma cell line. The result showed that both isolates exhibited desirable probiotic properties which adhered to Caco-2 cells. The neutralized cell-free supernatant of both isolates demonstrated that no cytotoxicity toward Caco-2 cells vice versa cell-free supernatant of C. difficile 630 toward Caco-2 cell demonstrated high toxicity. The immunomodulation effect in response to bacterial neutralized cell-free supernatant and cell-free supernatant was also studied. The expression level of pro-inflammatory cytokine of Caco-2 cell which are tumor necrosis factor-α and interleukin-8 was evaluated using quantitative reverse transcriptase PCR. Both isolates were able to diminish the expression level of TNF-α and IL-8 induced by the cell-free supernatant of C. difficile 630. Hence, these isolates would be able to improve the gut health through counteracting the C. difficile-associated intestinal inflammation in human cell lines. These results may contribute to the development of the isolates using as probiotics.
Collapse
Affiliation(s)
- Panya Dowdell
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Amornrat Aroonnual
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
33
|
Isolation and phenotypic and genotypic characterization of the potential probiotic strains of Lactobacillus from the Iranian population. New Microbes New Infect 2021; 43:100913. [PMID: 34381617 PMCID: PMC8334737 DOI: 10.1016/j.nmni.2021.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Among different causes of inflammatory bowel disease (IBD), the imbalance of the gut microbiome (dysbiosis) is one of the main reasons for the development of the disease. Probiotics are live microorganisms that can maintain gut microbiota by different mechanisms. We aimed to isolate and characterize the potential probiotic strains of Lactobacillus from the Iranian population. This cross-sectional study was conducted on faecal samples of 83 volunteer individuals living in Guilan Province, North Iran. The primary identification of Lactobacillus strains was performed by standard microbiological tests and confirmed by amplification of 16s rRNA specific primers. The acid and bile salt tolerance were assessed for all recovered strains. Also, the presence of 3 bacteriocins encoding genes was investigated by the PCR method. Totally, 42 samples were positive for Lactobacillus species. Acid and bile resistance assay showed that 67% and 33% of strains were resistant to acid and bile salt stress, respectively. Therefore, we found out that 28% of our Lactobacillus strains have the ability for resistance to acid and bile conditions. PCR results revealed that the prevalence of gassericin A, plantaricin S, lactacin bacteriocin genes were 16.6%, 12%, and 9.5%, respectively. Meanwhile, 5 out of 12 Lactobacillus strains that were resistant to acid and bile conditions contained one of the gassericin or plantaricin bacteriocins. We isolated 42 potential probiotic strains of Lactobacillus, of which the results of 5 strains were more promising and can be considered as potential probiotics sources for future functional products.
Collapse
|
34
|
Yahfoufi N, Alsadi N, Mallet JF, Kulshreshtha G, Hincke M, Ismail N, Matar C. Immunomodulation and Intestinal Morpho-Functional Aspects of a Novel Gram-Negative Bacterium Rouxiella badensis subsp. acadiensis. Front Microbiol 2021; 12:569119. [PMID: 34239502 PMCID: PMC8258396 DOI: 10.3389/fmicb.2021.569119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
A novel bacterium (Rouxiella badensis subsp. acadiensis) isolated from the microbiota of wild blueberry fruit was investigated for its immunomodulation capabilities and intestinal morpho-functional aspects. The whole-genome shotgun sequencing of this bacterium led to its new taxonomy and showed absence of pathogenicity genes. Although the bacterium was used for blueberry-fermentation and enhancing its anti-inflammatory effects on neurodegeneration, diabetes, and cancer, no study has assessed the effect of the bacterium on health. In this study, we used several in vitro and in vivo assays to evaluate the interaction of R. badensis subsp. acadiensis with the intestinal mucosa and its impact on the localized immune response. The strain antibiotic susceptibility has been investigated as well as its tolerance to gastric and intestinal environment and ability to attach to human intestinal epithelial cells (Caco-2 and HT-29). In addition, Balb/c mice were used to explore the immune-modulatory characteristics of the live bacterium at the intestinal level and its impact on the morpho-functional aspects of the intestinal mucosa. In vitro assays revealed the ability of R. badensis subsp. acadiensis to survive the gastric and intestinal simulated conditions and to satisfactorily adhere to the human intestinal epithelial cells. The bacterium was shown to be sensitive to an array of antibiotics. Immuno-modulation studies with mice orally administered with R. badensis subsp. acadiensis showed a higher number of IgA positive cells in the small intestine, a higher concentration of the anti-inflammatory cytokine IL-10 in the intestinal mucosa, as well as an increase in the number of goblet cells. The anti-inflammatory cytokine miR146a was found to be increased in the ileum and brain. Furthermore, it increases the number of goblet cells which contribute to intestinal barrier integrity. Taken together, our findings reflect the ability of the tested bacterium to modulates the intestinal homeostasis and immune response. Detailed safety unpublished studies and genome data support our finding. The strain Rouxiella badensis subsp. acadiensis has been filed in a provisional patent; a U.S. Provisional Application No. 62/916,921 entitled "Probiotics Composition and Methods." Future studies are still needed to validate the potential utilization of this strain as functional food and its potential probiotic effect.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean Francois Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Innovation in Medical education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Rodríguez-Sorrento A, Castillejos L, López-Colom P, Cifuentes-Orjuela G, Rodríguez-Palmero M, Moreno-Muñoz JA, Luise D, Trevisi P, Martín-Orúe SM. Effects of the Administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and Their Synbiotic Combination With Galacto-Oligosaccharides Against Enterotoxigenic Escherichia coli F4 in an Early Weaned Piglet Model. Front Microbiol 2021; 12:642549. [PMID: 33935999 PMCID: PMC8086512 DOI: 10.3389/fmicb.2021.642549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
We evaluated the potential of multi-strain probiotic (Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001) with or without galacto-oligosaccharides against enterotoxigenic Escherichia coli (ETEC) F4 infection in post-weaning pigs. Ninety-six piglets were distributed into 32 pens assigned to five treatments: one non-challenged (CTR+) and four challenged: control diet (CTR-), with probiotics (>3 × 1010 CFU/kg body weight each, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week, animals were orally inoculated with ETEC F4. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized and samples from blood, digesta, and tissues collected. Microbiological counts, ETEC F4 real-time PCR (qPCR) quantification, fermentation products, serum biomarkers, ileal histomorphometry, and genotype for mucin 4 (MUC4) polymorphism were determined. Animals in the PRO group had similar enterobacteria and coliform numbers to the CTR+ group, and the ETEC F4 prevalence, the number of mitotic cells at day 4 PI, and villus height at day 8 PI were between that observed in the CTR+ and CTR- groups. The PRO group exhibited reduced pig major acute-phase protein (Pig-MAP) levels on day 4 PI. The PRE diet group presented similar reductions in ETEC F4 and Pig-MAP, but there was no effect on microbial groups. The SYN group showed reduced fecal enterobacteria and coliform counts after the adaptation week but, after the inoculation, the SYN group showed lower performance and more animals with high ETEC F4 counts at day 8 PI. SYN treatment modified the colonic fermentation differently depending on the MUC4 polymorphism. These results confirm the potential of the probiotic strains and the prebiotic to fight ETEC F4, but do not show any synergy when administered together, at least in this animal model.
Collapse
Affiliation(s)
- Agustina Rodríguez-Sorrento
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Castillejos
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Paola López-Colom
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Susana María Martín-Orúe
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
36
|
Kim S, Hong SP, Lim SD. Physiological Characteristics and Anti-Diabetic Effect of Pediococcus pentosaceus KI62. Food Sci Anim Resour 2021; 41:274-287. [PMID: 33987548 PMCID: PMC8115008 DOI: 10.5851/kosfa.2020.e99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study is to examine the physiological characteristics and anti-diabetic effects of Pediococcus pentosaceus KI62. The α-amylase and α-glucosidase inhibitory activity of P. pentosaceus KI62 was 94.86±3.30% and 98.59±0.52%, respectively. In MRS broth containing 3% maltodextrin inoculated by P. pentosaceus KI62, the amounts of short chain fatty acids (SCFA) were propionic acid 18.05±1.85 mg/kg, acetic acid 1.12±0.07 g/100 mL, and butyric acid 2.19±0.061 g/kg, and those of medium chain fatty acids (MCFA) were C8 0.262±0.031 mg/kg, C10 0.279±0.021 mg/kg, and C12 0.203±0.009 mg/kg. Compared to sixteen antibiotics, P. pentosaceus KI62 had the highest sensitivity to penicillin-G and rifampicin, as well as the highest resistance to vancomycin and ampicillin. The strain also showed higher leucine arylamidase and valine arylamidase activities than other enzyme activities, but it did not produce β-glucuronidase which is carcinogenic enzymes. The survival rate of P. pentosaceus KI62 in 0.3% bile was 91.67%. Moreover, the strain showed a 98.63% survival rate in pH 2.0. P. pentosaceus KI62 exhibits resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus at rates of 29.41%, 38.10%, 51.72%, and 50.47%, respectively. P. pentosaceus (23.31%) showed a similar adhesion ability to L. rhamnosus GG, the positive control (24.49%). These results show that P. pentosaceus KI62 has possibility as a probiotic with anti-diabetic effects.
Collapse
Affiliation(s)
- Seulki Kim
- Korea Food Research
Institute, Wanju 55365, Korea
| | | | | |
Collapse
|
37
|
Suppressive Effects of the Gynura bicolor Ether Extract on Endothelial Permeability and Leukocyte Transmigration in Human Endothelial Cells Induced by TNF- α. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:9413724. [PMID: 33425001 PMCID: PMC7772037 DOI: 10.1155/2020/9413724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 11/25/2022]
Abstract
Gynura bicolor (Roxb. and Willd.) DC (G. bicolor) is generally used as a dietary vegetable and traditional herb in Taiwan and the Far East. G. bicolor exerts antioxidant and anti-inflammatory effects and regulates blood lipids and cholesterol. However, the effects of G. bicolor on endothelial transmigration and atherosclerosis are not clear. The present study investigated the effects of G. bicolor on endothelial permeability and transmigration in human endothelial cells. We prepared G. bicolor ether extract (GBEE) for use as the experimental material. Under TNF-α stimulation, HL-60 cell adherence to EA.hy926 cells, the shape of EA.hy926 cells, and the expression of adhesion molecules and transmigration-related regulatory molecules were analysed after pretreatment with GBEE for 24 h. GBEE inhibited leukocyte adhesion to endothelial cells, reduced intercellular adhesion molecule-1 (ICAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) expressions, and decreased endothelial monolayer permeability. GBEE also reduced paracellular transmigration by reducing the levels of reactive oxygen species (ROS), Src phosphorylation, and vascular endothelial-cadherin (VE-cadherin) phosphorylation. GBEE reduced transcellular migration via inhibition of Ras homolog family member A (RhoA) and Rho-associated protein kinase (ROCK) expression and phosphorylation of the ezrin-radixin-moesin (ERM) protein. Incubation of EA.hy926 cells with GBEE for 8 h and stimulation with TNF-α for 3 h reduced the phosphorylation of the inhibitor of kappa B (IĸB) and DNA-binding activity of nuclear factor-ĸB (NF-ĸB). These results suggest that GBEE has a protective effect against endothelial dysfunction via suppression of leukocyte-endothelium adhesion and transmigration.
Collapse
|
38
|
Zhao R, Lu Y, Ran J, Li G, Lei S, Zhu Y, Xu B. Purification and characterization of bacteriocin produced by Lactobacillus rhamnosus zrx01. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100754] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Huang E, Kim S, Park H, Park S, Ji Y, Todorov SD, Lim SD, Holzapfel WH. Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus Plantarum KC28 in a Diet-Induced Obesity Murine Model. Probiotics Antimicrob Proteins 2020; 13:677-697. [PMID: 33188637 DOI: 10.1007/s12602-020-09720-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
Lactobacillus plantarum KC28 showed a beneficial (anti-obesity) effect in a diet-induced obese (DIO) C57BL/6 murine model receiving an intermediate high-fat diet (IF). This diet was selected for probiotic studies by prior comparisons of different combinations of basic (carbohydrate, protein and fat) components for optimized induction of dietary obesity in a murine model. Prior selection of Lact. plantarum strain KC28 was based on different physiological tests for safety and functionality including cell line adhesion and anti-adipogenic activity. The strain was administered at 5.0 × 109 CFU/mouse/day to the DIO mice (control mice received a normal diet). The anti-obesity effect of KC28 and the well-known probiotic strains Lact. rhamnosus GG (LGG) and Lact. plantarum 299v was assessed over 12 weeks. Xenical served as anti-obesity control. The high-fat diet groups receiving strains KC28 and LGG and the control Xenical group showed significant weight loss and notable changes in some obesity-related biomarkers in the liver (significant up-regulation of PGC1-α and CPT1-α only by KC28; p < 0.05) and mesenteric adipose tissue (significant down-regulation of ACOX-1, PPAR-γ, and FAS; KC28 p < 0.001 for PPAR-γ and FAS), compared with the IF control. Favourable changes in the studied biomarkers suggest a similar beneficial influence of Lact. plantarum KC28 on the alleviation of obesity comparable with that of the two well-studied probiotic strains, LGG and 299v. This probably resulted from a modulation in the cecal microbiota of the IF group by either probiotic strain, yet in a different manner, showing a highly significant increase in the families Desulfovibrionaceae and Lactobacillaceae only in the group receiving Lact. plantarum KC28.
Collapse
Affiliation(s)
- Eunchong Huang
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea
| | - Seulki Kim
- Korea Food Research Institute, Wanju, 55365, South Korea
| | - Haryung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Svetoslav Dimitrov Todorov
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea
| | - Sang-Dong Lim
- Korea Food Research Institute, Wanju, 55365, South Korea
| | - Wilhelm Heinrich Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea. .,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea.
| |
Collapse
|
40
|
Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb Pathog 2020; 147:104420. [DOI: 10.1016/j.micpath.2020.104420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
|
41
|
The intervention effects of Lactobacillus casei LC2W on Escherichia coli O157:H7 -induced mouse colitis. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Myneni SR, Brocavich K, Wang H. Biological strategies for the prevention of periodontal disease: Probiotics and vaccines. Periodontol 2000 2020; 84:161-175. [DOI: 10.1111/prd.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Srinivas Rao Myneni
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Kristen Brocavich
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Howard Wang
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| |
Collapse
|
43
|
Pazhoohan M, Sadeghi F, Moghadami M, Soltanmoradi H, Davoodabadi A. Antimicrobial and antiadhesive effects of Lactobacillus isolates of healthy human gut origin on Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC). Microb Pathog 2020; 148:104271. [PMID: 32835777 DOI: 10.1016/j.micpath.2020.104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Diarrhea is one of the five leading causes of mortality in children under the age of five, especially in developing countries. Nowadays, by increasing the resistance of pathogens to antibiotics, employment of probiotics as novel therapeutic method, could be considered as a necessity.The aim of this study was to examine the features and antagonistic action of Lactobacillus strains, against the growth and adhesion of Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC) strains creating diarrhea in children. Then, we introduced new strains of Lactobacillus as probiotic candidates, to prevent diarrheal infections in children. METHODS Stool samples were collected from healthy individuals, and Lactobacillus strains were isolated. The antimicrobial effect of the isolates against ETEC and EAEC strains investigated by agar well diffusion method and their resistance to acidic and bile conditions. The potency of selected isolates in adhesion to HT-29 epithelial cells and their ability to inhibit the adhesion of ETEC and EAEC strains to this cell were measured. At the end, identification of the optimally efficient Lactobacillus isolates was performed by 16S rDNA sequencing and making Phylogenetic tree using MEGA (version 4.0) software. RESULTS In total, 157 isolates suspected to Lactobacillus were isolated from 115 stool samples. In antimicrobial activity test, ETEC and EAEC growth was inhibited by 132 and 84 isolates respectively, while 17 isolates showed resistance to Bile. Of 17 Bile resistant Lactobacillus isolates, 15 isolates were resistant to pH: 3.2. Further, among 15 isolates, only two isolates, were resistant to pH: 2.5. In the adhesion assay, five isolates had more adhesion tendency to HT-29 epithelial cells than L. rhamnosus GG, which was considered as a positive control. Investigation of isolates that inhibit adhesion of ETEC and EAEC strains to HT-29 cells showed that four isolates were able to inhibit ETEC adhesion. However, only one out of four isolates was relatively able to have an impact on EAEC adhesion. CONCLUSION In conclusion, three species of Lactobacillus including L. paracasei (two strain), L. fermentum (two strain) and L. plantarum showed good probiotic properties compared to other isolates that were identified by sequencing. In this study, strain L. fermentum 61.1 had the highest adhesion ability to HT-29 cells and strain L. paracasei 47.2 had the highest potency to inhibit ETEC adhesion to HT-29 cells. These isolates have good probiotic properties and are likely to be effective in preventing or treating diarrheal infections, especially in children.
Collapse
Affiliation(s)
- Maryam Pazhoohan
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Farzin Sadeghi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Morteza Moghadami
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Soltanmoradi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Davoodabadi
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran; Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
44
|
|
45
|
Mohebali N, Ekat K, Kreikemeyer B, Breitrück A. Barrier Protection and Recovery Effects of Gut Commensal Bacteria on Differentiated Intestinal Epithelial Cells In Vitro. Nutrients 2020; 12:nu12082251. [PMID: 32731411 PMCID: PMC7468801 DOI: 10.3390/nu12082251] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Alterations in the gut microbiota composition play a crucial role in the pathogenesis of inflammatory bowel disease (IBD) as specific commensal bacterial species are underrepresented in the microbiota of IBD patients. In this study, we examined the therapeutic potential of three commensal bacterial species, Faecalibacterium prausnitzii (F. prausnitzii), Roseburia intestinalis (R. intestinalis) and Bacteroides faecis (B. faecis) in an in vitro model of intestinal inflammation, by using differentiated Caco-2 and HT29-MTX cells, stimulated with a pro-inflammatory cocktail consisting of interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), and lipopolysaccharide (LPS). Results obtained in this work demonstrated that all three bacterial species are able to recover the impairment of the epithelial barrier function induced by the inflammatory stimulus, as determined by an amelioration of the transepithelial electrical resistance (TEER) and the paracellular permeability of the cell monolayer. Moreover, inflammatory stimulus increased claudin-2 expression and decreased occludin expression were improved in the cells treated with commensal bacteria. Furthermore, the commensals were able to counteract the increased release of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) induced by the inflammatory stimulus. These findings indicated that F. prausnitzii, R. intestinalis and B. faecis improve the epithelial barrier integrity and limit inflammatory responses.
Collapse
|
46
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
47
|
Lashani E, Davoodabadi A, Soltan Dallal MM. Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:121-126. [PMID: 32782740 PMCID: PMC7413009 DOI: 10.30466/vrf.2018.90418.2188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/29/2018] [Indexed: 01/28/2023]
Abstract
Lactobacilli commonly used as a probiotic and they can be isolated from various sources such as fermented foods and gastrointestinal tracts of humans and animals. The aims of this study were isolation and identification of lactobacilli from honey and investigation of some probiotic properties and antimicrobial effects against foodborne bacterial pathogens. A total of 88 honey samples were collected from different areas in Iran. About 1.00 g of each honey was cultured in de Man, Rogosa, and Sharpe (MRS) broth and then sub-cultured on MRS agar. The isolates were assessed for probiotic potentials such as tolerance to acid and bile. Then, antimicrobial activity of isolates against seven foodborne pathogens including Listeria monocytogenes, Shigellaflexneri, Staphylococcus aureus, Salmonellaenteritidis, Enteropathogenic Escherichiacoli, Escherichiacoli O157 H7 and Bacilluscereus was investigated. From 88 honey samples, 39 isolates were identified by 16S rDNA gene sequencing method. Fructophilic lactic acid bacteria (FLAB) with 29 (74.00%) isolates were dominant identified bacteria (27 L. kunkeei and two Fructobacillus fructosus). Also, four L. plantarum, two L. paracasei, one L. brevis, one L. rhamnosus, one L. casei and one L. fermentum were identified. Two L. kunkeei isolates and one F. fructosus isolate were resistant to acid and bile salt. Two L. rhamnosus isolates and one L. paracasei isolate inhibited all pathogens (100%). This is the first study in Iran that isolated lactobacilli from honey. The FLAB especially L. kunkeei were isolated as dominated species from honey. Some lactobacilli isolates have probiotic potential and may be useful for the prevention and treatment of infections, but more investigations are needed.
Collapse
Affiliation(s)
- Elahe Lashani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Davoodabadi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mehdi Soltan Dallal
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Liang C, Guo M, Liu T, Zhou X, Gong P, Lyu L, Niu H, Wu Y, Chen S, Han X, Zhang L. Profiles of gut microbiota in children with obesity from Harbin, China and screening of strains with anti‐obesity ability
in vitro
and
in vivo. J Appl Microbiol 2020; 129:728-737. [PMID: 32162449 DOI: 10.1111/jam.14639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023]
Affiliation(s)
- C. Liang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - M. Guo
- Department of Adolescent Medical Clinic Harbin Children's Hospital Harbin China
| | - T. Liu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - X. Zhou
- Qingdao Central Hospital Qingdao China
| | - P. Gong
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - L. Lyu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - H. Niu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Y. Wu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - S. Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - X. Han
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - L. Zhang
- College of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
49
|
Bhat MI, Kapila S, Kapila R. Lactobacillus fermentum (MTCC-5898) supplementation renders prophylactic action against Escherichia coli impaired intestinal barrier function through tight junction modulation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Salehizadeh M, Modarressi MH, Mousavi SN, Tajabadi Ebrahimi M. Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and its in vitro competitive activity against Salmonella typhimurium. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:67-75. [PMID: 32537109 PMCID: PMC7282224 DOI: 10.30466/vrf.2018.84395.2110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/25/2018] [Indexed: 01/16/2023]
Abstract
The efficacy of probiotics as alternatives to antibiotics has been defined as one of the potential strategies to prevent Salmonella spp. infection in poultry. The purpose of this study was to isolate probiotic native Lactic acid bacteria (LAB) with high compatibility to intestinal tract and prevention of Salmonella typhimurium from broiler chicken feces. Thirty-seven samples of chicken feces were collected from seven broiler chicken farms in Northern Iran. The isolates identification was carried out with morphological and biochemical tests. Agar diffusion methods were used to evaluate the antimicrobial activities against Escherichia coli and S. typhimurium. The primary probiotic characteristics such as resistance to acid and bile and adhesion to Caco-2 cells were studied. Indeed, the ability of LAB isolates to inhibit adhesion of S. typhimurium to Caco-2 cells was evaluated by exclusion, competition and displacement assays. Among 42 isolates, S08, S01 and S06 isolates which showed appropriate probiotics characteristics were selected. Isolates S08 and S01 showed to be able to adhere strongly and also S06 was adhered moderately. In the exclusion assay, the isolates S08, S01 and S06 significantly hampered adhesion of S. typhimurium cell, in the competition assay, the isolates S08, S01 showed significant level of competition activity against S. typhimurium adherence to Caco-2 cells and isolate S08 showed the greatest displacement activity. The 16S rDNA sequence revealed that S08, S01, and S06 isolates were 99.00% similar to Lactobacillus salivarius, Lactobacillus johnsonii, and Pediococcus acidilactici, respectively. The result of this study suggested that LAB isolated from broiler chicken feces could be a remarkable reservoir for identification of probiotic to inhibit the pathogenic bacteria growth.
Collapse
Affiliation(s)
- Mandana Salehizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Naser Mousavi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Maryam Tajabadi Ebrahimi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|