1
|
Zhang Y, Wei Y, Zheng T, Tao Y, Sun Y, Jiang D, Tao J. Adiponectin receptor 1-mediated stimulation of Cav3.2 channels in trigeminal ganglion neurons induces nociceptive behaviors in mice. J Headache Pain 2023; 24:117. [PMID: 37620777 PMCID: PMC10463856 DOI: 10.1186/s10194-023-01658-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Adipokines, including adiponectin, are implicated in nociceptive pain; however, the underlying cellular and molecular mechanisms remain unknown. METHODS Using electrophysiological recording, immunostaining, molecular biological approaches and animal behaviour tests, we elucidated a pivotal role of adiponectin in regulating membrane excitability and pain sensitivity by manipulating Cav3.2 channels in trigeminal ganglion (TG) neurons. RESULTS Adiponectin enhanced T-type Ca2+ channel currents (IT) in TG neurons through the activation of adiponectin receptor 1 (adipoR1) but independently of heterotrimeric G protein-mediated signaling. Coimmunoprecipitation revealed a physical association between AdipoR1 and casein kinase II alpha-subunits (CK2α) in the TG, and inhibiting CK2 activity by chemical inhibitor or siRNA targeting CK2α prevented the adiponectin-induced IT response. Adiponectin significantly activated protein kinase C (PKC), and this effect was abrogated by CK2α knockdown. Adiponectin increased the membrane abundance of PKC beta1 (PKCβ1). Blocking PKCβ1 pharmacologically or genetically abrogated the adiponectin-induced IT increase. In heterologous expression systems, activation of adipoR1 induced a selective enhancement of Cav3.2 channel currents, dependent on PKCβ1 signaling. Functionally, adiponectin increased TG neuronal excitability and induced mechanical pain hypersensitivity, both attenuated by T-type channel blockade. In a trigeminal neuralgia model induced by chronic constriction injury of infraorbital nerve, blockade of adipoR1 signaling suppressed mechanical allodynia, which was prevented by silencing Cav3.2. CONCLUSION Our study elucidates a novel signaling cascade wherein adiponectin stimulates TG Cav3.2 channels via adipoR1 coupled to a novel CK2α-dependent PKCβ1. This process induces neuronal hyperexcitability and pain hypersensitivity. Insight into adipoR-Cav3.2 signaling in sensory neurons provides attractive targets for pain treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Clinical Research Center of Neurological Disease & Department of Geriatrics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004 People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Yuan Wei
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| | - Tingting Zheng
- Clinical Research Center of Neurological Disease & Department of Geriatrics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004 People’s Republic of China
| | - Yu Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Yufang Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| |
Collapse
|
2
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
3
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci Rep 2019; 9:4332. [PMID: 30867503 PMCID: PMC6416243 DOI: 10.1038/s41598-019-40823-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that memory consolidation requires de-novo transcription of memory-related genes. Epigenetic modifications, particularly histone acetylation, may facilitate gene transcription, but their potential molecular targets are poorly characterized. In the current study, we addressed the question of epigenetic control of atypical protein kinases (aPKC) that are critically involved in memory consolidation and maintenance. We examined the patterns of expression of two aPKC genes (Prkci and Prkcz) in rat cultured cortical neurons treated with histone deacetylase inhibitors. Histone hyperacetylation in the promoter region of Prkci gene elicited direct activation of transcriptional machinery, resulting in increased production of PKCλ mRNA. In parallel, histone hyperacetylation in the upstream promoter of Prkcz gene led to appearance of the corresponding PKCζ transcripts that are almost absent in the brain in resting conditions. In contrast, histone hyperacetylation in the downstream promoter of Prkcz gene was accompanied by a decreased expression of the brain-specific PKMζ products. We showed that epigenetically-triggered differential expression of PKMζ and PKCζ mRNA depended on protein synthesis. Summarizing, our results suggest that genes, encoding memory-related aPKC, may represent the molecular targets for epigenetic regulation through posttranslational histone modifications.
Collapse
|
5
|
Gao PP, Goodman JH, Sacktor TC, Francis JT. Persistent Increases of PKMζ in Sensorimotor Cortex Maintain Procedural Long-Term Memory Storage. iScience 2018; 5:90-98. [PMID: 30240648 PMCID: PMC6123865 DOI: 10.1016/j.isci.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023] Open
Abstract
Procedural motor learning and memory are accompanied by changes in synaptic plasticity, neural dynamics, and synaptogenesis. Missing is information on the spatiotemporal dynamics of the molecular machinery maintaining these changes. Here we examine whether persistent increases in PKMζ, an atypical protein kinase C (PKC) isoform, store long-term memory for a reaching task in rat sensorimotor cortex that could reveal the sites of procedural memory storage. Specifically, perturbing PKMζ synthesis (via antisense oligodeoxynucleotides) and blocking atypical PKC activity (via zeta inhibitory peptide [ZIP]) in S1/M1 disrupts and erases long-term motor memory maintenance, indicating atypical PKCs and specifically PKMζ store consolidated long-term procedural memories. Immunostaining reveals that PKMζ increases in S1/M1 layers II/III and V as performance improved to an asymptote. After storage for 1 month without reinforcement, the increase in M1 layer V persists without decrement. Thus, the persistent increases in PKMζ that store long-term procedural memory are localized to the descending output layer of the primary motor cortex. Perturbing PKMζ synthesis in S1/M1 slows the formation of skilled motor memory Blocking PKMζ activity specifically erases memories maintained without reinforcement Skilled motor learning induces the increase of PKMζ in S1/M1 layers II/III and V PKMζ sustains the engram for procedural motor memory in M1 layer V
Collapse
Affiliation(s)
- Peng Penny Gao
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jeffrey H Goodman
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Developmental Neurobiology, New York State Institute for Basic Research, Staten Island, NY 10314, USA; Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Joseph Thachil Francis
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
6
|
Abstract
Synthesizing, localizing, and stabilizing new protein copies at synapses are crucial factors in maintaining the synaptic changes required for storing long-term memories. PKMζ recently emerged as a molecule putatively responsible for maintaining encoded memories over time because its presence correlates with late LTP and because its inhibition disrupts LTP in vitro and long-term memory storage in vivo. Here we investigated PKMζ stability in rat neurons to better understand its role during information encoding and storage. We used TimeSTAMP reporters to track the synthesis and degradation of PKMζ as well as a related atypical PKC, PKCλ. These reporters revealed that both PKMζ and PKCλ were upregulated after chemical LTP induction; however, these new PKMζ copies exhibited more rapid turnover than basally produced PKMζ, particularly in dendritic spines. In contrast to PKMζ, new PKCλ copies exhibited elevated stability. Stable information storage over long periods of time is more challenging the shorter the metabolic lifetime of the candidate molecules.
Collapse
|
7
|
Jalil SJ, Sacktor TC, Shouval HZ. Atypical PKCs in memory maintenance: the roles of feedback and redundancy. ACTA ACUST UNITED AC 2015; 22:344-53. [PMID: 26077687 PMCID: PMC4478332 DOI: 10.1101/lm.038844.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due to molecular turnover and diffusion, leading to a fundamental question: how can this transient molecular machinery store memories lasting a lifetime? Because the persistent changes in efficacy are synapse-specific, the underlying molecular mechanisms must to a degree reside locally in synapses. Extensive experimental evidence points to atypical protein kinase C (aPKC) isoforms as key components involved in memory maintenance. Furthermore, it is evident that establishing long-term memory requires new protein synthesis. However, a comprehensive model has not been developed describing how these components work to preserve synaptic efficacies over time. We propose a molecular model that can account for key empirical properties of L-LTP, including its protein synthesis dependence, dependence on aPKCs, and synapse-specificity. Simulations and empirical data suggest that either of the two aPKC subtypes in hippocampal neurons, PKMζ and PKCι/λ, can maintain L-LTP, making the system more robust. Given genetic compensation at the level of synthesis of these PKC subtypes as in knockout mice, this system is able to maintain L-LTP and memory when one of the pathways is eliminated.
Collapse
Affiliation(s)
- Sajiya J Jalil
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Todd Charlton Sacktor
- Department of Physiology, Pharmacology, Anesthesiology, and Neurology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Harel Z Shouval
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Zhang Y, Qin W, Qian Z, Liu X, Wang H, Gong S, Sun YG, Snutch TP, Jiang X, Tao J. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Sci Signal 2014; 7:ra94. [DOI: 10.1126/scisignal.2005283] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Hardt O, Nader K, Wang YT. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130141. [PMID: 24298143 DOI: 10.1098/rstb.2013.0141] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.
Collapse
Affiliation(s)
- Oliver Hardt
- Centre for Cognitive and Neural Systems, University of Edinburgh, , Edinburgh, UK
| | | | | |
Collapse
|
10
|
Sleep-dependent declarative memory consolidation--unaffected after blocking NMDA or AMPA receptors but enhanced by NMDA coagonist D-cycloserine. Neuropsychopharmacology 2013; 38:2688-97. [PMID: 23887151 PMCID: PMC3828540 DOI: 10.1038/npp.2013.179] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023]
Abstract
Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors.
Collapse
|
11
|
Liu W, Dong J, Wang Y, Xi Q, Chen J. Developmental iodine deficiency and hypothyroidism impairedin vivosynaptic plasticity and altered PKC activity and GAP-43 expression in rat hippocampus. Nutr Neurosci 2013. [DOI: 10.1179/147683010x12611460764525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Hardt O, Nader K, Nadel L. Decay happens: the role of active forgetting in memory. Trends Cogn Sci 2013; 17:111-20. [DOI: 10.1016/j.tics.2013.01.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 02/06/2023]
|
13
|
Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 2012; 63:1227-37. [DOI: 10.1016/j.neuropharm.2012.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 01/02/2023]
|
14
|
Sacktor TC. Memory maintenance by PKMζ--an evolutionary perspective. Mol Brain 2012; 5:31. [PMID: 22986281 PMCID: PMC3517905 DOI: 10.1186/1756-6606-5-31] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
Long-term memory is believed to be maintained by persistent modifications of synaptic transmission within the neural circuits that mediate behavior. Thus, long-term potentiation (LTP) is widely studied as a potential physiological basis for the persistent enhancement of synaptic strength that might sustain memory. Whereas the molecular mechanisms that initially induce LTP have been extensively characterized, the mechanisms that persistently maintain the potentiation have not. Recently, however, a candidate molecular mechanism linking the maintenance of LTP and the storage of long-term memory has been identified. The persistent activity of the autonomously active, atypical protein kinase C (aPKC) isoform, PKMζ, is both necessary and sufficient for maintaining LTP. Furthermore, blocking PKMζ activity by pharmacological or dominant negative inhibitors disrupts previously stored long-term memories in a variety of neural circuits, including spatial and trace memories in the hippocampus, aversive memories in the basolateral amygdala, appetitive memories in the nucleus accumbens, habit memory in the dorsal lateral striatum, and elementary associations, extinction, and skilled sensorimotor memories in the neocortex. During LTP and memory formation, PKMζ is synthesized de novo as a constitutively active kinase. This molecular mechanism for memory storage is evolutionarily conserved. PKMζ formation through new protein synthesis likely originated in early vertebrates ~500 million years ago during the Cambrian period. Other mechanisms for forming persistently active PKM from aPKC are found in invertebrates, and inhibiting this atypical PKM disrupts long-term memory in the invertebrate model systems Drosophila melanogaster and Aplysia californica. Conversely, overexpressing PKMζ enhances memory in flies and rodents. PKMζ persistently enhances synaptic strength by maintaining increased numbers of AMPA receptors at postsynaptic sites, a mechanism that might have evolved from the general function of aPKC in trafficking membrane proteins to the apical compartment of polarized cells. This mechanism of memory may have had adaptive advantages because it is both stable and reversible, as demonstrated by the downregulation of experience-dependent, long-term increases in PKMζ after extinction and reconsolidation blockade that attenuate learned behavior. Thus, PKMζ, the “working end” of LTP, is a component of an evolutionarily conserved molecular mechanism for the persistent, yet flexible storage of long-term memory.
Collapse
Affiliation(s)
- Todd Charlton Sacktor
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 10705, USA.
| |
Collapse
|
15
|
Smolen P, Baxter DA, Byrne JH. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model. PLoS Comput Biol 2012; 8:e1002620. [PMID: 22876169 PMCID: PMC3410876 DOI: 10.1371/journal.pcbi.1002620] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/12/2012] [Indexed: 01/17/2023] Open
Abstract
Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been “tagged” by a stimulus sufficient for LTP and learning can “capture” PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance. A fundamental problem in neurobiology is to understand how memories are maintained for up to years. Long-term potentiation (LTP), an enduring increase in the strength of specific connections (synapses) between neurons, is thought to comprise, at least in part, the substrate of learning and memory. What processes transduce brief stimuli into persistent LTP? Persistent increased activity of an enzyme denoted protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Only synapses that have been “tagged” by a stimulus, such as stimuli needed for LTP and learning, can “capture” PKMζ. We developed a model simulating dynamics of key molecules required for LTP and its opposite, long-term depression (LTD). The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. It makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP and memory is predicted to require positive feedback in which PKMζ enhances its own synthesis at potentiated synapses. Without synaptic capture of PKMζ, no positive feedback would occur. LTD induction is also predicted to increase PKMζ synthesis. The model also makes predictions about regulation of PKMζ synthesis. Experiments testing the above predictions would advance the understanding of memory maintenance.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas, United States of America.
| | | | | |
Collapse
|
16
|
Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-α and βI isozymes. Cell Biol Int 2012; 35:953-9. [PMID: 21323641 DOI: 10.1042/cbi20100668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteinuria is a common feature for almost all glomerular diseases and reflects the severity of the glomerular lesion. The presence of a large amount of proteins in tubular fluid, however, may also contribute to the development of RIF (renal interstitial fibrosis). Endocytosis of albumin in proximal tubular cells triggers PKC (protein kinase C)-dependent generation of reactive oxygen species and secretion of chemokines. As a family including 12 isozymes, which PKC isozymes participate in RIF is still unclear. EMT (epithelial-mesenchymal transdifferentiation) of RTECs (renal tubular epithelial cells) plays a crucial role in the progress of RIF induced by proteinuria. In the present study, we investigated the role of classical PKC isozymes in the proteinuria-induced EMT of RTECs. Employing immunochemical staining, we found that PKC-α, -βI and -βII were expressed in glomerulus and in RTECs in both normal and diseased renal tissues, while PKC-γ was only expressed in podocytes in the glomerulus. Treatment of HK-2 cells with extracted urinary proteins resulted in EMT, as evidenced by morphological changes, decreased E-cadherin expression, increased α-SMA (α-smooth muscle actin) expression, as well as production of type I collagen and fibronectin. Western blot analysis of PKC isozymes in the cytosolic compared with membrane fraction revealed translocation of PKC-α and -βI, but not PKC-βII, in HK-2 cells undergoing EMT. Pretreatment with selective PKC-α inhibitor G-6976 or PKC-β inhibitor significantly attenuated EMT induced by urinary proteins. In summary, the present study suggested that PKC-α and -βI play critical roles in the EMT of RTECs in response to urinary proteins.
Collapse
|
17
|
Lee SHC, Taylor K, Krasne FB. Reciprocal stimulation of decay between serotonergic facilitation and depression of synaptic transmission. J Neurophysiol 2008; 100:1113-26. [PMID: 18562553 DOI: 10.1152/jn.90267.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serotonin can produce multiple, contradictory modulatory effects on strength of synaptic transmission in both vertebrate and invertebrate nerve circuits. In crayfish, serotonin (5-HT) can both facilitate and depress transmission to lateral giant escape command neurons; however, which effect is manifest during application, as well as the sign and duration of effects that may continue long after 5-HT washout, may depend on history of application as well as on concentration. We report that protein kinase A (PKA) signaling is essential to the production of facilitation but depression is mediated by non-cAMP/PKA signaling pathways. However, we unexpectedly found that PKA activity is essential for the decay of depression when serotonin is washed out. This, and evidence from the effects of a variety of serotonin application regimens, suggest that facilitatory and depressive states coexist and compete and that the decay of each is dependent on stimulation by the other. A computational model that incorporates these assumptions can account for and rationalize the varied effects of a wide range of serotonin application regimens.
Collapse
|
18
|
Le Roux N, Amar M, Fossier P. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity]. ACTA ACUST UNITED AC 2008; 202:143-60. [PMID: 18547512 DOI: 10.1051/jbio:2008018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synaptic plasticity is the cellular mechanism underlying the phenomena of learning and memory. Much of the research on synaptic plasticity is based on the postulate of Hebb (1949) who proposed that, when a neuron repeatedly takes part in the activation of another neuron, the efficacy of the connections between these neurons is increased. Plasticity has been extensively studied, and often demonstrated through the processes of LTP (Long Term Potentiation) and LTD (Long Term Depression), which represent an increase and a decrease of the efficacy of long-term synaptic transmission. This review summarizes current knowledge concerning the cellular mechanisms of LTP and LTD, whether at the level of excitatory synapses, which have been the most studied, or at the level of inhibitory synapses. However, if we consider neuronal networks rather than the individual synapses, the consequences of synaptic plasticity need to be considered on a large scale to determine if the activity of networks are changed or not. Homeostatic plasticity takes into account the mechanisms which control the efficacy of synaptic transmission for all the synaptic inputs of a neuron. Consequently, this new concept deals with the coordinated activity of excitatory and inhibitory networks afferent to a neuron which maintain a controlled level of excitability during the acquisition of new information related to the potentiation or to the depression of synaptic efficacy. We propose that the protocols of stimulation used to induce plasticity at the synaptic level set up a "homeostatic potentiation" or a "homeostatic depression" of excitation and inhibition at the level of the neuronal networks. The coordination between excitatory and inhibitory circuits allows the neuronal networks to preserve a level of stable activity, thus avoiding episodes of hyper- or hypo-activity during the learning and memory phases.
Collapse
Affiliation(s)
- Nicolas Le Roux
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire - UPR9040, 91198 Gif sur Yvette, France.
| | | | | |
Collapse
|
19
|
Sacktor TC. Chapter 2 PKMζ, LTP maintenance, and the dynamic molecular biology of memory storage. PROGRESS IN BRAIN RESEARCH 2008; 169:27-40. [DOI: 10.1016/s0079-6123(07)00002-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Pöschel B, Stanton PK. Comparison of cellular mechanisms of long-term depression of synaptic strength at perforant path-granule cell and Schaffer collateral-CA1 synapses. PROGRESS IN BRAIN RESEARCH 2007; 163:473-500. [PMID: 17765734 DOI: 10.1016/s0079-6123(07)63026-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter compares the cellular mechanisms that have been implicated in the induction and expression of long-term depression (LTD) at Schaffer collateral-CA1 synapses to perforant path-dentate gyrus (DG) synapses. In general, Schaffer collateral LTD and long-term potentiation (LTP) both appear to be a complex combination of many alterations in synaptic transmission that occur at both presynaptic and postsynaptic sites, while at perforant path synapses, most evidence has focused on postsynaptic long-term alterations. Within the DG, the medial perforant path is far more studied than lateral perforant path synapses, where most evidence relates to the induction of heterosynaptic LTD at lateral perforant path synapses when LTP is induced in the medial perforant path. Of course, there remain many other classes of synapses in the DG where synaptic plasticity, including LTD, have been largely neglected. It is clear that a better understanding of the range of DG loci where long-lasting activity-dependent plasticity, both LTD and LTP, are expressed will be essential to improve our understanding of the cognitive roles of such DG plasticity.
Collapse
Affiliation(s)
- Beatrice Pöschel
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
21
|
van der Heide LP, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: Learning to survive. Prog Neurobiol 2006; 79:205-21. [PMID: 16916571 DOI: 10.1016/j.pneurobio.2006.06.003] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/19/2006] [Accepted: 06/23/2006] [Indexed: 12/23/2022]
Abstract
Insulin is best known for its role in peripheral glucose homeostasis. Less studied, but not less important, is its role in the central nervous system. Insulin and its receptor are located in the central nervous system and are both implicated in neuronal survival and synaptic plasticity. Interestingly, over the past few years it has become evident that the effects of insulin, on neuronal survival and synaptic plasticity, are mediated by a common signal transduction cascade, which has been identified as "the PI3K route". This route has turned out to be a major integrator of insulin signaling in the brain. A pronounced feature of this insulin-activated route is that it promotes survival by directly inactivating the pro-apoptotic machinery. Interestingly, it is this same route that is required for the induction of long-term potentiation and depression, basic processes underlying learning and memory. This leads to the hypothesis that the PI3K route forms a direct link between learning and memory and neuronal survival. The implications of this hypothesis are far reaching, since it provides an explanation why insulin has beneficial effects on learning and memory and how synaptic activity can prevent cellular degeneration. Applying this knowledge may provide novel therapeutic approaches in the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Lars P van der Heide
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
22
|
Codazzi F, Di Cesare A, Chiulli N, Albanese A, Meyer T, Zacchetti D, Grohovaz F. Synergistic control of protein kinase Cgamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons. J Neurosci 2006; 26:3404-11. [PMID: 16571747 PMCID: PMC6673850 DOI: 10.1523/jneurosci.0478-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conventional protein kinase C (PKC) isoforms are abundant neuronal signaling proteins with important roles in regulating synaptic plasticity and other neuronal processes. Here, we investigate the role of ionotropic and metabotropic glutamate receptor (iGluR and mGluR, respectively) activation on the generation of Ca2+ and diacylglycerol (DAG) signals and the subsequent activation of the neuron-specific PKCgamma isoform in hippocampal neurons. By combining Ca2+ imaging with total internal reflection microscopy analysis of specific biosensors, we show that elevation of both Ca2+ and DAG is necessary for sustained translocation and activation of EGFP (enhanced green fluorescent protein)-PKCgamma. Both DAG production and PKCgamma translocation were localized processes, typically observed within discrete microdomains along the dendritic branches. Markedly, intermediate-strength NMDA receptor (NMDAR) activation or moderate electrical stimulation generated Ca2+ but no DAG signals, whereas mGluR activation generated DAG but no Ca2+ signals. Both receptors were needed for PKCgamma activation. This suggests that a coincidence detection process exists between iGluRs and mGluRs that relies on a molecular coincidence detection process based on the corequirement of Ca2+ and DAG for PKCgamma activation. Nevertheless, the requirement for costimulation with mGluRs could be overcome for maximal NMDAR stimulation through a direct production of DAG via activation of the Ca2+-sensitive PLCdelta (phospholipase Cdelta) isoform. In a second important exception, mGluRs were sufficient for PKCgamma activation in neurons in which Ca2+ stores were loaded by previous electrical activity. Together, the dual activation requirement for PKCgamma provides a plausible molecular interpretation for different synergistic contributions of mGluRs to long-term potentiation and other synaptic plasticity processes.
Collapse
|
23
|
Abstract
LTP and LTD, the long-term potentiation and depression of excitatory synaptic transmission, are widespread phenomena expressed at possibly every excitatory synapse in the mammalian brain. It is now clear that "LTP" and "LTD" are not unitary phenomena. Their mechanisms vary depending on the synapses and circuits in which they operate. Here we review those forms of LTP and LTD for which mechanisms have been most firmly established. Examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.
Collapse
Affiliation(s)
- Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
24
|
Age-related changes in synaptic phosphorylation and dephosphorylation. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1566-3124(04)16006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Smith L, Smith JB. Lack of constitutive activity of the free kinase domain of protein kinase C zeta. Dependence on transphosphorylation of the activation loop. J Biol Chem 2002; 277:45866-73. [PMID: 12244101 DOI: 10.1074/jbc.m206420200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following the induction of apoptosis in mammalian cells, protein kinase C zeta (PKC zeta) is processed between the regulatory and catalytic domains by caspases, which increases its kinase activity. The catalytic domain fragments of PKC isoforms are considered to be constitutively active, because they lack the autoinhibitory amino-terminal regulatory domain, which includes a pseudosubstrate segment that plugs the active site. Phosphorylation of the activation loop at Thr(410) is known to be sufficient to activate the kinase function of full-length PKC zeta, apparently by inducing a conformational change, which displaces the amino-terminal pseudosubstrate segment from the active site. Amino acid substitutions for Thr(410) of the catalytic domain of PKC zeta (CAT zeta) essentially abolished the kinase function of ectopically expressed CAT zeta in mammalian cells. Similarly, substitution of Ala for a Phe of the docking motif for phosphoinositide-dependent kinase-1 prevented activation loop phosphorylation and abolished the kinase activity of CAT zeta. Treatment of purified CAT zeta with the catalytic subunit of protein phosphatase 1 decreased activation loop phosphorylation and kinase activity. Recombinant CAT zeta from bacteria lacked detectable kinase activity. Phosphoinositide-dependent kinase-1 phosphorylated the activation loop and activated recombinant CAT zeta from bacteria. Treatment of HeLa cells with fetal bovine serum markedly increased the phosphothreonine 410 content of CAT zeta and stimulated its kinase activity. These findings indicate that the catalytic domain of PKC zeta is intrinsically inactive and dependent on the transphosphorylation of the activation loop.
Collapse
Affiliation(s)
- Lucinda Smith
- Department of Pharmacology and Toxicology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|