1
|
Petit N, Gomes A, Chang YYJ, Da Silva J, Leal EC, Carvalho E, Gomes P, Browne S. Development of a bioactive hyaluronic acid hydrogel functionalised with antimicrobial peptides for the treatment of chronic wounds. Biomater Sci 2025. [PMID: 40331923 DOI: 10.1039/d5bm00567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chronic wounds present significant clinical challenges due to delayed healing and high infection risk. This study presents the development and characterisation of acrylated hyaluronic acid (AcHyA) hydrogels functionalised with gelatin (G) and the antimicrobial peptide (AMP) PP4-3.1 to enhance cellular responses while providing antimicrobial activity. AcHyA-G and AcHyA-AMP hydrogels were formed via thiol-acrylate crosslinking, enabling in situ AcHyA hydrogel formation with stable mechanical properties across varying gelatin concentrations. Biophysical characterisation of AcHyA-G hydrogels showed rapid gelation, elastic behaviour, uniform mesh size, and consistent molecular diffusion across all formulations. Moreover, the presence of gelatin enhanced stability without affecting the hydrogel's degradation kinetics. AcHyA-G hydrogels supported the adhesion and spreading of key cell types involved in wound repair (dermal fibroblasts and endothelial cells), with 0.5% gelatin identified as the optimal effective concentration. Furthermore, the conjugation of the AMP conferred bactericidal activity against Staphylococcus aureus and Escherichia coli, two of the most prevalent bacterial species found in chronically infected wounds. These results highlight the dual function of AcHyA-AMP hydrogels in promoting cellular responses and antimicrobial activity, offering a promising strategy for chronic wound treatment. Further in vivo studies are needed to evaluate their efficacy, including in diabetic foot ulcers.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Ana Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Portugal
| | - Yu-Yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Jessica Da Silva
- University of Coimbra, Institute of Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), 3004-504 Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C Leal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Portugal
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Hu C, Zhang Y, Pang X, Chen X. Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412185. [PMID: 39552002 DOI: 10.1002/adma.202412185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Poly(lactic acid) (PLA) is a representative biobased and biodegradable aliphatic polyester and a front-runner among sustainable materials. As a semicrystalline thermoplastic, PLA exhibits excellent mechanical and physical properties, attracting considerable attention in commodity and medical fields. Stereochemistry is a key factor affecting PLA's properties, and to this end, the engineering of PLA's microstructure for tailored material properties has been an active area of research over the decade. This Review first covers the basic structural variety of PLA. A perspective on the current states of stereocontrolled synthesis as well as the relationships between the structures and properties of PLA stereosequences are included, with an emphasis on record regularity and properties. At last, state-of-the-art examples of high-performance PLA-based materials within an array of applications are given, including packaging, fibers, and textiles, healthcare and electronic devices. Among various stereo-regular sequences of PLA, poly(L-lactic acid) (PLLA) is the most prominent category and has myriad unique properties and applications. In this regard, cutting-edge applications of PLLA are mainly overviewed in this review. At the same time, new materials developed based on other PLA stereosequences are highlighted, which holds the potential to a wide variety of PLA-based sustainable materials.
Collapse
Affiliation(s)
- Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
4
|
Zhong L, Banigo AT, Zoetebier B, Karperien M. Bioactive Hydrogels Based on Tyramine and Maleimide Functionalized Dextran for Tissue Engineering Applications. Gels 2024; 10:566. [PMID: 39330167 PMCID: PMC11431488 DOI: 10.3390/gels10090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels are widely used in tissue engineering due to their ability to form three-dimensional (3D) structures that support cellular functions and mimic the extracellular matrix (ECM). Despite their advantages, dextran-based hydrogels lack intrinsic biological activity, limiting their use in this field. Here, we present a strategy for developing bioactive hydrogels through sequential thiol-maleimide bio-functionalization and enzyme-catalyzed crosslinking. The hydrogel network is formed through the reaction of tyramine moieties in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), allowing for tunable gelation time and stiffness by adjusting H2O2 concentrations. Maleimide groups on the hydrogel backbone enable the coupling of thiol-containing bioactive molecules, such as arginylglycylaspartic acid (RGD) peptides, to enhance biological activity. We examined the effects of hydrogel stiffness and RGD concentration on human mesenchymal stem cells (hMSCs) during differentiation and found that hMSCs encapsulated within these hydrogels exhibited over 88% cell viability on day 1 across all conditions, with a slight reduction to 60-81% by day 14. Furthermore, the hydrogels facilitated adipogenic differentiation, as evidenced by positive Oil Red O staining. These findings demonstrate that DexTA-Mal hydrogels create a biocompatible environment that is conducive to cell viability and differentiation, offering a versatile platform for future tissue engineering applications.
Collapse
Affiliation(s)
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (L.Z.); (A.T.B.); (B.Z.)
| |
Collapse
|
5
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Ohya Y, Yoshida Y, Kumagae T, Kuzuya A. Gelation upon the Mixing of Amphiphilic Graft and Triblock Copolymers Containing Enantiomeric Polylactide Segments through Stereocomplex Formation. Gels 2024; 10:139. [PMID: 38391469 PMCID: PMC10887654 DOI: 10.3390/gels10020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Biodegradable injectable polymer (IP) systems that form hydrogels in situ when injected into the body have considerable potential as medical materials. In this paper, we report a new two-solution mixed biodegradable IP system that utilizes the stereocomplex (SC) formation of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA). We synthesized triblock copolymers of PLLA and poly(ethylene glycol), PLLA-b-PEG-b-PLLA (tri-L), and a graft copolymer of dextran (Dex) attached to a PDLA-b-PEG diblock copolymer, Dex-g-(PDLA-b-PEG) (gb-D). We found that a hydrogel can be obtained by mixing gb-D solution and tri-L solution via SC formation. Although it is already known that graft copolymers attached to enantiomeric PLLA and PDLA chains can form an SC hydrogel upon mixing, we revealed that hydrogels can also be formed by a combination of graft and triblock copolymers. In this system (graft vs. triblock), the gelation time was shorter, within 1 min, and the physical strength of the resulting hydrogel (G' > 100 Pa) was higher than when graft copolymers were mixed. Triblock copolymers form micelles (16 nm in diameter) in aqueous solutions and hydrophobic drugs can be easily encapsulated in micelles. In contrast, graft copolymers have the advantage that their molecular weight can be set high, contributing to improved mechanical strength of the obtained hydrogel. Various biologically active polymers can be used as the main chains of graft copolymers, and chemical modification using the remaining functional side chain groups is also easy. Therefore, the developed mixing system with a graft vs. triblock combination can be applied to medical materials as a highly convenient, physically cross-linked IP system.
Collapse
Affiliation(s)
- Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
- Kansai University Medical Polymer Research Center (KUMP-RC), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Yasuyuki Yoshida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Taiki Kumagae
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
- Kansai University Medical Polymer Research Center (KUMP-RC), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| |
Collapse
|
7
|
Nguyen UN, Lee FS, Caparaso SM, Leoni JT, Redwine AL, Wachs RA. Type I collagen concentration affects neurite outgrowth of adult rat DRG explants by altering mechanical properties of hydrogels. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:164-189. [PMID: 37847579 PMCID: PMC11611068 DOI: 10.1080/09205063.2023.2272479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Type I collagen is a predominant fibrous protein that makes up the extracellular matrix. Collagen enhances cell attachment and is commonly used in three-dimensional culture systems, to mimic the native extracellular environment, for primary sensory neurons such as dorsal root ganglia (DRG). However, the effects of collagen concentration on adult rat DRG neurite growth have not been assessed in a physiologically relevant, three-dimensional culture. This study focuses on the effects of type I collagen used in a methacrylated hyaluronic acid (MAHA)-laminin-collagen gel (triple gel) on primary adult rat DRG explants in vitro. DRGs were cultured in triple gels, and the neurite lengths and number of support cells were quantified. Increased collagen concentration significantly reduced neurite length but did not affect support cell counts. Mechanical properties, fiber diameter, diffusivity, and mesh size of the triple gels with varying collagen concentration were characterized to further understand the effects of type I collagen on hydrogel property that may affect adult rat DRG explants. Gel stiffness significantly increased as collagen concentration increased and is correlated to DRG neurite length. Collagen concentration also significantly impacted fiber diameter but there was no correlation with DRG neurite length. Increasing collagen concentration had no significant effect on mesh size and diffusivity of the hydrogel. These data suggest that increasing type I collagen minimizes adult rat DRG explant growth in vitro while raising gel stiffness. This knowledge can help develop more robust 3D culture platforms to study sensory neuron growth and design biomaterials for nerve regeneration applications.
Collapse
Affiliation(s)
- Uyen N. Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Sydney M. Caparaso
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Jack T. Leoni
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
- Department of Biomedical Engineering, University of Tennessee, Knoxville, USA
| | - Adan L. Redwine
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
8
|
Morozova SM, Korzhikova-Vlakh EG. Fibrillar Hydrogel Based on Cellulose Nanocrystals Crosslinked via Diels-Alder Reaction: Preparation and pH-Sensitive Release of Benzocaine. Polymers (Basel) 2023; 15:4689. [PMID: 38139941 PMCID: PMC10748274 DOI: 10.3390/polym15244689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
A fibrillar hydrogel was obtained by covalent crosslinking via Diels-Alder reaction of two types of cellulose nanocrystals (CNCs) with furan and maleimide groups. Gelation has been studied at various ratios of components and temperatures in the range from 20 to 60 °C. It was shown that the rheological properties of the hydrogel can be optimized by varying the concentration and ratio of components. Due to the rigid structure of the CNCs, the hydrogel could be formed at a concentration of at least 5 wt%; however, it almost does not swell either in water with pH 5 or 7 or in the HBSS buffer. The introduction of aldehyde groups into the CNCs allows for the conjugation of physiologically active molecules containing primary amino groups due to the formation of imine bonds. Here, we used benzocaine as a model drug for conjugation with CNC hydrogel. The resulting drug-conjugated hydrogel demonstrated the stability of formulation at pH 7 and a pH-sensitive release of benzocaine due to the accelerated hydrolytic cleavage of the imine bond at pH < 7. The developed drug-conjugated hydrogel is promising as wound dressings for local anesthesia.
Collapse
Affiliation(s)
- Sofia M. Morozova
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, 105005 Moscow, Russia
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| |
Collapse
|
9
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Duti IJ, Florian JR, Kittel AR, Amelung CD, Gray VP, Lampe KJ, Letteri RA. Peptide Stereocomplexation Orchestrates Supramolecular Assembly of Hydrogel Biomaterials. J Am Chem Soc 2023; 145:18468-18476. [PMID: 37566784 DOI: 10.1021/jacs.3c04872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Stereocomplexation, or specific interactions among complementary stereoregular macromolecules, is burgeoning as an increasingly impactful design tool, exerting exquisite control of material structure and properties. Since stereocomplexation of polymers produces remarkable transformations in mechanics, morphology, and degradation, we sought to leverage stereocomplexation to tune these properties in peptide-based biomaterials. We found that blending the pentapeptides l- and d-KYFIL triggers dual mechanical and morphological transformations from stiff fibrous hydrogels into less stiff networks of plates, starkly contrasting prior reports that blending l- and d-peptides produces stiffer fibrous hydrogels than the individual constituents. The morphological transformation of KYFIL in phosphate-buffered saline from fibers that entangle into hydrogels to plates that cannot entangle explains the accompanying mechanical transformation. Moreover, the blends shield l-KYFIL from proteolytic degradation, producing materials with comparable proteolytic stability to d-KYFIL but with distinct 2D plate morphologies that in biomaterials may promote unique therapeutic release profiles and cell behavior. To confirm that these morphological, mechanical, and stability changes arise from differences in molecular packing as in polymer stereocomplexation, we acquired X-ray diffraction patterns, which showed l- and d-KYFIL to be amorphous and their blends to be crystalline. Stereocomplexation is particularly apparent in pure water, where l- and d-KYFIL are soluble random coils, and their blends form β-sheets and gel within minutes. Our results highlight the role of molecular details, such as peptide sequence, in determining the material properties resulting from stereocomplexation. Looking forward, the ability of stereocomplexation to orchestrate supramolecular assembly and tune application-critical properties champions stereochemistry as a compelling design consideration.
Collapse
Affiliation(s)
- Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Jonathan R Florian
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Anna R Kittel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
11
|
Signori F, Wennink JWH, Bronco S, Feijen J, Karperien M, Bizzarri R, Dijkstra PJ. Aggregation and Gelation Behavior of Stereocomplexed Four-Arm PLA-PEG Copolymers Containing Neutral or Cationic Linkers. Int J Mol Sci 2023; 24:ijms24043327. [PMID: 36834737 PMCID: PMC9962659 DOI: 10.3390/ijms24043327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms. In all cases, mixing of equimolar amounts of the enantiomeric copolymers led to micellar aggregates with a stereocomplexed PLA core and a hydrophilic PEG corona. Yet, when R was an aliphatic heptamethylene unit, temperature-dependent reversible gelation was mainly induced by entanglements of PEG chains at concentrations higher than 5 wt.%. When R was a linker containing cationic amine groups, thermo-irreversible hydrogels were promptly generated at concentrations higher than 20 wt.%. In the latter case, stereocomplexation of the PLA blocks randomly distributed in micellar aggregates is proposed as the major determinant of the gelation process.
Collapse
Affiliation(s)
- Francesca Signori
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Consiglio Nazionale delle Ricerche—Istituto per i Processi Chimico-Fisici, CNR-IPCF, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Jos W. H. Wennink
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Simona Bronco
- Consiglio Nazionale delle Ricerche—Istituto per i Processi Chimico-Fisici, CNR-IPCF, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ranieri Bizzarri
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
- Correspondence: (R.B.); (P.J.D.)
| | - Pieter J. Dijkstra
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Correspondence: (R.B.); (P.J.D.)
| |
Collapse
|
12
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
13
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
14
|
Abstract
In vitro meat (IVM) is a recent development in the production of sustainable food. The consumer perception of IVM has a strong impact on the commercial success of IVM. Hence this review examines existing studies related to consumer concerns, acceptance and uncertainty of IVM. This will help create better marketing strategies for IVM-producing companies in the future. In addition, IVM production is described in terms of the types of cells and culture conditions employed. The applications of self-organising, scaffolding, and 3D printing techniques to produce IVM are also discussed. As the conditions for IVM production are controlled and can be manipulated, it will be feasible to produce a chemically safe and disease-free meat with improved consumer acceptance on a sustainable basis.
Collapse
|
15
|
Posey N, Ma Y, Lueckheide M, Danischewski J, Fagan JA, Prabhu VM. Tuning Net Charge in Aliphatic Polycarbonates Alters Solubility and Protein Complexation Behavior. ACS OMEGA 2021; 6:22589-22602. [PMID: 34514231 PMCID: PMC8427630 DOI: 10.1021/acsomega.1c02523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
A synthetic strategy yielded polyelectrolytes and polyampholytes with tunable net charge for complexation and protein binding. Organocatalytic ring-opening polymerizations yielded aliphatic polycarbonates that were functionalized with both carboxylate and ammonium side chains in a post-polymerization, radical-mediated thiol-ene reaction. Incorporating net charge into the polymer architecture altered the chain dimensions in phosphate buffered solution in a manner consistent with self-complexation and complexation behavior with model proteins. A net cationic polyampholyte with 5% of carboxylate side chains formed large clusters rather than small complexes with bovine serum albumin, while 50% carboxylate polyampholyte was insoluble. Overall, the aliphatic polycarbonates with varying net charge exhibited different macrophase solution behaviors when mixed with protein, where self-complexation appears to compete with protein binding and larger-scale complexation.
Collapse
Affiliation(s)
| | - Yuanchi Ma
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Michael Lueckheide
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Julia Danischewski
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Im SH, Im DH, Park SJ, Chung JJ, Jung Y, Kim SH. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021; 26:2846. [PMID: 34064789 PMCID: PMC8150862 DOI: 10.3390/molecules26102846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.
Collapse
Affiliation(s)
- Seung Hyuk Im
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- enoughU Inc., 114 Goryeodae-ro, Seongbuk-gu, Seoul 02856, Korea
| | - Dam Hyeok Im
- Department of Mechanical Engineering, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Su Jeong Park
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Justin Jihong Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- School of Electrical and Electronic Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrueken, Germany
| |
Collapse
|
17
|
Solomevich SO, Dmitruk EI, Bychkovsky PM, Salamevich DA, Kuchuk SV, Yurkshtovich TL. Biodegradable polyelectrolyte complexes of chitosan and partially crosslinked dextran phosphate with potential for biomedical applications. Int J Biol Macromol 2020; 169:500-512. [PMID: 33385446 DOI: 10.1016/j.ijbiomac.2020.12.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 01/09/2023]
Abstract
Polyelectrolyte complexes (PECs) are spontaneously formed by mixing oppositely charged polyelectrolyte solutions without the use of organic solvents and chemical crosslinkers are great candidate carriers for drug delivery. Herein, biodegradable antimicrobial polyelectrolyte complexes of chitosan - dextran phosphate (DPCS) containing cefazolin were developed and characterized in order to assess their suitability for biomedical applications. For this purpose, the simultaneous partial crosslinking and functionalization of dextran with phosphoric acid in a urea melt under reduced pressure were studied. The functional group content and molecular weight of dextran phosphate were varied in order to establish their influence on gel fraction yield, thermal properties and morphologies of the hydrogels. The stoichiometric PECs of DPCS showed good in vitro biocompatibility, pH sensitivity and biodegradability depending on the hydrogel composition. The release of drug from cefazolin-loaded DPCS hydrogels was through non-Fickian diffusion and displayed long sustained-release time. The drug-loaded hydrogels showed antimicrobial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The tunable degradation behavior under physiological conditions in combination with biocompatibility of the pristine DPCS and high antibacterial efficacy drug-loaded hydrogels may render the presented materials interesting for biomedical applications.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus.
| | - Egor I Dmitruk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus; Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk 220045, Belarus
| | - Pavel M Bychkovsky
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus; Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk 220045, Belarus
| | - Daria A Salamevich
- Belarusian State Medical University, 83, Dzerzhinsky Avenue, Minsk 220116, Belarus
| | - Sviatlana V Kuchuk
- Belarusian State Medical University, 83, Dzerzhinsky Avenue, Minsk 220116, Belarus
| | - Tatiana L Yurkshtovich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus
| |
Collapse
|
18
|
Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: a smart ophthalmic drug delivery vehicle. Biomater Sci 2020; 8:4665-4691. [PMID: 32760957 DOI: 10.1039/d0bm00532k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers have a major role in the controlled delivery of pharmaceutical compounds to a targeted portion of the body. In this quest, a high priority research area is the targeted delivery of ophthalmic drugs to the interior regions of the eyes. Due to their complex anatomical/biochemical nature. This necessitates an advanced drug delivery cargo that could administer a therapeutic agent to the targeted location by evading various obstacles. The ongoing focus is to design an ophthalmic formulation by coupling it with a smart in situ forming polymeric hydrogel. These smart macromolecules have an array of unique theranostic properties and can utilize the in vivo biological parameters as a stimulus to change their macromolecular state from liquid to gel. The fast gelling hydrogel improves the corneal contact time, facilitates sustained drug release, resists the burst-out effect, and assists drug permeability to anterior regions. This review summarizes the rationale, scientific objectives, properties, and classification of the biologically important in situ hydrogels in the niche of ophthalmic drug delivery. The current trends and prospectives of the array of stimulus-responsive polymers, copolymers, and nanomaterials are discussed broadly. The crucial biointerfacial attributes with pros and cons are reviewed by investigating the effect of the nature of polymers as well as the ratio/percentage of additives and copolymers that influence the overall performance.
Collapse
Affiliation(s)
- Beauty Das
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India.
| | | | | |
Collapse
|
19
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
20
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Browne S, Hossainy S, Healy K. Hyaluronic Acid Macromer Molecular Weight Dictates the Biophysical Properties and in Vitro Cellular Response to Semisynthetic Hydrogels. ACS Biomater Sci Eng 2020; 6:1135-1143. [PMID: 33464856 DOI: 10.1021/acsbiomaterials.9b01419] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ-forming hydrogels present a promising approach for minimally invasive cell transplantation and tissue regeneration. Among prospective materials, hyaluronic acid (HyA) has displayed great potential, owing to its inherent biocompatibility, biodegradation, and ease of chemical modification. However, current studies in the literature use a broad range of HyA macromer molecular weights (MWs) from <100 kDa to 1 MDa with no consensus regarding an optimal MW for a specific application. We investigated the effects of different HyA macromer MWs on key biophysical properties of semisynthetic hydrogels, such as viscosity, gelation time, shear storage modulus, molecular diffusion, and degradation. Using higher-MW HyA macromers leads to quicker gelation times and stiffer, more stable hydrogels with smaller mesh sizes. Assessment of the potential for HyA hydrogels to support network formation by encapsulated vascular cells derived from human-induced pluripotent stem cells reveals key differences between HyA hydrogels dependent on macromer MW. These effects must be considered holistically to address the multifaceted, nonmonotonic nature of HyA MW on hydrogel behavior. Our study identified an intermediate HyA macromer MW of 500 kDa as providing optimal conditions for a readily injectable, in situ-forming hydrogel with appropriate biophysical properties to promote vascular cell spreading and sustain vascular network formation in vitro.
Collapse
|
22
|
Perera MM, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym Chem 2020. [DOI: 10.1039/c9py01694e] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A review of hydrogels containing dynamic bonds that are shown to provide benefits for applications including self-healing and stimuli-induced stiffness changes.
Collapse
Affiliation(s)
- M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
23
|
Bychkovsky PM, Yurkshtovich TL, Golub NV, Solomevich SO, Yurkshtovich NK, Adamchik DA. Biological Films Based on Oxidized Bacterial Сellulose: Synthesis, Structure, and Properties. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s156009041904002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
25
|
|
26
|
Xu Z, Li Z, Jiang S, Bratlie KM. Chemically Modified Gellan Gum Hydrogels with Tunable Properties for Use as Tissue Engineering Scaffolds. ACS OMEGA 2018; 3:6998-7007. [PMID: 30023967 PMCID: PMC6044625 DOI: 10.1021/acsomega.8b00683] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 05/26/2023]
Abstract
Gellan gum is a naturally occurring polymer that can cross-link in the presence of divalent cations to form biocompatible hydrogels. However, physically cross-linked gellan gum hydrogels lose their stability under physiological conditions, thus restricting the applications of these hydrogels in vivo. To improve the mechanical strength of the gels, we incorporated methacrylate into the gellan gum and chemically cross-linked the hydrogel through three polymerization methods: step growth through thiol-ene photoclick chemistry, chain-growth via photopolymerization, and mixed model in which both mechanisms were employed. Methacrylation was confirmed and quantified by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy. The mechanical properties and chemistry of the cross-linked gels were systematically altered by varying the reaction conditions. The compression moduli of the resulting hydrogels ranged between 6.4 and 17.2 kPa. The swelling ratios of the hydrogels were correlated with the compression moduli and affected by the addition of calcium. In vitro enzymatic degradation rate was found to depend on the degree of methacrylation. NIH/3T3 fibroblast cell proliferation and morphology were related to substrate stiffness, with a high stiffness leading generally to higher proliferation. The proliferation is further affected by the thiol-ene ratio. These results suggest that a hydrogel platform based on the gellan gum can offer versatile chemical modifications and tunable mechanical properties. The influence of these substrates on cell behavior suggests that the gellan gum hydrogels have the flexibility to be engineered for a variety of biomaterials applications.
Collapse
Affiliation(s)
- Zihao Xu
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zhuqing Li
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Shan Jiang
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division
of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division
of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Rossi F, Castiglione F, Salvalaglio M, Ferro M, Moioli M, Mauri E, Masi M, Mele A. On the parallelism between the mechanisms behind chromatography and drug delivery: the role of interactions with a stationary phase. Phys Chem Chem Phys 2018; 19:11518-11528. [PMID: 28425554 DOI: 10.1039/c7cp00832e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A huge number of studies and work in the drug delivery literature are focused on understanding and modeling transport phenomena, the pivotal point for a good device design. The rationalization of all phenomena involved is fundamental, but several concerns arise leaving many issues unsolved. In order to change the point of view we decided to focus our attention on the parallelisms between two fields that seem to be very far from each other: chromatography and drug release. Taking advantages of the studies conducted by many researchers using chromatographic columns we decided to explain all the phenomena involved in drug delivery considering sodium ibuprofen (IP) molecules as analytes and hydrogel as a stationary phase. In particular, we considered not only diffusion, but also drug-polymer interactions as adsorption on the stationary phase and drug-drug interactions as aggregation of analytes. The hydrogel investigated is a promising formulation made of agarose and carbomer 974p (AC) loaded with IP, a non-steroidal common anti-inflammatory drug. The self-diffusion coefficient of IP in AC formulations was measured by using an innovative method based on a magic angle spinning NMR spectroscopic technique to produce high resolution (liquid-like) spectra. This method (HR-MAS NMR) is used in combination with pulsed field gradient spin echo (PGSE) liquid-state techniques. The model predictions satisfactorily match with the experimental data obtained in water and the gel environment, indicating that the model presented here, despite its simplicity, is able to describe the key phenomena governing the device behavior and could be used to rationalize the experimental activity.
Collapse
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Luigi Mancinelli 7, 20131 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr Polym 2018; 196:233-245. [PMID: 29891292 DOI: 10.1016/j.carbpol.2018.05.033] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
The advances in the field of biomaterials have led to several studies on alternative biocompatible devices and to their development focusing on their properties, benefits, limitations, and utilization of alternative resources. Due to their advantages like biocompatibility, biodegradability, and low cost, polysaccharides have been widely used in the development of hydrogels. Among the polysaccharides studied on hydrogels preparation, chitosan (pure or combined with natural/synthetic polymers) have been widely investigated for use in biomedical field. In view of potential applications of chitosan-based hydrogels, this review focuses on the most recent progress made with respect to preparation, properties, and their salient accomplishments for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Michelly C G Pellá
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Michele K Lima-Tenório
- Department of Chemistry, State University of Ponta Grossa, Av. Gen. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, Paraná, Brazil.
| | - Ernandes T Tenório-Neto
- Department of Chemistry, State University of Ponta Grossa, Av. Gen. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, Paraná, Brazil
| | - Marcos R Guilherme
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Edvani C Muniz
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil; Post-graduate Program on Materials Science & Engineering, Federal University of Technology, Paraná (UTFPR-LD), CEP 86036-370, Londrina, Paraná, Brazil
| | - Adley F Rubira
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
29
|
Michalski A, Socka M, Brzeziński M, Biela T. Reversible Supramolecular Polylactides Gels Obtained via Stereocomplexation. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Adam Michalski
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Lodz Poland
| | - Marta Socka
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Lodz Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Lodz Poland
| | - Tadeusz Biela
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Lodz Poland
| |
Collapse
|
30
|
Yurkshtovich TL, Golub NV, Yurkshtovich NK, Bychkovskii PM, Kosterova RI, Alinovskaya VA. Starch Phosphate Microgels for Controlled Release of Biomacromolecules. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683817080087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Karatasos K, Kritikos G. A microscopic view of graphene-oxide/poly(acrylic acid) physical hydrogels: effects of polymer charge and graphene oxide loading. SOFT MATTER 2018; 14:614-627. [PMID: 29265164 DOI: 10.1039/c7sm02305g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we have examined in detail by means of fully atomistic molecular dynamics simulations, physical hydrogels formed by a polymer electrolyte, poly(acrylic acid), and graphene oxide, at two different charging states of the polymer and two different graphene oxide concentrations. It was found that variations of these parameters incurred drastic changes in general morphological characteristics of the composite materials, the degree of physical adsorption of polyelectrolyte chains onto the graphene oxide surface, the polymer dynamic response at local and global length scales, in the charge distributions around the components, and in the mobility of the counterions. All these microscopic features are expected to significantly affect macroscopic physical properties of the hydrogels, such as their mechanical responses and their electrical behaviors.
Collapse
Affiliation(s)
- Kostas Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | |
Collapse
|
32
|
Scaffold composed of porous vancomycin-loaded poly(lactide- co -glycolide) microspheres: A controlled-release drug delivery system with shape-memory effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1172-1178. [DOI: 10.1016/j.msec.2017.04.099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/16/2017] [Indexed: 12/27/2022]
|
33
|
Lai WF, Rogach AL. Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11309-11320. [PMID: 28244320 DOI: 10.1021/acsami.6b16120] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herbal medicine, as an integral component of oriental medicine, has assimilated into the lives of Asian people for millennia. The therapeutic efficiency of herbal extracts and ingredients has, however, been limited by various factors, including the lack of targeting capacity and poor bioavailability. Hydrogels are hydrophilic polymer networks that can imbibe a substantial amount of fluids. They are biocompatible, and may enable sustained drug release. Hydrogels, therefore, have attracted widespread studies in pharmaceutical formulation. This article first reviews the latest progress in the development of hydrogel-based materials as carriers of herbal medicines, followed by a discussion of the relationships between hydrogel properties and carrier performance. Finally, the promising potential of using hydrogels to combine medicinal herbs with synthetic drugs in one single treatment will be highlighted as an avenue for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Pharmacy, Health Science Center, Shenzhen University , Shenzhen 518060, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University , Hong Kong
| | - Andrey L Rogach
- Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong , Hong Kong
| |
Collapse
|
34
|
Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W. Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 2016; 107:192-205. [PMID: 27432797 DOI: 10.1016/j.addr.2016.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 11/29/2022]
Abstract
Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG-PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
Collapse
Affiliation(s)
- Arijit Basu
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Konda Reddy Kunduru
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel
| | - Sindhu Doppalapudi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
35
|
Solomevich SO, Bychkovskii PM, Yurkshtovich TL, Golub NV. Influence of the properties of modified dextran hydrogel polymer network on the kinetics of the release of prospidin antitumor agent. RUSS J APPL CHEM+ 2016. [DOI: 10.1134/s1070427216080140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Li Z, Tan BH, Lin T, He C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.05.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomater 2016; 41:253-63. [PMID: 27184404 DOI: 10.1016/j.actbio.2016.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Transcatheter arterial chemoembolization (TACE) is the most common palliative therapy for unresectable hepatocellular carcinoma (HCC). The conventional TACE technique, which employs the Lipiodol® emulsion, has been widely used for human cancer treatments. However, this delivery system seems to be inconsistent and unstable in maintaining a high concentration of drugs at tumor sites. An alternative approach for TACE is loading drugs into a liquid embolic solution that exists as an injectable solution and can exhibit a sol-to-gel phase transition to form a solidified state once delivered to the tumor site. Here, we develop a novel sulfamethazine-based anionic pH-sensitive block copolymer with potential application as a radiopaque embolic material. The copolymer, named PCL-PEG-SM, and comprised of poly(ε-caprolactone), sulfamethazine, and poly(ethylene glycol), was fabricated by free radical polymerization. An aqueous solution of the developed copolymer underwent a sol-to-gel phase transition upon lowering the environmental pH to create a gel region that covered the physiological condition (pH 7.4, 37°C) and the low pH conditions at tumor sites (pH 6.5-7.0, 37°C). The release of doxorubicin (DOX) from DOX-loaded copolymer hydrogels could be sustained for more than 4weeks in vitro, and the released DOX retained its fully bioactivity via inhibition the proliferation of hepatic cancer cells. The radiopaque embolic formulations that were prepared by mixing copolymer solutions at pH 8.0 with Lipiodol®, a long-lasting X-ray contrast agent, could exhibit the gelation inside the tumor after intratumoral injection or intraarterial administration using a VX2 carcinoma hepatic tumor rabbit model. These results suggest that a novel anionic pH-sensitive copolymer has been developed with a potential application as a liquid radiopaque embolic solution for TACE of HCC. STATE OF SIGNIFICANCE Transcatheter arterial chemoembolization (TACE) has been widely used as a palliative treatment therapy for unresectable hepatocellular carcinoma (HCC). Conventional TACE technique, which usually employs emulsion of DOX-in-Lipiodol®, followed by an embolic agent, has significant limitation of inconsistency and lack of controlled release ability. To address these limitations of conventional TACE material system, we introduced a novel liquid radiopaque embolic material from our pH-sensitive hydrogel. The material has low viscosity that can be injected via a microcatheter, rather biocompatibility, and drug controlled release ability. Importantly, it can form gel in the tumor as well as tumoral vasculature in response to the lowered pH at the tumor site, which proved the potential for the use to treat HCC by TACE therapy.
Collapse
|
38
|
Bajpai SK, Saxena S, Dubey S. A Novel Approach to Study Enzymatic Degradation of Ter-polymeric Beads for Gastrointestinal Drug Delivery: Synthesis and Characterization. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506064370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The α-amylase induced enzymatic degradation of terpolymeric beads, composed of calcium alginate, starch and poly(ethylene) glycol, were studied for gastrointestinal drug delivery. The beads demonstrated faster degradation with increased enzyme activity in the range 0.64 to 2.24IU/mL. A linear relationship of the degradation rates and corresponding enzyme concentration indicate that degradation is governed by Michaelis-Menten kinetics. The degradation rate was enhanced with increases in starch content in the beads. The smaller value of KM (3.15 × 10−5 mol−1 dm−3) indicated higher enzyme-substrate affinity. The beads crosslinked with barium ions demonstrated slower degradation due to a higher degree of crosslinking in the beads. With increases in initial water content, the degradation was found to increase. In order to incorporate in vivo GI conditions, the degradation was also studied using a flow through diffusion cell (FTDC). The hydrogel beads exhibited slower degradation by FTDC compared to traditional in vitro methods and the degradation was dependent on the nature of the filler particles used in the diffusion cell.
Collapse
Affiliation(s)
- S. K. Bajpai
- Polymer Research Laboratory, Department of Chemistry, Government Model Science College (Autonomous), Jabalpur (M.P.) – 482001, India
| | | | - Seema Dubey
- Polymer Research Laboratory, Department of Chemistry, Government Model Science College (Autonomous), Jabalpur (M.P.) – 482001, India
| |
Collapse
|
39
|
Gerges I, Tamplenizza M, Lopa S, Recordati C, Martello F, Tocchio A, Ricotti L, Arrigoni C, Milani P, Moretti M, Lenardi C. Creep-resistant dextran-based polyurethane foam as a candidate scaffold for bone tissue engineering: Synthesis, chemico-physical characterization, and in vitro and in vivo biocompatibility. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1163565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- I. Gerges
- Fondazione Filarete per le Bioscienze e l’innovazione, Milan, Italy
- Tensive s.r.l., Milan, Italy
| | - M. Tamplenizza
- Fondazione Filarete per le Bioscienze e l’innovazione, Milan, Italy
- Tensive s.r.l., Milan, Italy
| | - S. Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - C. Recordati
- Fondazione Filarete per le Bioscienze e l’innovazione, Milan, Italy
| | - F. Martello
- Fondazione Filarete per le Bioscienze e l’innovazione, Milan, Italy
- Tensive s.r.l., Milan, Italy
| | - A. Tocchio
- SEMM, European School of Molecular Medicine, Campus IFOM-IEO, Milano, Italy
| | - L. Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - C. Arrigoni
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - P. Milani
- Fondazione Filarete per le Bioscienze e l’innovazione, Milan, Italy
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
| | - M. Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Swiss Institute of Regenerative Medicine (SIRM), Taverne, Switzerland
- Fondazione Cardiocentro Ticino, Lugano, Switzerland
| | - C. Lenardi
- Fondazione Filarete per le Bioscienze e l’innovazione, Milan, Italy
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Rossi F, Castiglione F, Ferro M, Moioli M, Mele A, Masi M. The Role of Drug-Drug Interactions in Hydrogel Delivery Systems: Experimental and Model Study. Chemphyschem 2016; 17:1615-22. [DOI: 10.1002/cphc.201600069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| | - Franca Castiglione
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| | - Monica Ferro
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| | - Marta Moioli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| | - Andrea Mele
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
- CNR-ICRM; via Luigi Mancinelli 7 20131 Milan Italy
| | - Maurizio Masi
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
41
|
Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int J Pharm 2016; 499:358-367. [DOI: 10.1016/j.ijpharm.2016.01.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/27/2022]
|
42
|
Jing Y, Quan C, Liu B, Jiang Q, Zhang C. A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1111380] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Absil R, Çakir S, Gabriele S, Dubois P, Barner-Kowollik C, Du Prez F, Mespouille L. Click reactive microgels as a strategy towards chemically injectable hydrogels. Polym Chem 2016. [DOI: 10.1039/c6py01663d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doubly crosslinked microgels (DX microgels) are hydrogels constructed by covalently interlinked microgel particles, offering two levels of hierarchy within the network, the first one being the microgel and the second being the interlinked microgel network.
Collapse
Affiliation(s)
- Rémi Absil
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- Health and Materials Research Institutes
- University of Mons (UMons)
- 7000 Mons
| | - Seda Çakir
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Ghent
- Belgium
| | - Sylvain Gabriele
- Laboratoire Interfaces & Fluides complexes
- CIRMAP
- Research Institute for Biosciences
- University of Mons
- 7000 Mons
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- Health and Materials Research Institutes
- University of Mons (UMons)
- 7000 Mons
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Filip Du Prez
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Ghent
- Belgium
| | - Laetitia Mespouille
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- Health and Materials Research Institutes
- University of Mons (UMons)
- 7000 Mons
| |
Collapse
|
44
|
Abstract
The preparation of macroporous zwitterionic cryogels and their excellent protein encapsulation and sustained release properties are reported.
Collapse
Affiliation(s)
- Gulsu Sener
- Department of Chemical & Biological Engineering
- Colorado School of Mines
- Golden
- USA
| | - Melissa D. Krebs
- Department of Chemical & Biological Engineering
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
45
|
Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system. Carbohydr Polym 2015; 134:497-507. [DOI: 10.1016/j.carbpol.2015.07.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
|
46
|
Nguyen QV, Huynh DP, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
47
|
|
48
|
Rossi F, Castiglione F, Ferro M, Marchini P, Mauri E, Moioli M, Mele A, Masi M. Drug-Polymer Interactions in Hydrogel-based Drug-Delivery Systems: An Experimental and Theoretical Study. Chemphyschem 2015; 16:2818-2825. [DOI: 10.1002/cphc.201500526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/19/2022]
|
49
|
Moghadam MN, Pioletti DP. Biodegradable HEMA-based hydrogels with enhanced mechanical properties. J Biomed Mater Res B Appl Biomater 2015; 104:1161-9. [DOI: 10.1002/jbm.b.33469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/30/2015] [Accepted: 05/22/2015] [Indexed: 01/10/2023]
Affiliation(s)
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)
| |
Collapse
|
50
|
Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces 2015; 128:140-148. [DOI: 10.1016/j.colsurfb.2015.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
|