1
|
Hang R, Li H, Liu W, Wang R, Hu H, Chen M, You C, Chen X. HOT3/eIF5B1 confers Kozak motif-dependent translational control of photosynthesis-associated nuclear genes for chloroplast biogenesis. Nat Commun 2024; 15:9878. [PMID: 39543117 PMCID: PMC11564774 DOI: 10.1038/s41467-024-54194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthesis requires chloroplasts, in which most proteins are nucleus-encoded and produced via cytoplasmic translation. The translation initiation factor eIF5B gates the transition from initiation (I) to elongation (E), and the Kozak motif is associated with translation efficiency, but their relationship is previously unknown. Here, with ribosome profiling, we determined the genome-wide I-E transition efficiencies. We discovered that the most prevalent Kozak motif is associated with high I-E transition efficiency in Arabidopsis, rice, and wheat, thus implicating the potential of the Kozak motif in facilitating the I-E transition. Indeed, the effects of Kozak motifs in promoting translation depend on HOT3/eIF5B1 in Arabidopsis. HOT3 preferentially promotes the translation of photosynthesis-associated nuclear genes in a Kozak motif-dependent manner, which explains the chloroplast defects and reduced photosynthesis activity of hot3 mutants. Our study linked the Kozak motif to eIF5B-mediated I-E transition during translation and uncovered the function of HOT3 in the cytoplasmic translational control of chloroplast biogenesis and photosynthesis.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Hao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wenjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Runyu Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Chenjiang You
- College of Life Sciences, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
2
|
Miroshnichenko DN, Pigolev AV, Pushin AS, Alekseeva VV, Degtyaryova VI, Degtyaryov EA, Pronina IV, Frolov A, Dolgov SV, Savchenko TV. Genetic Transformation of Triticum dicoccum and Triticum aestivum with Genes of Jasmonate Biosynthesis Pathway Affects Growth and Productivity Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2781. [PMID: 39409651 PMCID: PMC11478715 DOI: 10.3390/plants13192781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The transformation protocol based on the dual selection approach (fluorescent protein and herbicide resistance) has been applied here to produce transgenic plants of two cereal species, emmer wheat and bread wheat, with the goal of activating the synthesis of the stress hormone jasmonates by overexpressing ALLENE OXIDE SYNTHASE from Arabidopsis thaliana (AtAOS) and bread wheat (TaAOS) and OXOPHYTODIENOATE REDUCTASE 3 from A. thaliana (AtOPR3) under the strong constitutive promoter (ZmUbi1), either individually or both genes simultaneously. The delivery of the expression cassette encoding AOS was found to affect morphogenesis in both wheat species negatively. The effect of transgene expression on the accumulation of individual jasmonates in hexaploid and tetraploid wheat was observed. Among the introduced genes, overexpression of TaAOS was the most successful in increasing stress-inducible phytohormone levels in transgenic plants, resulting in higher accumulations of JA and JA-Ile in emmer wheat and 12-OPDA in bread wheat. In general, overexpression of AOS, alone or together with AtOPR3, negatively affected leaf lamina length and grain numbers per spike in both wheat species. Double (AtAOS + AtOPR3) transgenic wheat plants were characterized by significantly reduced plant height and seed numbers, especially in emmer wheat, where several primary plants failed to produce seeds.
Collapse
Affiliation(s)
- Dmitry N. Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Alexey V. Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| | - Alexander S. Pushin
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Valeria V. Alekseeva
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Vlada I. Degtyaryova
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Evgeny A. Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| | - Irina V. Pronina
- Department of Physiology, Human Ecology and Medical and Biological Sciences, State University of Education, 141014 Mytishi, Russia;
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Sergey V. Dolgov
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Tatyana V. Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| |
Collapse
|
3
|
Hernández G, García A, Weingarten-Gabbay S, Mishra R, Hussain T, Amiri M, Moreno-Hagelsieb G, Montiel-Dávalos A, Lasko P, Sonenberg N. Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes. Nucleic Acids Res 2024; 52:1064-1079. [PMID: 38038264 PMCID: PMC10853783 DOI: 10.1093/nar/gkad1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Alejandra García
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University. 75 University Ave. W, Waterloo, ON N2L 3C5, Canada
| | - Angélica Montiel-Dávalos
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University. Montreal, QC H3G 0B1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| |
Collapse
|
4
|
Xiang Y, Huang W, Tan L, Chen T, He Y, Irving PS, Weeks KM, Zhang QC, Dong X. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 2023; 621:423-430. [PMID: 37674078 PMCID: PMC10499604 DOI: 10.1038/s41586-023-06500-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.
Collapse
Affiliation(s)
- Yezi Xiang
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Wenze Huang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke Medical Center, Duke University, Durham, NC, USA
| | - Tianyuan Chen
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Yang He
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Hernández G, Osnaya VG, Pérez-Martínez X. Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends Biochem Sci 2019; 44:1009-1021. [PMID: 31353284 DOI: 10.1016/j.tibs.2019.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 01/30/2023]
Abstract
Selection of the translation initiation site (TIS) is a crucial step during translation. In the 1980s Marylin Kozak performed key studies on vertebrate mRNAs to characterize the optimal TIS consensus sequence, the Kozak motif. Within this motif, conservation of nucleotides in crucial positions, namely a purine at -3 and a G at +4 (where the A of the AUG is numbered +1), is essential for TIS recognition. Ever since its characterization the Kozak motif has been regarded as the optimal sequence to initiate translation in all eukaryotes. We revisit here published in silico data on TIS consensus sequences, as well as experimental studies from diverse eukaryotic lineages, and propose that, while the -3A/G position is universally conserved, the remaining variability of the consensus sequences enables their classification as optimal, strong, and moderate TIS sequences.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Avenue, Tlalpan, 14080 Mexico City, Mexico.
| | - Vincent G Osnaya
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Avenue, Tlalpan, 14080 Mexico City, Mexico
| | - Xochitl Pérez-Martínez
- Department of Molecular Genetics, Cell Physiology Institute (Instituto de Fisiología Celular), Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico
| |
Collapse
|
6
|
Maruyama-Nakashita A, Suyama A, Takahashi H. 5'-non-transcribed flanking region and 5'-untranslated region play distinctive roles in sulfur deficiency induced expression of SULFATE TRANSPORTER 1;2 in Arabidopsis roots. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:51-55. [PMID: 31275008 PMCID: PMC6543697 DOI: 10.5511/plantbiotechnology.16.1226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/26/2016] [Indexed: 06/09/2023]
Abstract
Plants increase sulfate uptake activity under sulfur deficiency (-S). In Arabidopsis, SULTR1;2 is the major high-affinity sulfate transporter induced in epidermis and cortex of roots for mediating sulfate uptake under -S. Though it is known that transcript levels of SULTR1;2 increase under -S largely due to the function of 5'-upstream region, contributions of 5'-non-transcribed flanking region and 5'-untranslated region (UTR) to transcriptional and post-transcriptional regulations have not yet been individually verified. To investigate the roles of 5'UTR of SULTR1;2 in -S responses, transcript levels and activities of firefly luciferase (Luc) were analyzed in transgenic plants expressing Luc under the control of the 2,160-bp long 5'-upstream region of SULTR1;2 with (PL2160) or without (PL2160ΔUTR) the 154-bp 5'UTR. Both transgenic plants expressed similar levels of Luc mRNAs that showed significant accumulations under -S relative to +S regardless of presence of the 5'UTR. In contrast, Luc activities were detected only in PL2160 plants, suggesting presence of 5'UTR of SULTR1;2 being necessary for translational initiation while its absence impairing translation of functional Luc protein in PL2160ΔUTR. These results indicate an essential role of the 5'-non-transcribed flanking region of SULTR1;2 at positions -2160 to -155 in -S-responsive transcriptional regulation.
Collapse
Affiliation(s)
- Akiko Maruyama-Nakashita
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akiko Suyama
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hideki Takahashi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Gupta P, Rangan L, Ramesh TV, Gupta M. Comparative analysis of contextual bias around the translation initiation sites in plant genomes. J Theor Biol 2016; 404:303-311. [PMID: 27316311 DOI: 10.1016/j.jtbi.2016.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Nucleotide distribution around translation initiation site (TIS) is thought to play an important role in determining translation efficiency. Kozak in vertebrates and later Joshi et al. in plants identified context sequence having a key role in translation efficiency, but a great variation regarding this context sequence has been observed among different taxa. The present study aims to refine the context sequence around initiation codon in plants and addresses the sampling error problem by using complete genomes of 7 monocots and 7 dicots separately. Besides positions -3 and +4, significant conservation at -2 and +5 positions was also found and nucleotide bias at the latter two positions was shown to directly influence translation efficiency in the taxon studied. About 1.8% (monocots) and 2.4% (dicots) of the total sequences fit the context sequence from positions -3 to +5, which might be indicative of lower number of housekeeping genes in the transcriptome. A three base periodicity was observed in 5' UTR and CDS of monocots and only in CDS of dicots as confirmed against random occurrence and annotation errors. Deterministic enrichment of GCNAUGGC in monocots, AANAUGGC in dicots and GCNAUGGC in plants around TIS was also established (where AUG denotes the start codon), which can serve as an arbiter of putative TIS with efficient translation in plants.
Collapse
Affiliation(s)
- Paras Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - T Venkata Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mudit Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Scheets K, Jordan R, White KA, Hernández C. Pelarspovirus, a proposed new genus in the family Tombusviridae. Arch Virol 2015; 160:2385-93. [PMID: 26149249 DOI: 10.1007/s00705-015-2500-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/13/2015] [Indexed: 11/29/2022]
Abstract
Currently, the family Tombusviridae encompasses thirteen viral genera that contain single-stranded, positive-sense RNA genomes and isometric virions; the exception being the genus Umbravirus, whose members do not encode a coat protein (CP). A new genus, tentatively named Pelarspovirus, is proposed to be added to this family and would include five members, with Pelargonium line pattern virus recommended as the type species. Viruses assigned to this proposed genus have monopartite genomes encoding five open reading frames (ORFs) that include two 5'-proximal replication proteins, two centrally located movement proteins (MP1 and MP2) and a 3'-proximal CP that, at least for pelargonium line pattern virus (PLPV), has been shown to act also as suppressor of RNA silencing. Distinguishing characteristics of these viruses include i) production of a single, tricistronic subgenomic RNA for expression of MP and CP genes, ii) presence of a non-AUG start codon (CUG or GUG) initiating the MP2 ORF, iii) absence of AUG codons in any frame between the AUG initiation codons of MP1 and CP genes, and iv) sequence-based phylogenetic clustering of all encoded proteins in separate clades from those of other family members.
Collapse
Affiliation(s)
- Kay Scheets
- Department of Botany, 301 Physical Sciences, Oklahoma State University, Stillwater, OK, 74078-3013, USA,
| | | | | | | |
Collapse
|
9
|
Smirnova E, Firth AE, Miller WA, Scheidecker D, Brault V, Reinbold C, Rakotondrafara AM, Chung BYW, Ziegler-Graff V. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement. PLoS Pathog 2015; 11:e1004868. [PMID: 25946037 PMCID: PMC4422679 DOI: 10.1371/journal.ppat.1004868] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/08/2015] [Indexed: 02/03/2023] Open
Abstract
Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement. In order to maximize coding capacity, RNA viruses often encode overlapping genes and use unusual translational control mechanisms. Plant viruses express proteins required for movement of the virus through the plant, often from non-canonically translated open reading frames (ORFs). Viruses in the economically important Luteoviridae family are confined to the phloem (vascular) tissue, probably due to their specialized phloem-specific movement proteins. These proteins are translated from one viral mRNA, sgRNA1, via initiation at more than one AUG codon to express overlapping genes, and by ribosomal read-through of a stop codon. Here, we describe yet another gene translated from sgRNA1, ORF3a. Translation of ORF3a initiates at a non-standard (not AUG) start codon. We found that ORF3a is not required for viral genome replication, but is required for long-distance movement of the virus in the plant. The movement function could be restored in trans by providing the ORF3a product, P3a, from another viral or plasmid vector. P3a localizes in the Golgi apparatus and adjacent to the plasmodesmata, supporting a role in intercellular movement. In summary, we used a powerful bioinformatic tool to discover a cryptic gene whose product is required for movement of a phloem-specific plant virus, revealing multiple levels of translational control that regulate expression of four proteins from a single mRNA.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (AEF); (WAM); (VZG)
| | - W. Allen Miller
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (AEF); (WAM); (VZG)
| | - Danièle Scheidecker
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | | | | | - Aurélie M. Rakotondrafara
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Betty Y.-W. Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
- * E-mail: (AEF); (WAM); (VZG)
| |
Collapse
|
10
|
Freire JEC, Vasconcelos IM, Moreno FBMB, Batista AB, Lobo MDP, Pereira ML, Lima JPMS, Almeida RVM, Sousa AJS, Monteiro-Moreira ACO, Oliveira JTA, Grangeiro TB. Mo-CBP3, an antifungal chitin-binding protein from Moringa oleifera seeds, is a member of the 2S albumin family. PLoS One 2015; 10:e0119871. [PMID: 25789746 PMCID: PMC4366206 DOI: 10.1371/journal.pone.0119871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.
Collapse
Affiliation(s)
- José E. C. Freire
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Ilka M. Vasconcelos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Adelina B. Batista
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Marina D. P. Lobo
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| | - Mirella L. Pereira
- Departamento de Biologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - João P. M. S. Lima
- Instituto de Medicina Tropical (IMT-RN), Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ricardo V. M. Almeida
- Instituto de Medicina Tropical (IMT-RN), Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Antônio J. S. Sousa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - José T. A. Oliveira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Thalles B. Grangeiro
- Departamento de Biologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, Khavari PA, Wang CL. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014; 10:748. [PMID: 25170020 PMCID: PMC4299517 DOI: 10.15252/msb.20145136] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing
(FACS-seq) was employed to determine the efficiency of start codon recognition for all possible
translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured
translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning
the −6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon
recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed
by a single motif, were also important for modeling TIS efficiency. Our dataset combined with
modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA
transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to
identify candidate driver mutations consistent with known tumor expression patterns. Finally, we
implemented a quantitative leaky scanning model to predict alternative initiation sites that produce
truncated protein isoforms and compared predictions with ribosome footprint profiling data. The
comprehensive analysis of the TIS sequence space enables quantitative predictions of translation
initiation based on genome sequence.
Collapse
Affiliation(s)
- William L Noderer
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ross J Flockhart
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna Bhaduri
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA The Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jiajing Zhang
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Clifford L Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Kronbak R, Ingvardsen CR, Madsen CK, Gregersen PL. A novel approach to the generation of seamless constructs for plant transformation. PLANT METHODS 2014; 10:10. [PMID: 24855486 PMCID: PMC4030040 DOI: 10.1186/1746-4811-10-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone or in combination with nicking enzymes leaving residual nucleotides behind in the final construct. We here explore the use of type IIS and type IIB REs for vector linearization that combined with sequence and ligase-independent cloning (SLIC) overcomes this problem and promotes seamless gene-insertion in vectors. Providing the basis for a collection of biolistic plant transformation vectors ready to be cloned with different genes-of-interest, we present two vectors, where promoter and terminator are joined by a spacer. During spacer-removal linearization (SRL), type IIS and type IIB REs remove their own recognition sequences from the vector leaving no undesired, short sequences behind. RESULTS We designed two plant transformation vectors prepared for SRL in combination with SLIC, pAUrumII and pAUrumIII, harboring a spacer with recognition sites for a type IIS and IIB RE, respectively. The gene for a green fluorescent protein, gfp, was successfully cloned into both vectors; traces of pAUrumIII, however, contaminated the transformation due to incomplete linearization, an issue not encountered with the type IIS linearized pAUrumII. Both constructs, pAUrumII-gfp and pAUrumIII-gfp, were functional, when tested in vitro on wheat and barley endosperm cells for transient gfp expression. CONCLUSIONS All nucleotides flanking an insert in a biolistic plant transformation vector can be customized by means of SRL in combination with SLIC. Especially type IIS REs promote an efficient cloning result. Based on our findings, we believe that the SRL system can be useful in a series of plant transformation vectors, favoring the presence of functional sequences for optimal expression over redundant cloning-site remnants.
Collapse
Affiliation(s)
- Remy Kronbak
- Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Christina Rønn Ingvardsen
- Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Claus Krogh Madsen
- Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Per Langkjær Gregersen
- Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|
13
|
Agarwal P, Garg V, Gautam T, Pillai B, Kanoria S, Burma PK. A study on the influence of different promoter and 5'UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton. Transgenic Res 2014; 23:351-63. [PMID: 24072400 DOI: 10.1007/s11248-013-9757-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Several reports of promoters from plants, viral and artificial origin that confer high constitutive expression are known. Among these the CaMV 35S promoter is used extensively for transgene expression in plants. We identified candidate promoters from Arabidopsis based on their transcript levels (meta-analysis of available microarray control datasets) to test their activity in comparison to the CaMV 35S promoter. A set of 11 candidate genes were identified which showed high transcript levels in the aerial tissue (i.e. leaf, shoot, flower and stem). In the initial part of the study binary vectors were developed wherein the promoter and 5'UTR region of these candidate genes (Upstream Regulatory Module, URM) were cloned upstream to the reporter gene β glucuronidase (gus). The promoter strengths were tested in transformed callus of Nicotiana tabacum and Gossypium hirsutum. On the basis of the results obtained from the callus, the influence of the URM cassettes on transgene expression was tested in transgenic tobacco. The URM regions of the genes encoding a subunit of photosystem I (PHOTO) and geranyl geranyl reductase (GGR) in A. thaliana genome showed significantly high levels of GUS activity in comparison to the CaMV 35S promoter. Further, when the 5'UTRs of both the genes were placed downstream to the CaMV 35S promoter it led to a substantial increase in GUS activity in transgenic tobacco lines and cotton callus. The enhancement observed was even higher to that observed with the viral leader sequences like Ω and AMV, known translational enhancers. Our results indicate that the two URM cassettes or the 5'UTR regions of PHOTO and GGR when placed downstream to the CaMV 35S promoter can be used to drive high levels of transgene expression in dicotyledons.
Collapse
Affiliation(s)
- Parul Agarwal
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | |
Collapse
|
14
|
Guerrero-González ML, Rodríguez-Kessler M, Jiménez-Bremont JF. uORF, a regulatory mechanism of the Arabidopsis polyamine oxidase 2. Mol Biol Rep 2014; 41:2427-43. [PMID: 24435979 DOI: 10.1007/s11033-014-3098-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 01/04/2014] [Indexed: 01/01/2023]
Abstract
The translational efficiency of an mRNA can be modulated by elements located in the 5'-untranslated region. The flavin-containing polyamine oxidases catabolize oxidative deamination of spermidine and spermine, thus contributing to polyamine homeostasis as well as diverse biological processes through their reaction products. In this study, we characterized the uORF of AtPAO2 gene using the GUS reporter gene. Transgenic lines harboring the native AtPAO2 promoter or the constitutive CaMV 35S promoter show that the uORF negatively affects GUS expression. Exogenous applications of PAs positively modulate GUS expression, thus alleviating the negative effect of AtPAO2 uORF, while treatments with MGBG inhibitor show an opposite effect. Our data suggest that AtPAO2 uORF regulatory mechanism is modulated by polyamines. In addition, we present a comparative in silico study of the uORFs identified in several plant transcripts encoding polyamine oxidases in both mono- and dicotyledonous plants as well as in the Bryophyte Physcomitrella patens. The polyamine oxidase uORF-encoded peptides are conserved among families and share conserved features such as their position, length, and amino acid sequence. Our findings provide new insights into the regulatory mechanism of polyamine oxidase genes and encourage further exploration to assess the biological significance of uORFs in the polyamine catabolic pathway.
Collapse
Affiliation(s)
- Maria L Guerrero-González
- Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa de San Jose 2055, AP 3-74 Tangamanga, 78216, San Luis Potosi, SLP, Mexico
| | | | | |
Collapse
|
15
|
von Arnim AG, Jia Q, Vaughn JN. Regulation of plant translation by upstream open reading frames. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:1-12. [PMID: 24268158 DOI: 10.1016/j.plantsci.2013.09.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
We review the evidence that upstream open reading frames (uORFs) function as RNA sequence elements for post-transcriptional control of gene expression, specifically translation. uORFs are highly abundant in the genomes of angiosperms. Their negative effect on translation is often attenuated by ribosomal translation reinitiation, a process whose molecular biochemistry is still being investigated. Certain uORFs render translation responsive to small molecules, thus offering a path for metabolic control of gene expression in evolution and synthetic biology. In some cases, uORFs form modular logic gates in signal transduction. uORFs thus provide eukaryotes with a functionality analogous to, or comparable to, riboswitches and attenuators in prokaryotes. uORFs exist in many genes regulating development and point toward translational control of development. While many uORFs appear to be poorly conserved, and the number of genes with conserved-peptide uORFs is modest, many mRNAs have a conserved pattern of uORFs. Evolutionarily, the gain and loss of uORFs may be a widespread mechanism that diversifies gene expression patterns. Last but not least, this review includes a dedicated uORF database for Arabidopsis.
Collapse
Affiliation(s)
- Albrecht G von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA; Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840, USA.
| | | | | |
Collapse
|
16
|
Kim Y, Lee G, Jeon E, Sohn EJ, Lee Y, Kang H, Lee DW, Kim DH, Hwang I. The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:485-98. [PMID: 24084084 PMCID: PMC3874180 DOI: 10.1093/nar/gkt864] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes.
Collapse
Affiliation(s)
- Younghyun Kim
- Department of Life Sciences, School of Bioscience and Bioengineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ling R, Pate AE, Carr JP, Firth AE. An essential fifth coding ORF in the sobemoviruses. Virology 2013; 446:397-408. [PMID: 23830075 PMCID: PMC3791421 DOI: 10.1016/j.virol.2013.05.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/17/2013] [Accepted: 05/22/2013] [Indexed: 12/18/2022]
Abstract
The sobemoviruses have one of the smallest of all known RNA virus genomes. ORF1 encodes P1 which plays a role in suppression of silencing and virus movement, ORFs 2a and 2b encode the replicational polyproteins P2a and P2ab, and ORF3 encodes the coat protein. Translation of ORF2a from the genomic RNA is dependent on a leaky scanning mechanism. We report the presence of an additional ORF (ORFx), conserved in all sobemoviruses. ORFx overlaps the 5′ end of ORF2a in the +2 reading frame and also extends some distance upstream of ORF2a. ORFx lacks an AUG initiation codon and its expression is predicted to depend on low level initiation at near-cognate non-AUG codons, such as CUG, by a proportion of the ribosomes that are scanning the region between the ORF1 and ORF2a initiation codons. Mutations that disrupt translation of ORFx in turnip rosette virus prevent the establishment of infection. The plant-infecting sobemoviruses have a 4–4.5 kb genome with four know coding ORFs. We report an additional ORF (ORFx) that is conserved in all sobemoviruses. Translation of ORFx is predicted to depend on leaky scanning and non-AUG initiation. Mutations that disrupt translation of ORFx prevent the establishment of infection.
Collapse
Affiliation(s)
- Roger Ling
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
18
|
Kanoria S, Burma PK. A 28 nt long synthetic 5'UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 2012; 12:85. [PMID: 23140609 PMCID: PMC3536603 DOI: 10.1186/1472-6750-12-85] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/04/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A high level of transgene expression is required, in several applications of transgenic technology. While use of strong promoters has been the main focus in such instances, 5'UTRs have also been shown to enhance transgene expression. Here, we present a 28 nt long synthetic 5'UTR (synJ), which enhances gene expression in tobacco and cotton. RESULTS The influence of synJ on transgene expression was studied in callus cultures of cotton and different tissues of transgenic tobacco plants. The study was based on comparing the expression of reporter gene gus and gfp, with and without synJ as its 5'UTR. Mutations in synJ were also analyzed to identify the region important for enhancement. synJ, enhances gene expression by 10 to 50 fold in tobacco and cotton depending upon the tissue studied. This finding is based on the experiments comparing the expression of gus gene, encoding the synJ as 5'UTR under the control of 35S promoter with expression cassettes based on vectors like pBI121 or pRT100. Further, the enhancement was in most cases equivalent to that observed with the viral leader sequences known to enhance translation like Ω and AMV. In case of transformed cotton callus as well as in the roots of tobacco transgenic plants, the up-regulation mediated by synJ was much higher than that observed in the presence of both Ω as well as AMV. The enhancement mediated by synJ was found to be at the post-transcriptional level. The study also demonstrates the importance of a 5'UTR in realizing the full potential of the promoter strength. synJ has been utilized to design four cloning vectors: pGEN01, pBGEN02, pBGEN02-hpt and pBGEN02-ALSdm each of which can be used for cloning the desired transgene and achieving high level of expression in the resulting transgenic plants. CONCLUSIONS synJ, a synthetic 5'UTR, can enhance transgene expression under a strong promoter like 35S as well as under a weak promoter like nos in dicotyledonous plants. synJ can be incorporated as the 5'UTR of transgenes, especially in cases where high levels of expression is required. A set of vectors has also been designed to facilitate this process.
Collapse
Affiliation(s)
- Shaveta Kanoria
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Kumar Burma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
19
|
Dowd PF, Johnson ET, Price NP. Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome-inactivating protein and agglutinin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10768-75. [PMID: 23078237 DOI: 10.1021/jf3041337] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although many insect resistance genes have been identified, the number of studies examining their effects in combination using transgenic systems is limited. This study introduced a construct into maize containing the coding sequence for maize ribosome-inactivating protein (MRIP) and wheat germ agglutinin (WGA). Many transformants produced both the MRIP and WGA in leaves. Mature leaves expressing higher levels of these two proteins were more resistant to feeding by first-instar larvae of fall armyworms (Spodoptera frugiperda) and corn earworms (Helicoverpa zea), and the level of resistance was correlated with levels of MRIP and WGA. There was also some indication that resistance to Fusarium verticillioides was increased in the transgenic plant leaves. No statistically significant synergism or antagonism occurred between the activities of the two proteins. MRIP and WGA represent compatible class examples of food plant-derived proteins for multigene resistance to insects.
Collapse
Affiliation(s)
- Patrick F Dowd
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA.
| | | | | |
Collapse
|
20
|
Vaughn JN, Ellingson SR, Mignone F, von Arnim A. Known and novel post-transcriptional regulatory sequences are conserved across plant families. RNA (NEW YORK, N.Y.) 2012; 18:368-84. [PMID: 22237150 PMCID: PMC3285926 DOI: 10.1261/rna.031179.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The sequence elements that mediate post-transcriptional gene regulation often reside in the 5' and 3' untranslated regions (UTRs) of mRNAs. Using six different families of dicotyledonous plants, we developed a comparative transcriptomics pipeline for the identification and annotation of deeply conserved regulatory sequences in the 5' and 3' UTRs. Our approach was robust to confounding effects of poor UTR alignability and rampant paralogy in plants. In the 3' UTR, motifs resembling PUMILIO-binding sites form a prominent group of conserved motifs. Additionally, Expansins, one of the few plant mRNA families known to be localized to specific subcellular sites, possess a core conserved RCCCGC motif. In the 5' UTR, one major subset of motifs consists of purine-rich repeats. A distinct and substantial fraction possesses upstream AUG start codons. Half of the AUG containing motifs reveal hidden protein-coding potential in the 5' UTR, while the other half point to a peptide-independent function related to translation. Among the former, we added four novel peptides to the small catalog of conserved-peptide uORFs. Among the latter, our case studies document patterns of uORF evolution that include gain and loss of uORFs, switches in uORF reading frame, and switches in uORF length and position. In summary, nearly three hundred post-transcriptional elements show evidence of purifying selection across the eudicot branch of flowering plants, indicating a regulatory function spanning at least 70 million years. Some of these sequences have experimental precedent, but many are novel and encourage further exploration.
Collapse
Affiliation(s)
- Justin N. Vaughn
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sally R. Ellingson
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Flavio Mignone
- Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Albrecht von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Corresponding author.E-mail .
| |
Collapse
|
21
|
Hu J, Ni Y, Dryman BA, Meng XJ, Zhang C. Immunogenicity study of plant-made oral subunit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV). Vaccine 2012; 30:2068-74. [PMID: 22300722 DOI: 10.1016/j.vaccine.2012.01.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/14/2012] [Accepted: 01/19/2012] [Indexed: 01/11/2023]
Abstract
Currently, killed-virus and modified-live PRRSV vaccines are used to control porcine reproductive and respiratory syndrome disease (PRRS). However, very limited efficacy of killed-virus vaccines and serious safety concerns for modified-live virus vaccines demand the development of novel PRRSV vaccines. In this report, we investigated the possibility of using transgenic plants as a cost-effective and scalable system for production and delivery of a viral protein as an oral subunit vaccine against PRRSV. Corn calli were genetically engineered to produce PRRSV viral envelope-associated M protein. Both serum and intestine mucosal antigen-specific antibodies were induced by oral administration of the transgenic plant tissues to mice. In addition, serum and mucosal antibodies showed virus neutralization activity. The neutralization antibody titers after the final boost reached 6.7 in serum and 3.7 in fecal extracts, respectively. A PRRSV-specific IFN-γ response was also detected in splenocytes of vaccinated animals. These results demonstrate that transgenic corn plants are an efficient subunit vaccine production and oral delivery system for generation of both systemic and mucosal immune responses against PRRSV.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Neutralizing/analysis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Feces/chemistry
- Female
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Mucous Membrane/immunology
- Plants, Genetically Modified/genetics
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Spleen/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Zea mays/genetics
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
22
|
Lukowski SW, Bombieri C, Trezise AEO. Disrupted post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by a 5'UTR mutation is associated with a CFTR-related disease. Hum Mutat 2012; 32:E2266-82. [PMID: 21837768 DOI: 10.1002/humu.21545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is characterized as a single-gene disorder with a simple, autosomal recessive mode of inheritance. However, translation of cystic fibrosis transmembrane conductance regulator (CFTR) genotype into CF phenotype is influenced by nucleotide sequence variations at multiple genetic loci, and individuals heterozygous for CFTR mutations are predisposed to a range of CFTR-related conditions, such as disseminated bronchiectasis. CF disease severity and CFTR-related conditions are more akin to complex, multifactorial traits, which are increasingly being associated with mutations that perturb gene expression. We have identified a patient with disseminated bronchiectasis, who is heterozygous for a single-nucleotide substitution in the CFTR 5' untranslated region (UTR) (c.-34C>T). The c.-34C>T mutation creates an upstream AUG codon and upstream open reading frame that overlaps, and is out of frame with, the CFTR protein coding sequence. Using luciferase reporter constructs, we have shown that the c.-34C>T mutation decreases gene expression by 85-99%, by reducing translation efficiency and mRNA stability. This is the first CFTR regulatory mutation shown to act at a posttranscriptional level that reduces the synthesis of normal CFTR (Class V), and reaffirms the importance of regulatory mutations as a genetic basis of multifactorial phenotypes.
Collapse
Affiliation(s)
- Samuel W Lukowski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
23
|
Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features. Mol Cell Proteomics 2012; 11:M111.015131. [PMID: 22223895 DOI: 10.1074/mcp.m111.015131] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
N-terminal modifications play a major role in the fate of proteins in terms of activity, stability, or subcellular compartmentalization. Such modifications remain poorly described and badly characterized in proteomic studies, and only a few comparison studies among organisms have been made available so far. Recent advances in the field now allow the enrichment and selection of N-terminal peptides in the course of proteome-wide mass spectrometry analyses. These targeted approaches unravel as a result the extent and nature of the protein N-terminal modifications. Here, we aimed at studying such modifications in the model plant Arabidopsis thaliana to compare these results with those obtained from a human sample analyzed in parallel. We applied large scale analysis to compile robust conclusions on both data sets. Our data show strong convergence of the characterized modifications especially for protein N-terminal methionine excision, co-translational N-α-acetylation, or N-myristoylation between animal and plant kingdoms. Because of the convergence of both the substrates and the N-α-acetylation machinery, it was possible to identify the N-acetyltransferases involved in such modifications for a small number of model plants. Finally, a high proportion of nuclear-encoded chloroplast proteins feature post-translational N-α-acetylation of the mature protein after removal of the transit peptide. Unlike animals, plants feature in a dedicated pathway for post-translational acetylation of organelle-targeted proteins. The corresponding machinery is yet to be discovered.
Collapse
Affiliation(s)
- Willy V Bienvenut
- CNRS, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Xia C, Wang YJ, Li WQ, Chen YR, Deng Y, Zhang XQ, Chen LQ, Ye D. The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:189-202. [PMID: 20444226 PMCID: PMC7190160 DOI: 10.1111/j.1365-313x.2010.04237.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that subunits E (eIF3e), F (eIF3f) and H (elF3h) of eukaryotic translation initiation factor 3 play important roles in cell development in humans and yeast. eIF3e and eIF3h have also been reported to be important for normal cell growth in Arabidopsis. However, the functions of subunit eIF3f remain largely unknown in plant species. Here we report characterization of mutants for the Arabidopsis eIF3f (AteIF3f) gene. AteIF3f encodes a protein that is highly expressed in pollen grains, developing embryos and root tips, and interacts with Arabidopsis eIF3e and eIF3h proteins. A Ds insertional mutation in AteIF3f disrupted pollen germination and embryo development. Expression of some of the genes that are essential for pollen tube growth and embryogenesis is down-regulated in ateif3f-1 homozygous seedlings obtained by pollen rescue. These results suggested that AteIF3f might play important roles in Arabidopsis cell growth and differentiation in combination with eIF3e and eIF3h.
Collapse
Affiliation(s)
- Chuan Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu-Jiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Qing Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Ran Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Center for Plant Gene Research (Beijing), Beijing 100101, China
| |
Collapse
|
25
|
Roy B, Vaughn JN, Kim BH, Zhou F, Gilchrist MA, Von Arnim AG. The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA (NEW YORK, N.Y.) 2010; 16:748-61. [PMID: 20179149 PMCID: PMC2844622 DOI: 10.1261/rna.2056010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Upstream open reading frames (uORFs) are protein coding elements in the 5' leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5' leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
26
|
Agarwal S, Jha S, Sanyal I, Amla DV. Effect of point mutations in translation initiation context on the expression of recombinant human alpha(1)-proteinase inhibitor in transgenic tomato plants. PLANT CELL REPORTS 2009; 28:1791-1798. [PMID: 19834712 DOI: 10.1007/s00299-009-0779-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 09/02/2009] [Accepted: 09/19/2009] [Indexed: 05/28/2023]
Abstract
The functional and biological significance of translation initiation context sequence in determining high-level expression of modified synthetic human alpha(1)-proteinase inhibitor (alpha(1)-PI) gene was documented in stable transgenic tomato plants. Context sequence of initiator ATG codon derived from statistical analysis of databases was identified as taaA(A/C)aATGGCt in highly expressed dicot plant genes. Removal of initiator ATG context sequence reduced the expression of recombinant alpha(1)-PI protein to fourfolds. The mutation of consensus base at +4 position to a pyrimidine either alone or with substitution at -3 position eliminated most of the alpha(1)-PI expression, while mutation at -3 alone resulted in about sevenfold reduction. The presence of steady-state levels of alpha(1)-PI transcript in transgenic plants indicated that the variation in expression is entirely due to the point mutations incorporated in translation initiation context. These results indicated the significance of conserved nucleotide sequence around initiator ATG codon in augmenting post-transcriptional events and high-level expression of heterologous genes in transgenic plants.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Plant Transgenic Laboratory, National Botanical Research Institute, P.O. Box 436, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | |
Collapse
|
27
|
Ramalho AS, Lewandowska MA, Farinha CM, Mendes F, Gonçalves J, Barreto C, Harris A, Amaral MD. Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cell Physiol Biochem 2009; 24:335-46. [PMID: 19910674 PMCID: PMC2793277 DOI: 10.1159/000257426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND/AIMS Mutations in the CFTR gene cause Cystic Fibrosis (CF) the most common life-threatening autosomal recessive disease affecting Caucasians. We identified a CFTR mutation (c.120del23) abolishing the normal translation initiation codon, which occurs in two Portuguese CF patients. This study aims at functionally characterizing the effect of this novel mutation. METHODS RNA and protein techniques were applied to both native tissues from CF patients and recombinant cells expressing CFTR constructs to determine whether c.120del23 allows CFTR protein production through usage of alternative internal codons, and to characterize the putative truncated CFTR form(s). RESULTS Our data show that two shorter forms of CFTR protein are produced when the initiation translation codon is deleted indicating usage of internal initiation codons. The N-truncated CFTR generated by this mutation has decreased stability, very low processing efficiency, and drastically reduced function. Analysis of mutants of four methionine codons downstream to M1 (M82, M150, M152, M156) revealed that each of the codons M150/M152/M156 (exon 4) can mediate CFTR alternative translation. CONCLUSIONS The CFTR N-terminus has an important role in avoiding CFTR turnover and in rendering effective its plasma membrane traffic. These data correlate well with the severe clinical phenotype of CF patients bearing the c.120del23 mutation.
Collapse
Affiliation(s)
- Anabela S. Ramalho
- University of Lisboa, Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Lisboa, Portugal
- Department of Genetics, National Institute of Health, Lisboa, Portugal
| | - Marzena A. Lewandowska
- Human Molecular Genetics Program, Children's Memorial Research Center, Northwestern University, Chicago IL, USA
| | - Carlos M. Farinha
- University of Lisboa, Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Lisboa, Portugal
- Department of Genetics, National Institute of Health, Lisboa, Portugal
| | - Filipa Mendes
- University of Lisboa, Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Lisboa, Portugal
- Department of Genetics, National Institute of Health, Lisboa, Portugal
| | - Juan Gonçalves
- Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | | | - Ann Harris
- Human Molecular Genetics Program, Children's Memorial Research Center, Northwestern University, Chicago IL, USA
| | - Margarida D. Amaral
- University of Lisboa, Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Lisboa, Portugal
- Department of Genetics, National Institute of Health, Lisboa, Portugal
| |
Collapse
|
28
|
Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009; 44:143-68. [PMID: 19604130 DOI: 10.1080/10409230902882090] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Collapse
|
29
|
Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Maria NA. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:657-672. [PMID: 19656332 DOI: 10.1111/j.1467-7652.2009.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Applied Chemistry and Microbiology and Department of Applied Biology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hernández G. On the origin of the cap-dependent initiation of translation in eukaryotes. Trends Biochem Sci 2009; 34:166-75. [PMID: 19299142 DOI: 10.1016/j.tibs.2009.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 01/13/2023]
Abstract
The Shine-Dalgarno sequence of prokaryotic mRNAs, which helps to bind and position the ribosome at the start site for protein synthesis, is absent from eukaryotic mRNAs. Instead, for most, a structure at the 5' end and a much larger number of protein initiation factors are needed for both binding of the ribosome and for successful start-site selection, that is, a 'cap-dependent' initiation mechanism. Although the mechanics of this process are well studied, what is not clear is how it evolved. By analyzing recent progress in different fields, I suggest that it was the need to adjust to the arrival of the nuclear membrane and the subsequent requirement to export intron-less mRNAs to the cytoplasm that spurred the shift to the more complex translation initiation mechanism in eukaryotes.
Collapse
Affiliation(s)
- Greco Hernández
- Department of Biology, McGill University, 1205 Dr. Penfield, Montreal, QC. H3A 1B1, Canada.
| |
Collapse
|
31
|
Guetard D, Greco R, Cervantes Gonzalez M, Celli S, Kostrzak A, Langlade-Demoyen P, Sala F, Wain-Hobson S, Sala M. Immunogenicity and tolerance following HIV-1/HBV plant-based oral vaccine administration. Vaccine 2008; 26:4477-85. [PMID: 18601967 DOI: 10.1016/j.vaccine.2008.06.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/07/2008] [Accepted: 06/13/2008] [Indexed: 11/28/2022]
Abstract
Transgenic tobacco plants expressing a HIV-1 polyepitope associated with hepatitis B (HBV) virus-like particles (VLPs) were previously described. It is demonstrated here that oral administration of these transgenic plants to humanized HSB mice to boost DNA-priming can elicit anti-HIV-1 specific CD8+ T cell activation detectable in mesenteric lymph nodes. Nevertheless, a significant regulatory T cell activation was induced in vivo by the vaccination protocols. The balance between tolerance and immunogenicity remains the main concern in the proof of concept of plant-based vaccine.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Administration, Oral
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Epitopes/genetics
- Epitopes/immunology
- Female
- Flow Cytometry
- HIV-1/genetics
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/adverse effects
- Hepatitis B Vaccines/immunology
- Hepatitis B virus/genetics
- Immunization, Secondary/methods
- Lymph Nodes/immunology
- Lymphocyte Activation
- Lymphocyte Subsets/immunology
- Mice
- Plants, Genetically Modified
- T-Lymphocytes, Regulatory/immunology
- Nicotiana
- Vaccines, DNA/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/adverse effects
- Vaccines, Edible/immunology
- Vaccines, Virosome/administration & dosage
- Vaccines, Virosome/adverse effects
- Vaccines, Virosome/immunology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Denise Guetard
- Department of Virology, Unité de Rétrovirologie Moléculaire, CNRS URA 3015, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kochetov AV. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 2008; 30:683-91. [PMID: 18536038 DOI: 10.1002/bies.20771] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is widely suggested that a eukaryotic mRNA typically contains one translation start site and encodes a single functional protein product. However, according to current points of view on translation initiation mechanisms, eukaryotic ribosomes can recognize several alternative translation start sites and the number of experimentally verified examples of alternative translation is growing rapidly. Also, the frequent occurrence of alternative translation events and their functional significance are supported by the results of computational evaluations. The functional role of alternative translation and its contribution to eukaryotic proteome complexity are discussed.
Collapse
|
33
|
Primavesi LF, Wu H, Mudd EA, Day A, Jones HD. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins. Transgenic Res 2008; 17:529-43. [PMID: 17710559 DOI: 10.1007/s11248-007-9126-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications.
Collapse
|
34
|
Production of a recombinant industrial protein using barley cell cultures. Protein Expr Purif 2008; 59:274-81. [DOI: 10.1016/j.pep.2008.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 11/15/2022]
|
35
|
Trombik T, Jasinski M, Crouzet J, Boutry M. Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia. PLANT MOLECULAR BIOLOGY 2008; 66:165-75. [PMID: 18034327 DOI: 10.1007/s11103-007-9260-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 11/05/2007] [Indexed: 05/20/2023]
Abstract
ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.
Collapse
Affiliation(s)
- Tomasz Trombik
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
36
|
Nakagawa S, Niimura Y, Gojobori T, Tanaka H, Miura KI. Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res 2007; 36:861-71. [PMID: 18086709 PMCID: PMC2241899 DOI: 10.1093/nar/gkm1102] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding regulatory mechanisms of protein synthesis in eukaryotes is essential for the accurate annotation of genome sequences. Kozak reported that the nucleotide sequence GCCGCC(A/G)CCAUGG (AUG is the initiation codon) was frequently observed in vertebrate genes and that this ‘consensus’ sequence enhanced translation initiation. However, later studies using invertebrate, fungal and plant genes reported different ‘consensus’ sequences. In this study, we conducted extensive comparative analyses of nucleotide sequences around the initiation codon by using genomic data from 47 eukaryote species including animals, fungi, plants and protists. The analyses revealed that preferred nucleotide sequences are quite diverse among different species, but differences between patterns of nucleotide bias roughly reflect the evolutionary relationships of the species. We also found strong biases of A/G at position −3, A/C at position −2 and C at position +5 that were commonly observed in all species examined. Genes with higher expression levels showed stronger signals, suggesting that these nucleotides are responsible for the regulation of translation initiation. The diversity of preferred nucleotide sequences around the initiation codon might be explained by differences in relative contributions from two distinct patterns, GCCGCCAUG and AAAAAAAUG, which implies the presence of multiple molecular mechanisms for controlling translation initiation.
Collapse
Affiliation(s)
- So Nakagawa
- Department of Systems Biology, School of Biomedical Science, Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Tokyo, Japan
| | | | | | | | | |
Collapse
|
37
|
Kim BH, Cai X, Vaughn JN, von Arnim AG. On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation. Genome Biol 2007; 8:R60. [PMID: 17439654 PMCID: PMC1896003 DOI: 10.1186/gb-2007-8-4-r60] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/15/2007] [Accepted: 04/17/2007] [Indexed: 12/29/2022] Open
Abstract
Reporter transgene assays and comparative polysome-microarray analysis reveal that the intact h subunit of Arabidopsis eIF3 contributes to efficient translation initiation on mRNA leader sequences harbouring multiple uORFs. Background The eukaryotic translation initiation factor 3 (eIF3) has multiple roles during the initiation of translation of cytoplasmic mRNAs. How individual subunits of eIF3 contribute to the translation of specific mRNAs remains poorly understood, however. This is true in particular for those subunits that are not conserved in budding yeast, such as eIF3h. Results Working with stable reporter transgenes in Arabidopsis thaliana mutants, it was demonstrated that the h subunit of eIF3 contributes to the efficient translation initiation of mRNAs harboring upstream open reading frames (uORFs) in their 5' leader sequence. uORFs, which can function as devices for translational regulation, are present in over 30% of Arabidopsis mRNAs, and are enriched among mRNAs for transcriptional regulators and protein modifying enzymes. Microarray comparisons of polysome loading in wild-type and eif3h mutant seedlings revealed that eIF3h generally helps to maintain efficient polysome loading of mRNAs harboring multiple uORFs. In addition, however, eIF3h also boosted the polysome loading of mRNAs with long leaders or coding sequences. Moreover, the relative polysome loading of certain functional groups of mRNAs, including ribosomal proteins, was actually increased in the eif3h mutant, suggesting that regulons of translational control can be revealed by mutations in generic translation initiation factors. Conclusion The intact eIF3h protein contributes to efficient translation initiation on 5' leader sequences harboring multiple uORFs, although mRNA features independent of uORFs are also implicated.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Xue Cai
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | - Justin N Vaughn
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Albrecht G von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
38
|
Kochetov AV, Palyanov A, Titov II, Grigorovich D, Sarai A, Kolchanov NA. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinformatics 2007; 8:318. [PMID: 17760957 PMCID: PMC2001202 DOI: 10.1186/1471-2105-8-318] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 08/30/2007] [Indexed: 12/17/2022] Open
Abstract
Background The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties. Results We evaluated interdependency between the start codon context and mRNA secondary structure at the CDS beginning: it was found that a suboptimal start codon context significantly correlated with higher base pairing probabilities at positions 13 – 17 of CDS of human and mouse mRNAs. It is likely that the downstream hairpins are used to enhance translation of some mammalian mRNAs in vivo. Thus, we have developed a tool, AUG_hairpin, to predict local stem-loop structures located within the defined region at the beginning of mRNA coding part. The implemented algorithm is based on the available published experimental data on the CDS-located stem-loop structures influencing the recognition of upstream start codons. Conclusion An occurrence of a potential secondary structure downstream of start AUG codon in a suboptimal context (or downstream of a potential non-AUG start codon) may provide researchers with a testable assumption on the presence of additional regulatory signal influencing mRNA translation initiation rate and the start codon choice. AUG_hairpin, which has a convenient Web-interface with adjustable parameters, will make such an evaluation easy and efficient.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey Palyanov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Igor I Titov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Dmitry Grigorovich
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Akinori Sarai
- Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
39
|
|
40
|
Englert M, Latz A, Becker D, Gimple O, Beier H, Akama K. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie 2007; 89:1351-65. [PMID: 17698277 DOI: 10.1016/j.biochi.2007.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/18/2007] [Indexed: 11/19/2022]
Abstract
Splicing of precursor tRNAs in plants requires the concerted action of three enzymes: an endonuclease to cleave the intron at the two splice sites, an RNA ligase for joining the resulting tRNA halves and a 2'-phosphotransferase to remove the 2'-phosphate from the splice junction. Pre-tRNA splicing has been demonstrated to occur exclusively in the nucleus of vertebrates and in the cytoplasm of budding yeast cells, respectively. We have investigated the subcellular localization of plant splicing enzymes fused to GFP by their transient expression in Allium epidermal and Vicia guard cells. Our results show that all three classes of splicing enzymes derived from Arabidopsis and Oryza are localized in the nucleus, suggesting that plant pre-tRNA splicing takes place preferentially in the nucleus. Moreover, two of the splicing enzymes, i.e., tRNA ligase and 2'-phosphotransferase, contain chloroplast transit signals at their N-termini and are predominantly targeted to chloroplasts and proplastids, respectively. The putative transit sequences are effective also in the heterologous context fused directly to GFP. Chloroplast genomes do not encode intron-containing tRNA genes of the nuclear type and consequently tRNA ligase and 2'-phosphotransferase are not required for classical pre-tRNA splicing in these organelles but they may play a role in tRNA repair and/or splicing of atypical group II introns. Additionally, 2'-phosphotransferase-GFP fusion protein has been found to be associated with mitochondria, as confirmed by colocalization studies with MitoTracker Red. In vivo analyses with mutated constructs suggest that alternative initiation of translation is one way utilized by tRNA splicing enzymes for differential targeting.
Collapse
Affiliation(s)
- Markus Englert
- Institute of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Translational control of recombinant human acetylcholinesterase accumulation in plants. BMC Biotechnol 2007; 7:27. [PMID: 17537261 PMCID: PMC1913049 DOI: 10.1186/1472-6750-7-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/30/2007] [Indexed: 11/10/2022] Open
Abstract
Background Codon usage differences are known to regulate the levels of gene expression in a species-specific manner, with the primary factors often cited to be mRNA processing and accumulation. We have challenged this conclusion by expressing the human acetylcholinesterase coding sequence in transgenic plants in its native GC-rich sequence and compared to a matched sequence with (dicotyledonous) plant-optimized codon usage and a lower GC content. Results We demonstrate a 5 to 10 fold increase in accumulation levels of the "synaptic" splice variant of human acetylcholinesterase in Nicotiana benthamiana plants expressing the optimized gene as compared to the native human sequence. Both transient expression assays and stable transformants demonstrated conspicuously increased accumulation levels. Importantly, we find that the increase is not a result of increased levels of acetylcholinesterase mRNA, but rather its facilitated translation, possibly due to the reduced energy required to unfold the sequence-optimized mRNA. Conclusion Our findings demonstrate that codon usage differences may regulate gene expression at different levels and anticipate translational control of acetylcholinesterase gene expression in its native mammalian host as well.
Collapse
|
42
|
TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets. BMC Bioinformatics 2007; 8:160. [PMID: 17517132 PMCID: PMC1891115 DOI: 10.1186/1471-2105-8-160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/21/2007] [Indexed: 11/21/2022] Open
Abstract
Background The nucleotide sequence flanking the translation initiation codon (start codon context) affects the translational efficiency of eukaryotic mRNAs, and may indicate the presence of an alternative translation initiation site (TIS) to produce proteins with different properties. Multi-targeting may reflect the translational variability of these other protein forms. In this paper we present a web server that performs computations to investigate the usage of alternative translation initiation sites for the synthesis of new protein variants that might have different functions. Results An efficient web-based tool entitled TISs-ST (Translation Initiation Sites and Secretory Targets) evaluates putative translation initiation sites and indicates the prediction of a signal peptide of the protein encoded from this site. The TISs-ST web server is freely available to both academic and commercial users and can be accessed at . Conclusion The program can be used to evaluate alternative translation initiation site consensus with user-specified sequences, based on their composition or on many position weight matrix models. TISs-ST provides analytical and visualization tools for evaluating the periodic frequency, the consensus pattern and the total information content of a sequence data set. A search option allows for the identification of signal peptides from predicted proteins using the PrediSi software.
Collapse
|
43
|
Kochetov AV. Alternative translation start sites and their significance for eukaryotic proteomes. Mol Biol 2006. [DOI: 10.1134/s0026893306050049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Raynaud C, Sozzani R, Glab N, Domenichini S, Perennes C, Cella R, Kondorosi E, Bergounioux C. Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:395-407. [PMID: 16771839 DOI: 10.1111/j.1365-313x.2006.02799.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The proliferating cell nuclear antigen (PCNA) functions as a sliding clamp for DNA polymerase, and is thus a key actor in DNA replication. It is also involved in DNA repair, maintenance of heterochromatic regions throughout replication, cell cycle regulation and programmed cell death. Identification of PCNA partners is therefore necessary for understanding these processes. Here we identify two Arabidopsis SET-domain proteins that interact with PCNA: ATXR5 and ATXR6. A truncated ATXR5Deltaex2, incapable of interacting with PCNA, also occurs in planta. ATXR6, upregulated during the S phase, is upregulated by AtE2F transcription factors, suggesting that it is required for S-phase progression. The two proteins differ in their subcellular localization: ATXR5 has a dual localization in plastids and in the nucleus, whereas ATXR6 is solely nuclear. This indicates that the two proteins may play different roles in plant cells. However, overexpression of either ATXR5 or ATXR6 causes male sterility because of the degeneration of defined cell types. Taken together, our results suggest that both proteins may play a role in the cell cycle or DNA replication, and that the activity of ATXR5 may be regulated via its subcellular localization.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biotechnologies des Plantes, CNRS UMR 8618, Bâtiment 630, Université Paris-Sud XI, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsuda D, Dreher TW. Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. RNA (NEW YORK, N.Y.) 2006; 12:1338-49. [PMID: 16682564 PMCID: PMC1484435 DOI: 10.1261/rna.67906] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 03/30/2006] [Indexed: 05/08/2023]
Abstract
TYMV RNA supports the translation of two proteins, p69 and p206, from AUG initiation codons 7 nucleotides apart. We have studied the translation of this overlapping dicistronic mRNA with luciferase reporter RNAs electroporated into cowpea protoplasts and in toe-printing studies that map ribosomes stalled during initiation in wheat germ extracts. Agreement between these two assays indicates that the observed effects reflect ribosome initiation events. The robust expression from the downstream AUG206 codon was dependent on its closeness to the upstream AUG69 codon. Stepwise separation of these codons resulted in a gradual increase in upstream initiation and decrease in downstream initiation, and expression was converted from dicistronic to monocistronic. Selection by ribosomes for initiation between the nearby AUG codons was responsive to the sequence contexts that govern leaky scanning, but the normally strong position effect favoring upstream initiation was greatly diminished. Similar dicistronic expression was supported for RNAs with altered initiation sequences and for RNAs devoid of flanking viral sequences. Closely spaced AUG codons may thus represent an under-recognized strategy for bicistronic expression from eukaryotic mRNAs. The initiation behavior observed in these studies suggests that 5'-3' ribosome scanning involves backward excursions averaging about 15 nucleotides.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA
| | | |
Collapse
|
46
|
Navarre C, Delannoy M, Lefebvre B, Nader J, Vanham D, Boutry M. Expression and secretion of recombinant outer-surface protein A from the Lyme disease agent, Borrelia burgdorferi, in Nicotiana tabacum suspension cells. Transgenic Res 2006; 15:325-35. [PMID: 16779648 DOI: 10.1007/s11248-006-0002-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 01/11/2006] [Indexed: 11/25/2022]
Abstract
The ospA gene of Borrelia burgdorferi codes for an outer membrane lipoprotein, which is a major antigen of the Lyme disease agent. Recombinant OspA vaccines tested so far were expressed in Escherichia coli. In this study, we investigated the expression of a soluble OspA protein in Nicotiana tabacum suspension cells and evaluated the secretion of OspA driven by either its own bacterial signal peptide or a plant signal peptide fused to the amino-terminal cysteine of the mature form. In both cases, the signal peptide was cleaved off and OspA secreted. During secretion, OspA was N-glycosylated. Addition of a C-terminal KDEL sequence led to retention of OspA in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Catherine Navarre
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Vonarx EJ, Tabone EK, Osmond MJ, Anderson HJ, Kunz BA. Arabidopsis homologue of human transcription factor IIH/nucleotide excision repair factor p44 can function in transcription and DNA repair and interacts with AtXPD. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:512-21. [PMID: 16623910 DOI: 10.1111/j.1365-313x.2006.02705.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Eukaryotic general transcription factor (TF) IIH is composed of 10 proteins, seven of which are also required for nucleotide excision repair (NER) of UV radiation-induced DNA damage in human cells and yeast. Plant homologues of the human TFIIH subunits XPB and XPD that function in NER have been isolated but none has been shown to operate in transcription. Here we address the capabilities of Arabidopsis thaliana AtGTF2H2 and AtXPD, homologues of the essential interacting human/yeast TFIIH components p44/Ssl1 and XPD/Rad3, respectively. Expression of AtGTF2H2 or AtXPD cDNAs in yeast ssl1 or rad3 mutants temperature-sensitive for growth due to thermolabile transcription of mRNA restored growth and so transcription at the non-permissive temperature. AtGTF2H2 also complemented the NER deficiency of the corresponding yeast mutant, as measured by full recovery of UV resistance, whereas AtXPD did not despite being necessary for NER in Arabidopsis. UV treatment did not upregulate transcription of AtGTF2H2 or AtXPD in Arabidopsis. Suppression of a yeast translation initiation defect by the ssl1-1 mutation was prevented by expression of AtGTF2H2. Deletion of SSL1 in a yeast strain expressing AtGTF2H2 did not affect growth or confer UV sensitivity, demonstrating that AtGTF2H2 can perform all essential transcription functions and UV damage repair duties of Ssl1 in its absence. Furthermore, AtGTF2H2 interacted with AtXPD and yeast Rad3, and AtXPD also interacted with yeast Ssl1 in two-hybrid assays. Our results indicate that AtGTF2H2 can act in transcription and NER, and suggest that it participates in both processes in Arabidopsis as part of TFIIH.
Collapse
Affiliation(s)
- Edward J Vonarx
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | | | | | |
Collapse
|
48
|
Volkova OA, Titov SE, Kochetov AV. Correlation between the contexts of the translation initiation signal and the N-terminal sequence of arabidopsis, yeast, mouse, and human proteins. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906070037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Dreher TW, Miller WA. Translational control in positive strand RNA plant viruses. Virology 2006; 344:185-97. [PMID: 16364749 PMCID: PMC1847782 DOI: 10.1016/j.virol.2005.09.031] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 09/10/2005] [Indexed: 01/28/2023]
Abstract
The great variety of genome organizations means that most plant positive strand viral RNAs differ from the standard 5'-cap/3'-poly(A) structure of eukaryotic mRNAs. The cap and poly(A) tail recruit initiation factors that support the formation of a closed loop mRNA conformation, the state in which translation initiation is most efficient. We review the diverse array of cis-acting sequences present in viral mRNAs that compensate for the absence of a cap, poly(A) tail, or both. We also discuss the cis-acting sequences that control translation strategies that both amplify the coding potential of a genome and regulate the accumulations of viral gene products. Such strategies include leaky scanning initiation of translation of overlapping open reading frames, stop codon readthrough, and ribosomal frameshifting. Finally, future directions for research on the translation of plant positive strand viruses are discussed.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Gene Research and Biotechnology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
50
|
Ducos E, Fraysse S, Boutry M. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS Lett 2005; 579:6791-5. [PMID: 16337204 DOI: 10.1016/j.febslet.2005.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/28/2005] [Accepted: 11/05/2005] [Indexed: 10/25/2022]
Abstract
In plants, the ABC transporter PDR (pleiotropic drug resistance) subfamily is composed of approximately 15 genes, few of which have been analyzed. We have identified NtPDR3, a Nicotiana tabacum PDR gene belonging to a cluster for which no functional data was previously available. NtPDR3 was found to be induced in suspension cells treated with methyl jasmonate, salicylic acid, 1-naphthalene acetic acid, or cembrene, a macrocyclic diterpene. In agreement with the identification of a putative iron deficiency element in the NtPDR3 transcription promoter region, we found that iron deficiency in the culture medium induced NtPDR3 expression, thus suggesting a new function of the PDR transporter family.
Collapse
Affiliation(s)
- Eric Ducos
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud, 5, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|