1
|
Andreatta T, Armini RS, Salaroli R, Vieira GM, Tavares CVC, Sanches H, Aguiar RM, Campos FV, Schenberg LC. Role of L- and T-type voltage-dependent calcium channels in the hierarchical organization of defensive responses to electrical stimulation of the rat dorsolateral periaqueductal gray. Neuropharmacology 2024; 258:110059. [PMID: 38992791 DOI: 10.1016/j.neuropharm.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-μA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.
Collapse
Affiliation(s)
- Tatiani Andreatta
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rubia Souza Armini
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Ruam Salaroli
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Guilherme Machado Vieira
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | | | - Hugo Sanches
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rafael Moraes Aguiar
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Biochemistry and Immunology, Health Science Center, Federal University of Minas Gerais, Brazil.
| | - Fabiana Vasconcelos Campos
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Morphology, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
2
|
Casillas-Espinosa PM, Lin R, Li R, Nandakumar NM, Dawson G, Braine EL, Martin B, Powell KL, O'Brien TJ. Effects of the T-type calcium channel Ca V3.2 R1584P mutation on absence seizure susceptibility in GAERS and NEC congenic rats models. Neurobiol Dis 2023:106217. [PMID: 37391087 DOI: 10.1016/j.nbd.2023.106217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
RATIONALE Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Rui Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Nanditha M Nandakumar
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Georgia Dawson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Emma L Braine
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
| | - Benoît Martin
- Univ Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| |
Collapse
|
3
|
Pulvirenti G, Caccamo M, Lo Bianco M, Mazzurco M, Praticò ER, Giallongo A, Gangi G, Zanghì A, Falsaperla R. Calcium Channels Genes and Their Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:224-234. [DOI: 10.1055/s-0041-1728684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractCalcium (Ca2+) channel gene mutations play an important role in the pathogenesis of neurological episodic disorders like epilepsy. CACNA1A and CACNA1H genes are involved in the synthesis of calcium channels. Mutations in the α1A subunit of the P/Q type voltage-gated calcium channel gene (CACNA1A) located in 19p13.13, which encodes for the transmembrane pore-forming subunit of CAV2.1 voltage-dependent calcium channel, have been correlated to a large clinical spectrum of epilepsy such as idiopathic genetic epilepsy, early infantile epilepsy, and febrile seizures. Moreover, CACNA1A mutations have been demonstrated to be involved in spinocerebellar ataxia type 6, familiar hemiplegic migraine, episodic ataxia type 2, early-onset encephalopathy, and hemiconvulsion–hemiplegia epilepsy syndrome. This wide phenotype heterogeneity associated with CACNA1A mutations is correlated to different clinical and electrophysiological manifestations. CACNA1H gene, located in 16p13.3, encodes the α1H subunit of T-type calcium channel, expressing the transmembrane pore-forming subunit Cav3.2. Despite data still remain controversial, it has been identified as an important gene whose mutations seem strictly related to the pathogenesis of childhood absence epilepsy and other generalized epilepsies. The studied variants are mainly gain-of-function, hence responsible for an increase in neuronal susceptibility to seizures. CACNA1H mutations have also been associated with autism spectrum disorder and other behavior disorders. More recently, also amyotrophic lateral sclerosis has been related to CACNA1H alterations. The aim of this review, other than describe the CACNA1A and CACNA1H gene functions, is to identify mutations reported in literature and to analyze their possible correlations with specific epileptic disorders, purposing to guide an appropriate medical treatment recommendation.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | - Alessandro Giallongo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gloria Gangi
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
4
|
Mustafá ER, Gambeta E, Stringer RN, Souza IA, Zamponi GW, Weiss N. Electrophysiological and computational analysis of Ca v3.2 channel variants associated with familial trigeminal neuralgia. Mol Brain 2022; 15:91. [PMID: 36397158 PMCID: PMC9670400 DOI: 10.1186/s13041-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Trigeminal neuralgia (TN) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paroxysms of electric shock-like or stabbing pain in a region of the face. While most cases occur in a sporadic manner and are accompanied by intracranial vascular compression of the trigeminal nerve root, alteration of ion channels has emerged as a potential exacerbating factor. Recently, whole exome sequencing analysis of familial TN patients identified 19 rare variants in the gene CACNA1H encoding for Cav3.2T-type calcium channels. An initial analysis of 4 of these variants pointed to a pathogenic role. In this study, we assessed the electrophysiological properties of 13 additional TN-associated Cav3.2 variants expressed in tsA-201 cells. Our data indicate that 6 out of the 13 variants analyzed display alteration of their gating properties as evidenced by a hyperpolarizing shift of their voltage dependence of activation and/or inactivation resulting in an enhanced window current supported by Cav3.2 channels. An additional variant enhanced the recovery from inactivation. Simulation of neuronal electrical membrane potential using a computational model of reticular thalamic neuron suggests that TN-associated Cav3.2 variants could enhance neuronal excitability. Altogether, the present study adds to the notion that ion channel polymorphisms could contribute to the etiology of some cases of TN and further support a role for Cav3.2 channels.
Collapse
Affiliation(s)
- Emilio R. Mustafá
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eder Gambeta
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Robin N. Stringer
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana A. Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Norbert Weiss
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
6
|
Alvi AM, Shah FA, Muhammad AJ, Feng J, Li S. 1,3,4, Oxadiazole Compound A3 Provides Robust Protection Against PTZ-Induced Neuroinflammation and Oxidative Stress by Regulating Nrf2-Pathway. J Inflamm Res 2022; 14:7393-7409. [PMID: 35002275 PMCID: PMC8721032 DOI: 10.2147/jir.s333451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Epilepsy is a common neurological disorder that is characterized by recurrent episodes of seizures. Various studies have demonstrated a direct association between oxidative stress and inflammation in several neurological disorders including epilepsy. This study aimed to investigate the neuroprotective effects of a synthetic 1,3,4, oxadiazole compound A3 against pentylenetetrazole (PTZ)-induced kindling and seizure model. Methodology PTZ was administered in a sub-convulsive dose of 40 mg/kg for 15 days, at 48-hour intervals to male Swiss-Albino mice until animals were fully kindled. Two different doses of A3 (10 mg/kg and 30 mg/kg) were administered to find out the effective dose of A3 and to further demonstrate the relative role of nuclear factor E2-related factor (Nrf2) in the PTZ-induced kindled model. Results Our results demonstrated a compromised antioxidant capacity associated with a low level of catalase (CAT), superoxide dismutase (SOD), glutathione (GST), and glutathione S-transferase (GSH) in the kindled group. However, the PTZ-induced group demonstrated an elevated level of lipid peroxidation (LPO) level parallel to pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), mediators as cyclooxygenase (COX-2), and nuclear factor kappa B (NFκB). Furthermore, the A3 treatment reversed these changes and overexpressed the antioxidant Nrf2 gene and its downstream HO-1. To further investigate the involvement of Nrf2, we employed an Nrf2-inhibitor, ie, all-trans retinoic acid (ATRA), that further aggravated the PTZ toxicity. Moreover, vascular endothelial growth factor (VEGF) expression was evaluated to assess the extent of BBB disruption. Conclusion The findings of this study suggest that A3 could mediate neuroprotection possibly by activating Nrf2 dependent downregulation of inflammatory cascades.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asmaa Jan Muhammad
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Wei Z, Liu C, Wu Z, Cao M, Qiao X, Han T, Zhang Y, Liu Y, Deng Y. The prognosis of epilepsy patients with CACNA1H missense variants: A longitudinal cohort study. Seizure 2021; 91:52-59. [PMID: 34098317 DOI: 10.1016/j.seizure.2021.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE CACNA1H is regarded as a gene conferring susceptibility to generalised epilepsy. However, the prognosis of epilepsy patients carrying the CACNA1H missense variants of uncertain significance (VUS) is unknown. A prospective cohort was generated to determine the deleterious effects of these variants and to check whether the presence of these variants affects the prognosis of epilepsy patients. METHOD This study was conducted at Xijing Hospital in Xian, China. All patients were followed up for at least 1 year. Previous reports were searched for previously reported variants. Ensembl database was searched for variants in the general population. Combined Annotation Dependent Depletion (CADD) was used to evaluate the deleterious effect of variants. Logistic regression and Cox regression were used for data analysis. RESULTS The study included 176 epilepsy patients with or without CACNA1H variants. In epilepsy patients with missense variants, we found 35 different variants, including 33 variants with uncertain significance and 2 likely benign variants. No significant difference was observed between the distribution of CADD scores of the variants from this cohort, of the general population, and of those found in previous reports. Among epilepsy patients with missense variants, the number of antiepileptic drugs (AEDs) administered to the patients, a first-degree family history of epilepsy, and possibly the presence of abnormalities in brain radiology findings were correlated with the poorer prognosis. Among the entire cohort, the type of epilepsy, number of AEDs administered, and presence of abnormalities in brain radiology findings were associated with the prognosis of these patients. The deleterious effect of CACNA1H missense variants or their presence was not related to the prognosis of epilepsy patients. CONCLUSION The results of our study suggest that CACNA1H variants are related to multiple epilepsy syndromes. However, there is no strong evidence of the correlation between CACNA1H missense variants and a certain type of epilepsy. In our study cohort, both the deleterious effects and the presence of CACNA1H variants were found to be unrelated to the prognosis of patients with epilepsy. These findings suggest that CACNA1H missense variants that are classified as VUS might not influence the outcome of epilepsy.
Collapse
Affiliation(s)
- Zihan Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Chao Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Zhenyu Wu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Mi Cao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiaozhi Qiao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Tenghui Han
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ying Zhang
- Department of Neurology, Xian International Medical Center, People's Republic of China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China.
| |
Collapse
|
8
|
Verriello L, Pauletto G, Nilo A, Lonigro I, Betto E, Valente M, Curcio F, Gigli GL. Epilepsy and episodic ataxia type 2: family study and review of the literature. J Neurol 2021; 268:4296-4302. [PMID: 33983550 DOI: 10.1007/s00415-021-10555-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Episodic ataxia type 2 (EA2) is a hereditary disorder characterized by paroxysmal attacks of ataxia, vertigo and nausea, due to mutations in the CACNA1A gene, which encodes for α1 subunit of the P/Q-type voltage-gated Ca2+ channel (CaV2.1). Other manifestations may be associated to CACNA1A mutations, such as migraine and epilepsy. The correlation between episodic ataxia and epilepsy is often underestimated and misdiagnosed. Clinical presentation of EA2 varies among patients and within the same family, and the same genetic mutation can lead to different clinical phenotypes. We herewith describe an Italian family presenting with typical EA2 and, in two of the family members (patients II.3 and III.1), epileptic seizures. The sequencing revealed a heterozygous deletion of 6 nucleotides in exon 28 of CACNA1A gene, present in all affected patients. Evidence suggests that mutations of CACNA1A, conferring a loss/reduction of CaV2.1 function, lead to an increase of thalamocortical excitation that contributes to epileptiform discharges. Our description highlights intra-family variability of EA2 phenotype and suggests that mutations in the CACNA1A gene should be suspected in individuals with focal or generalized epilepsy, associated with a family history of episodic ataxia.
Collapse
Affiliation(s)
- Lorenzo Verriello
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy.
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Incoronata Lonigro
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Elena Betto
- Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Mariarosaria Valente
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Francesco Curcio
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.,Department of Mathematics, Informatics and Physics (DMIF), University of Udine, Udine, Italy
| |
Collapse
|
9
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
10
|
Çarçak N, Ali I, Powell K, Zheng T, Onat F, O'Brien TJ. Ca
v
3.2 T‐type calcium channel mutation influences kindling‐induced thalamic neuronal firing patterns in Genetic Absence Epilepsy Rats From Strasbourg. Epilepsia 2019; 60:1378-1386. [DOI: 10.1111/epi.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology Faculty of Pharmacy Istanbul University Istanbul Turkey
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Melbourne Victoria Australia
| | - Idrish Ali
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Melbourne Victoria Australia
- Departments of Neuroscience and Neurology Central Clinical School Alfred Health Monash University Clayton Victoria Australia
| | - Kim Powell
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Melbourne Victoria Australia
- Departments of Neuroscience and Neurology Central Clinical School Alfred Health Monash University Clayton Victoria Australia
| | - Thomas Zheng
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Melbourne Victoria Australia
| | - Filiz Onat
- Department of Pharmacology and Clinical Pharmacology Faculty of Medicine Marmara University Istanbul Turkey
- Marmara University Epilepsy Research Center Istanbul Turkey
| | - Terence J. O'Brien
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Melbourne Victoria Australia
- Departments of Neuroscience and Neurology Central Clinical School Alfred Health Monash University Clayton Victoria Australia
| |
Collapse
|
11
|
Inhibition of T-Type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy. Epilepsy Res 2019; 154:132-138. [PMID: 31132598 DOI: 10.1016/j.eplepsyres.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/20/2023]
Abstract
Temporal lobe epilepsy (TLE) is a form of adult epilepsy involving the entorhinal cortex (EC). Layer II neurons of the medial EC (mEC) are spared and become hyperexcitable in TLE. Studies have suggested a role for T-type calcium channels (T-type Ca2+ channels) in facilitating increases in neuronal activity associated with TLE within the hippocampus. We sought to determine if T-type Ca2+ channels play a role in facilitating neuronal hyperexcitability of layer II mEC stellate neurons in TLE. TLE was induced in rats by electrical stimulation of the hippocampus to induce status epilepticus (SE). Brain slices were prepared from rats exhibiting spontaneous seizures and compared with age-matched control rats. Action potentials (APs) were evoked either by current injection steps or via presynaptic stimulation of mEC deep layers. The selective T-type Ca2+ channel antagonist, TTA-P2 (1 μM), was applied to determine the role of T-type Ca2+ channels in maintaining neuronal excitability. Quantitative PCR techniques were used to assess T-type Ca2+ channel isoform mRNA levels within the mEC layer II. TLE mEC layer II stellate neurons were hyperexcitable compared to control neurons, evoking a higher frequency of APs and generating bursts of APs when synaptically stimulated. TTA-P2 (1 μM) reduced firing frequencies in TLE and control neurons and reduced AP burst firing in TLE stellate neurons. TTA-P2 had little effect on synaptically evoked AP's in control neurons. TTA-P2 also inhibited rebound APs evoked in TLE neurons to a greater degree than in control neurons. TLE tissue had almost a 3-fold increase in Cav3.1 mRNA compared to controls. Cav3.2 or Cav3.3 levels were unchanged. These findings support a role for T-type Ca2+ channel in establishing neuronal hyperexcitability of mEC layer II stellate neurons in TLE. Increased expression of Cav3.1 may be important for establishing neuronal hyperexcitability of mEC layer II neurons in TLE.
Collapse
|
12
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
13
|
Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. Int J Mol Sci 2018; 19:ijms19092735. [PMID: 30213136 PMCID: PMC6164075 DOI: 10.3390/ijms19092735] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
As an important second messenger, the calcium ion (Ca2+) plays a vital role in normal brain function and in the pathophysiological process of different neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Ca2+ takes part in the regulation of neuronal excitability, and the imbalance of intracellular Ca2+ is a trigger factor for the occurrence of epilepsy. Several anti-epileptic drugs target voltage-dependent calcium channels (VDCCs). Intracellular Ca2+ levels are mainly controlled by VDCCs located in the plasma membrane, the calcium-binding proteins (CBPs) inside the cytoplasm, calcium channels located on the intracellular calcium store (particular the endoplasmic reticulum/sarcoplasmic reticulum), and the Ca2+-pumps located in the plasma membrane and intracellular calcium store. So far, while many studies have established the relationship between calcium control factors and epilepsy, the mechanism of various Ca2+ regulatory factors in epileptogenesis is still unknown. In this paper, we reviewed the function, distribution, and alteration of VDCCs and CBPs in the central nervous system in the pathological process of epilepsy. The interaction of VDCCs with CBPs in the pathological process of epilepsy was also summarized. We hope this review can provide some clues for better understanding the mechanism of epileptogenesis, and for the development of new anti-epileptic drugs targeting on VDCCs and CBPs.
Collapse
|
14
|
Cain SM, Tyson JR, Choi H, Ko R, Lin PJC, LeDue JM, Powell KL, Bernier L, Rungta RL, Yang Y, Cullis PR, O'Brien TJ, MacVicar BA, Snutch TP. Ca V 3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia 2018; 59:778-791. [PMID: 29468672 PMCID: PMC5900875 DOI: 10.1111/epi.14018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genetic alterations have been identified in the CACNA1H gene, encoding the CaV 3.2 T-type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike-wave-discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV 3.2 calcium channels, and we investigated whether a gain-of-function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN. METHODS Pathophysiological contributions of CaV 3.2 calcium channels to burst firing and absence seizures were assessed in vitro using acute brain slice electrophysiology and quantitative real-time polymerase chain reaction (PCR) and in vivo using free-moving electrocorticography recordings. RESULTS TRN neurons from GAERS display sustained oscillatory burst-firing that is both age- and frequency-dependent, occurring only in the frequencies overlapping with GAERS SWDs and correlating with the expression of a CaV 3.2 mutation-sensitive splice variant. In vivo knock-down of CaV 3.2 using direct thalamic injection of lipid nanoparticles containing CaV 3.2 dicer small interfering (Dsi) RNA normalized TRN burst-firing, and in free-moving GAERS significantly shortened seizures. SIGNIFICANCE This supports a role for TRN CaV 3.2 T-type channels in propagating thalamocortical network seizures and setting the pacemaking frequency of SWDs.
Collapse
Affiliation(s)
- Stuart M. Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - John R. Tyson
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Hyun‐Beom Choi
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Rebecca Ko
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Paulo J. C. Lin
- Life Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Jeffrey M. LeDue
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Kim L. Powell
- The Department of NeuroscienceCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Louis‐Philippe Bernier
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Ravi L. Rungta
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Yi Yang
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Pieter R. Cullis
- Life Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Terence J. O'Brien
- The Department of NeuroscienceCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Brian A. MacVicar
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
15
|
Pathophysiology of absence epilepsy: Insights from genetic models. Neurosci Lett 2018; 667:53-65. [DOI: 10.1016/j.neulet.2017.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 11/21/2022]
|
16
|
Knox AT, Glauser T, Tenney J, Lytton WW, Holland K. Modeling pathogenesis and treatment response in childhood absence epilepsy. Epilepsia 2017; 59:135-145. [PMID: 29265352 DOI: 10.1111/epi.13962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Childhood absence epilepsy (CAE) is a genetic generalized epilepsy syndrome with polygenic inheritance, with genes for γ-aminobutyric acid (GABA) receptors and T-type calcium channels implicated in the disorder. Previous studies of T-type calcium channel electrophysiology have shown genetic changes and medications have multiple effects. The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type. SIGNIFICANCE These results provide a window into mechanisms underlying polygenic inheritance in CAE, as well as a mechanism for treatment effects and failures mediated by these channels. Although the model is a simplification of the human thalamocortical network, it serves as a useful starting point for predicting the implications of ion channel electrophysiology in polygenic epilepsy such as CAE.
Collapse
Affiliation(s)
- Andrew T Knox
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Tracy Glauser
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,The University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Tenney
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,The University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William W Lytton
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA.,Department Neurology, Kings County Hospital Center, Brooklyn, NY, USA
| | - Katherine Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,The University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
17
|
Bezençon O, Heidmann B, Siegrist R, Stamm S, Richard S, Pozzi D, Corminboeuf O, Roch C, Kessler M, Ertel EA, Reymond I, Pfeifer T, de Kanter R, Toeroek-Schafroth M, Moccia LG, Mawet J, Moon R, Rey M, Capeleto B, Fournier E. Discovery of a Potent, Selective T-type Calcium Channel Blocker as a Drug Candidate for the Treatment of Generalized Epilepsies. J Med Chem 2017; 60:9769-9789. [PMID: 29116786 DOI: 10.1021/acs.jmedchem.7b01236] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.
Collapse
Affiliation(s)
- Olivier Bezençon
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Bibia Heidmann
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Romain Siegrist
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Simon Stamm
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Sylvia Richard
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Davide Pozzi
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Olivier Corminboeuf
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Eric A Ertel
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Isabelle Reymond
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Michael Toeroek-Schafroth
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Luca G Moccia
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Jacques Mawet
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Richard Moon
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Markus Rey
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Bruno Capeleto
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Elvire Fournier
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
18
|
Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, Zamponi GW, Weiss N. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca 2+ currents by altering calnexin-dependent trafficking of Ca v3.2 channels. Sci Rep 2017; 7:11513. [PMID: 28912545 PMCID: PMC5599688 DOI: 10.1038/s41598-017-11591-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Low-voltage-activated T-type calcium channels are essential contributors to the functioning of thalamocortical neurons by supporting burst-firing mode of action potentials. Enhanced T-type calcium conductance has been reported in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS) and proposed to be causally related to the overall development of absence seizure activity. Here, we show that calnexin, an endoplasmic reticulum integral membrane protein, interacts with the III-IV linker region of the Cav3.2 channel to modulate the sorting of the channel to the cell surface. We demonstrate that the GAERS missense mutation located in the Cav3.2 III-IV linker alters the Cav3.2/calnexin interaction, resulting in an increased surface expression of the channel and a concomitant elevation in calcium influx. Our study reveals a novel mechanism that controls the expression of T-type channels, and provides a molecular explanation for the enhancement of T-type calcium conductance in GAERS.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Yuriy Rzhepetskyy
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Joanna Lazniewska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, Canada.
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
19
|
Cain SM, Ahn S, Garcia E, Zhang Y, Waheed Z, Tyson JR, Yang Y, Van Sung T, Phillips AG, Snutch TP. Heantos-4, a natural plant extract used in the treatment of drug addiction, modulates T-type calcium channels and thalamocortical burst-firing. Mol Brain 2016; 9:94. [PMID: 27919294 PMCID: PMC5139062 DOI: 10.1186/s13041-016-0274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/21/2016] [Indexed: 11/10/2022] Open
Abstract
Heantos-4 is a refined combination of plant extracts currently approved to treat opiate addiction in Vietnam. In addition to its beneficial effects on withdrawal and prevention of relapse, reports of sedation during clinical treatment suggest that arousal networks in the brain may be recruited during Heantos administration. T-type calcium channels are implicated in the generation of sleep rhythms and in this study we examined whether a Heantos-4 extraction modulates T-type calcium channel currents generated by the Cav3.1, Cav3.2 and Ca3.3 subtypes. Utilizing whole-cell voltage clamp on exogenously expressed T-type calcium channels we find that Heantos inhibits Cav3.1 and Cav3.3 currents, while selectively potentiating Cav3.2 currents. We further examined the effects of Heantos-4 extract on low-threshold burst-firing in thalamic neurons which contribute to sleep oscillations. Using whole-cell current clamp in acute thalamic brain slices Heantos-4 suppressed rebound burst-firing in ventrobasal thalamocortical neurons, which express primarily Cav3.1 channels. Conversely, Heantos-4 had no significant effect on the burst-firing properties of thalamic reticular neurons, which express a mixed population of Cav3.2 and Cav3.3 channels. Examining Heantos-4 effects following oral administration in a model of absence epilepsy revealed the potential to exacerbate seizure activity. Together, the findings indicate that Heantos-4 has selective effects both on specific T-type calcium channel isoforms and distinct populations of thalamic neurons providing a putative mechanism underlying its effects on sedation and on the thalamocortical network.
Collapse
Affiliation(s)
- Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yiming Zhang
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Zeina Waheed
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - John R Tyson
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yi Yang
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 219-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Marks WN, Cain SM, Snutch TP, Howland JG. The T-type calcium channel antagonist Z944 rescues impairments in crossmodal and visual recognition memory in Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis 2016; 94:106-115. [PMID: 27282256 DOI: 10.1016/j.nbd.2016.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/27/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022] Open
Abstract
Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits.
Collapse
Affiliation(s)
- Wendie N Marks
- Department of Physiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John G Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
21
|
Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A, Weiergräber M. Review: Ca v2.3 R-type Voltage-Gated Ca 2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity. Open Neurol J 2016; 10:99-126. [PMID: 27843503 PMCID: PMC5080872 DOI: 10.2174/1874205x01610010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
22
|
Aguado C, García-Madrona S, Gil-Minguez M, Luján R. Ontogenic Changes and Differential Localization of T-type Ca(2+) Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum. Front Neuroanat 2016; 10:83. [PMID: 27616982 PMCID: PMC4999439 DOI: 10.3389/fnana.2016.00083] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
T-type calcium (Ca(2+)) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing excitatory synapses. These results shed new light on the subcellular localization of T-type channel subunits and provide evidence for the non-uniform distribution of Cav3.1 and Cav3.2 subunits over the plasma membrane of central neurons, which may account for the functional heterogeneity of T-type mediated current.
Collapse
Affiliation(s)
- Carolina Aguado
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Sebastián García-Madrona
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Mercedes Gil-Minguez
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| |
Collapse
|
23
|
Kohmann D, Lüttjohann A, Seidenbecher T, Coulon P, Pape HC. Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J Physiol 2016; 594:5695-710. [PMID: 26940972 DOI: 10.1113/jp271811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Gap junctional electrical coupling between neurons of the reticular thalamic nucleus (RTN) is critical for hypersynchrony in the thalamo-cortical network. This study investigates the role of electrical coupling in pathological rhythmogenesis in RTN neurons in a rat model of absence epilepsy. Rhythmic activation resulted in a Ca(2+) -dependent short-term depression (STD) of electrical coupling between pairs of RTN neurons in epileptic rats, but not in RTN of a non-epileptic control strain. Pharmacological blockade of gap junctions in RTN in vivo induced a depression of seizure activity. The STD of electrical coupling represents a mechanism of Ca(2+) homeostasis in RTN aimed to counteract excessive synchronization. ABSTRACT Neurons in the reticular thalamic nucleus (RTN) are coupled by electrical synapses, which play a major role in regulating synchronous activity. This study investigates electrical coupling in RTN neurons from a rat model of childhood absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS), compared with a non-epileptic control (NEC) strain, to assess the impact on pathophysiological rhythmogenesis. Whole-cell recordings were obtained from pairs of RTN neurons of GAERS and NEC in vitro. Coupling was determined by injection of hyperpolarizing current steps in one cell and monitoring evoked voltage responses in both activated and coupled cell. The coupling coefficient (cc) was compared under resting condition, during pharmacological interventions and repeated activation using a series of current injections. The effect of gap junctional coupling on seizure expression was investigated by application of gap junctional blockers into RTN of GAERS in vivo. At resting conditions, cc did not differ between GAERS and NEC. During repeated activation, cc declined in GAERS but not in NEC. This depression in cc was restored within 25 s and was prevented by intracellular presence of BAPTA in the activated but not in the coupled cell. Local application of gap junctional blockers into RTN of GAERS in vivo resulted in a decrease of spike wave discharge (SWD) activity. Repeated activation results in a short-term depression (STD) of gap junctional coupling in RTN neurons of GAERS, depending on intracellular Ca(2+) mechanisms in the activated cell. As blockage of gap junctions in vivo results in a decrease of SWD activity, the STD observed in GAERS is considered a compensatory mechanism, aimed to dampen SWD activity.
Collapse
Affiliation(s)
| | | | - Thomas Seidenbecher
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | | |
Collapse
|
24
|
Dulla CG, Coulter DA, Ziburkus J. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease. Neuroscientist 2016; 22:295-312. [PMID: 25948650 PMCID: PMC4641826 DOI: 10.1177/1073858415585108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neuroscience, University of Pennsylvania Perleman School of Medicine, Philadelphia, PA, USA Division of Neurology and the Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
25
|
Sharop BR, Boldyriev OI, Batiuk MY, Shtefan NL, Shuba YM. Compensatory reduction of Cav3.1 expression in thalamocortical neurons of juvenile rats of WAG/Rij model of absence epilepsy. Epilepsy Res 2015; 119:10-2. [PMID: 26656778 DOI: 10.1016/j.eplepsyres.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
Absence seizures are the non-convulsive form of generalized epilepsy critically dependent on T-type calcium channels (Cav3) in thalamic neurons. In humans, absences accompany only childhood or adolescent epileptic syndromes--though in its polygenic rat models WAG/Rij and GAERS the opposite developmental pattern is observed. Hereby we address this issue by transcriptional and functional study of thalamic Cav3 in juvenile (i.e., free of seizures) rats of the absence-prone WAG/Rij strain and their coevals of the maternal Wistar strain. First, we measured the low voltage-activated (LVA) Ca(2+) current in freshly isolated thalamocortical neurons from laterodorsal nucleus of thalamus. The difference between current densities in control (12.9 ± 1.8pA/pF) and absence epilepsy (7.9 ± 1.8pA/pF) groups reached ∼ 39%. Second, we assessed the contribution of different T-channel isoforms into the reduction of Cav3-mediated current in WAG/Rij juveniles by means of RT PCR. The expression of all three LVA calcium channels was revealed with the prevalence of G and I isoforms. The expression level of G isoform (Cav3.1) was 35% smaller in WAG/Rij strain if compared to the control animals while that of H and I isoforms (Cav3.2 and Cav3.3, respectively) remained stable. The weakened expression of Cav3.1 in juveniles of WAG/Rij rats could represent a compensatory mechanism determining the pattern of the age dependency in the disease manifestation by this model of absence epilepsy.
Collapse
Affiliation(s)
- Bizhan R Sharop
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine; International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine.
| | - Oleksii I Boldyriev
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine; International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine
| | - Mykhailo Y Batiuk
- International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine
| | - Nataliia L Shtefan
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine
| | - Yaroslav M Shuba
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine; International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine
| |
Collapse
|
26
|
CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet 2015; 23:1505-12. [PMID: 25735478 DOI: 10.1038/ejhg.2015.21] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023] Open
Abstract
CACNA1A loss-of-function mutations classically present as episodic ataxia type 2 (EA2), with brief episodes of ataxia and nystagmus, or with progressive spinocerebellar ataxia (SCA6). A minority of patients carrying CACNA1A mutations develops epilepsy. Non-motor symptoms associated with these mutations are often overlooked. In this study, we report 16 affected individuals from four unrelated families presenting with a spectrum of cognitive impairment including intellectual deficiency, executive dysfunction, ADHD and/or autism, as well as childhood-onset epileptic encephalopathy with refractory absence epilepsy, febrile seizures, downbeat nystagmus and episodic ataxia. Sequencing revealed one CACNA1A gene deletion, two deleterious CACNA1A point mutations including one known stop-gain and one new frameshift variant and a new splice-site variant. This report illustrates the phenotypic heterogeneity of CACNA1A loss-of-function mutations and stresses the cognitive and epileptic manifestations caused by the loss of CaV2.1 channels function, presumably affecting cerebellar, cortical and limbic networks.
Collapse
|
27
|
Powell KL, Cain SM, Snutch TP, O'Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol 2015; 77:729-39. [PMID: 23834404 DOI: 10.1111/bcp.12205] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/02/2013] [Indexed: 12/21/2022] Open
Abstract
Low voltage-activated T-type calcium channels were originally cloned in the 1990s and much research has since focused on identifying the physiological roles of these channels in health and disease states. T-type calcium channels are expressed widely throughout the brain and peripheral tissues, and thus have been proposed as therapeutic targets for a variety of diseases such as epilepsy, insomnia, pain, cancer and hypertension. This review discusses the literature concerning the role of T-type calcium channels in physiological and pathological processes related to epilepsy. T-type calcium channels have been implicated in pathology of both the genetic and acquired epilepsies and several anti-epileptic drugs (AEDs) in clinical use are known to suppress seizures via inhibition of T-type calcium channels. Despite the fact that more than 15 new AEDs have become clinically available over the past 20 years at least 30% of epilepsy patients still fail to achieve seizure control, and many patients experience unwanted side effects. Furthermore there are no treatments that prevent the development of epilepsy or mitigate the epileptic state once established. Therefore there is an urgent need for the development of new AEDs that are effective in patients with drug resistant epilepsy, are anti-epileptogenic and are better tolerated. We also review the mechanisms of action of the current AEDs with known effects on T-type calcium channels and discuss novel compounds that are being investigated as new treatments for epilepsy.
Collapse
Affiliation(s)
- Kim L Powell
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
28
|
Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy. Pflugers Arch 2014; 467:1367-82. [PMID: 24953239 PMCID: PMC4435665 DOI: 10.1007/s00424-014-1549-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.
Collapse
|
29
|
Chen Y, Parker WD, Wang K. The role of T-type calcium channel genes in absence seizures. Front Neurol 2014; 5:45. [PMID: 24847307 PMCID: PMC4023043 DOI: 10.3389/fneur.2014.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/24/2014] [Indexed: 12/05/2022] Open
Abstract
The thalamic relay neurons, reticular thalamic nucleus, and neocortical pyramidal cells form a circuit that sustains oscillatory burst firing, and is regarded as the underlying mechanism of absence seizures. T-type calcium channels play a key role in this circuit. Here, we review the role of T-type calcium channel genes in the development of absence seizures, and emphasize gain or loss of function mutations, and other variations that alter both quantity and quality of transcripts, and methylation status of isoforms of T-type calcium channel proteins might be of equal importance in understanding the pathological mechanism of absence seizures.
Collapse
Affiliation(s)
- Yucai Chen
- University of Illinois at Chicago , Peoria, IL , USA
| | | | - Keling Wang
- Hebei Children Hospital , Shijiazhuang , China
| |
Collapse
|
30
|
Siwek ME, Müller R, Henseler C, Broich K, Papazoglou A, Weiergräber M. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture. Sleep 2014; 37:881-92. [PMID: 24790266 DOI: 10.5665/sleep.3652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. METHODS The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. RESULTS CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. CONCLUSIONS Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra-thalamocortical circuitries substantially regulate rodent sleep architecture thus representing a novel potential target for pharmacological treatment of sleep disorders in the future.
Collapse
Affiliation(s)
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Karl Broich
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany
| | - Anna Papazoglou
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany
| | - Marco Weiergräber
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany ; Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Çarçak N, Zheng T, Ali I, Abdullah A, French C, Powell KL, Jones NC, van Raay L, Rind G, Onat F, O'Brien TJ. The effect of amygdala kindling on neuronal firing patterns in the lateral thalamus in the GAERS model of absence epilepsy. Epilepsia 2014; 55:654-665. [DOI: 10.1111/epi.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology; Faculty of Pharmacy; Istanbul University; Istanbul Turkey
| | - Thomas Zheng
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Idrish Ali
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Ahmad Abdullah
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Chris French
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
- Department of Neurology; Royal Melbourne Hospital; Melbourne Vic. Australia
| | - Kim L. Powell
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Nigel C. Jones
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Leena van Raay
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Gil Rind
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Filiz Onat
- Department of Pharmacology and Clinical Pharmacology; Marmara University School of Medicine; Istanbul Turkey
| | - Terence J. O'Brien
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
- Department of Neurology; Royal Melbourne Hospital; Melbourne Vic. Australia
| |
Collapse
|
32
|
Frank CA. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity. Front Cell Neurosci 2014; 8:40. [PMID: 24592212 PMCID: PMC3924756 DOI: 10.3389/fncel.2014.00040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/28/2014] [Indexed: 01/15/2023] Open
Abstract
Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP) is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response-homeostatic depression via removal of excitatory receptors. There exist intriguing links between HSP and calcium channelopathies-such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other disorders.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
33
|
T-type Ca2+ channels in absence epilepsy. Pflugers Arch 2014; 466:719-34. [DOI: 10.1007/s00424-014-1461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
|
34
|
Are alterations in transmitter receptor and ion channel expression responsible for epilepsies? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:211-29. [PMID: 25012379 DOI: 10.1007/978-94-017-8914-1_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal voltage-gated ion channels and ligand-gated synaptic receptors play a critical role in maintaining the delicate balance between neuronal excitation and inhibition within neuronal networks in the brain. Changes in expression of voltage-gated ion channels, in particular sodium, hyperpolarization-activated cyclic nucleotide-gated (HCN) and calcium channels, and ligand-gated synaptic receptors, in particular GABA and glutamate receptors, have been reported in many types of both genetic and acquired epilepsies, in animal models and in humans. In this chapter we review these and discuss the potential pathogenic role they may play in the epilepsies.
Collapse
|
35
|
Eckle VS, Shcheglovitov A, Vitko I, Dey D, Yap CC, Winckler B, Perez-Reyes E. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol 2013; 592:795-809. [PMID: 24277868 DOI: 10.1113/jphysiol.2013.264176] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca(2+) channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy. We and others have found that these mutations may influence neuronal excitability either by altering the biophysical properties of the channels or by increasing their surface expression. The goals of the present study were to investigate the excitability of neurons expressing Cav3.2 with the epilepsy mutation, C456S, and to elucidate the mechanisms by which it influences neuronal properties. We found that expression of the recombinant C456S channels substantially increased the excitability of cultured neurons by increasing the spontaneous firing rate and reducing the threshold for rebound burst firing. Additionally, we found that molecular determinants in the I-II loop (the region in which most childhood absence epilepsy-associated mutations are found) substantially increase the surface expression of T-channels but do not alter the relative distribution of channels into dendrites of cultured hippocampal neurons. Finally, we discovered that expression of C456S channels promoted dendritic growth and arborization. These effects were reversed to normal by either the absence epilepsy drug ethosuximide or a novel T-channel blocker, TTA-P2. As Ca(2+)-regulated transcription factors also increase dendritic development, we tested a transactivator trap assay and found that the C456S variant can induce changes in gene transcription. Taken together, our findings suggest that gain-of-function mutations in Cav3.2 T-type Ca(2+) channels increase seizure susceptibility by directly altering neuronal electrical properties and indirectly by changing gene expression.
Collapse
Affiliation(s)
- Veit-Simon Eckle
- Jordan Hall 800735, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Low-voltage-activated T-type Ca(2+) channels are widely expressed in various types of neurons. Once deinactivated by hyperpolarization, T-type channels are ready to be activated by a small depolarization near the resting membrane potential and, therefore, are optimal for regulating the excitability and electroresponsiveness of neurons under physiological conditions near resting states. Ca(2+) influx through T-type channels engenders low-threshold Ca(2+) spikes, which in turn trigger a burst of action potentials. Low-threshold burst firing has been implicated in the synchronization of the thalamocortical circuit during sleep and in absence seizures. It also has been suggested that T-type channels play an important role in pain signal transmission, based on their abundant expression in pain-processing pathways in peripheral and central neurons. In this review, we will describe studies on the role of T-type Ca(2+) channels in the physiological as well as pathological generation of brain rhythms in sleep, absence epilepsy, and pain signal transmission. Recent advances in studies of T-type channels in the control of cognition will also be briefly discussed.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
37
|
Münch A, Dibué M, Hescheler J, Schneider T. Cav2.3 E-/R-type voltage-gated calcium channels modulate sleep in mice. SOMNOLOGIE 2013. [DOI: 10.1007/s11818-013-0628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Rossignol E, Kruglikov I, van den Maagdenberg AMJM, Rudy B, Fishell G. CaV 2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann Neurol 2013; 74:209-22. [PMID: 23595603 DOI: 10.1002/ana.23913] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Both the neuronal populations and mechanisms responsible for generalized spike-wave absence seizures are poorly understood. In mutant mice carrying loss-of-function (LOF) mutations in Cacna1a, which encodes the α1 pore-forming subunit of CaV 2.1 (P/Q-type) voltage-gated Ca(2+) channels, generalized spike-wave seizures have been suggested to result from excessive bursting of thalamocortical cells. However, other cellular populations including cortical inhibitory interneurons may contribute to this phenotype. We investigated how different cortical interneuron subtypes are affected by the loss of CaV 2.1 channel function and how this contributes to the onset of generalized epilepsy. METHODS We designed genetic strategies to induce a selective Cacna1a LOF mutation in different cortical γ-aminobutyric acidergic (GABAergic) and/or glutamatergic neuronal populations in mice. We assessed the cellular and network consequences of these mutations by combining immunohistochemical assays, in vitro physiology, optogenetics, and in vivo video electroencephalographic recordings. RESULTS We demonstrate that selective Cacna1a LOF from a subset of cortical interneurons, including parvalbumin (PV)(+) and somatostatin (SST)(+) interneurons, results in severe generalized epilepsy. Loss of CaV 2.1 channel function compromises GABA release from PV(+) but not SST(+) interneurons. Moreover, thalamocortical projection neurons do not show enhanced bursting in these mutants, suggesting that this feature is not essential for the development of generalized spike-wave seizures. Notably, the concurrent removal of CaV 2.1 channels in cortical pyramidal cells and interneurons considerably lessens seizure severity by decreasing cortical excitability. INTERPRETATION Our findings demonstrate that conditional ablation of CaV 2.1 channel function from cortical PV(+) interneurons alters GABA release from these cells, impairs their ability to constrain cortical pyramidal cell excitability, and is sufficient to cause generalized seizures.
Collapse
Affiliation(s)
- Elsa Rossignol
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY; Pediatric Neurology Department of Neuroscience, Saint Justine University Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
Cheong E, Shin HS. T-type Ca²⁺ channels in absence epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1560-71. [PMID: 23416255 DOI: 10.1016/j.bbamem.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels are highly expressed in the thalamocortical circuit, suggesting that they play a role in this brain circuit. Indeed, low-threshold burst firing mediated by T-type Ca²⁺ channels has long been implicated in the synchronization of the thalamocortical circuit. Over the past few decades, the conventional view has been that rhythmic burst firing mediated by T-type channels in both thalamic reticular nuclie (TRN) and thalamocortical (TC) neurons are equally critical in the generation of thalamocortical oscillations during sleep rhythms and spike-wave-discharges (SWDs). This review broadly investigates recent studies indicating that even though both TRN and TC nuclei are required for thalamocortical oscillations, the contributions of T-type channels to TRN and TC neurons are not equal in the genesis of sleep spindles and SWDs. T-type channels in TC neurons are an essential component of SWD generation, whereas the requirement for TRN T-type channels in SWD generation remains controversial at least in the GBL model of absence seizures. Therefore, a deeper understanding of the functional consequences of modulating each T-type channel subtype could guide the development of therapeutic tools for absence seizures while minimizing side effects on physiological thalamocortical oscillations. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
40
|
T-type calcium channels in burst-firing, network synchrony, and epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1572-8. [PMID: 22885138 DOI: 10.1016/j.bbamem.2012.07.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/23/2022]
Abstract
Low voltage-activated (LVA) T-type calcium channels are well regarded as a key mechanism underlying the generation of neuronal burst-firing. Their low threshold for activation combined with a rapid and transient calcium conductance generates low-threshold calcium potentials (LTCPs), upon the crest of which high frequency action potentials fire for a brief period. Experiments using simultaneous electroencephalography (EEG) and intracellular recordings demonstrate that neuronal burst-firing is a likely causative component in the generation of normal sleep patterns as well as some pathophysiological conditions, such as epileptic seizures. However, less is known as to how these neuronal bursts impact brain behavior, in particular network synchronization. In this review we summarize recent findings concerning the role of T-type calcium channels in burst-firing and discuss how they likely contribute to the generation of network synchrony. We further outline the function of burst-firing and network synchrony in terms of epileptic seizures. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
41
|
Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O'Brien TJ, Snutch TP. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med 2012; 4:121ra19. [PMID: 22344687 DOI: 10.1126/scitranslmed.3003120] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels. We sought to develop high-affinity T-type specific Ca(2+) channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca(2+) channel pharmacophore and a high-throughput fluorometric Ca(2+) influx assay, we identified the T-type Ca(2+) channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca(2+) channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.
Collapse
Affiliation(s)
- Elizabeth Tringham
- Zalicus Pharmaceuticals Ltd., Suite 301, 2389 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Voltage-Gated Ca2+ Channel Mediated Ca2+ Influx in Epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1219-47. [DOI: 10.1007/978-94-007-2888-2_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast 2011; 2011:649325. [PMID: 21876820 PMCID: PMC3159129 DOI: 10.1155/2011/649325] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/04/2011] [Indexed: 12/04/2022] Open
Abstract
A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders.
Collapse
|
44
|
Jones NC, O’Brien TJ, Powell KL. Morphometric changes and molecular mechanisms in rat models of idiopathic generalized epilepsy with absence seizures. Neurosci Lett 2011; 497:185-93. [DOI: 10.1016/j.neulet.2011.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/21/2011] [Accepted: 02/15/2011] [Indexed: 01/29/2023]
|
45
|
Abstract
Voltage-gated calcium channels are a family of integral membrane calcium-selective proteins found in all excitable and many nonexcitable cells. Calcium influx affects membrane electrical properties by depolarizing cells and generally increasing excitability. Calcium entry further regulates multiple intracellular signaling pathways as well as the biochemical factors that mediate physiological functions such as neurotransmitter release and muscle contraction. Small changes in the biophysical properties or expression of calcium channels can result in pathophysiological changes leading to serious chronic disorders. In humans, mutations in calcium channel genes have been linked to a number of serious neurological, retinal, cardiac, and muscular disorders.
Collapse
Affiliation(s)
- Stuart M Cain
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
46
|
Danış Ö, Demir S, Günel A, Aker RG, Gülçebi M, Onat F, Ogan A. Changes in intracellular protein expression in cortex, thalamus and hippocampus in a genetic rat model of absence epilepsy. Brain Res Bull 2011; 84:381-8. [DOI: 10.1016/j.brainresbull.2011.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/03/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
|
47
|
Brockhaus J, Pape HC. Abnormalities in GABAergic synaptic transmission of intralaminar thalamic neurons in a genetic rat model of absence epilepsy. Mol Cell Neurosci 2010; 46:444-51. [PMID: 21112396 DOI: 10.1016/j.mcn.2010.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 10/29/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022] Open
Abstract
Synaptic activity mediated via GABA receptors in thalamic circuits is critically involved in the generation of hypersynchrony associated with absence epilepsy. Neurons of "unspecific" intralaminar thalamic nuclei display characteristic burst patterns during seizure activity, although their synaptic properties remain largely unknown. Here, we used in vitro patch-clamp techniques in neurons of the paracentral (PC) thalamic nucleus, derived from a genetic model of absence epilepsy (WAG-Rij) and a non-epileptic control strain (ACI) to elucidate intrinsic and synaptic properties. PC neurons displayed voltage-dependent low threshold spike bursts or tonic spike firing, typical of thalamic neurons. These parameters, and electrotonic properties, were similar in PC neurons of the two strains. Analyses of miniature inhibitory post synaptic currents (mIPSCs) mediated via GABA(A) receptors revealed no difference in decay time constant and inter-event interval between strains, but a significantly larger amplitude and higher single channel conductance (as assessed by non-stationary variance analysis) in WAG-Rij compared to ACI. By comparison, thalamocortical neurons from the ventrobasal complex of the thalamus showed no difference in mIPSC kinetics and unitary conductance between the two rat strains. In view of the critical role of GABAergic inhibition for synchronous activity in thalamocortical circuits, it is concluded that the increase in unitary conductance of IPSCs in PC neurons contributes to hypersynchrony characterizing seizure activity.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | |
Collapse
|
48
|
Voltage-gated calcium channels in the etiopathogenesis and treatment of absence epilepsy. ACTA ACUST UNITED AC 2010; 62:245-71. [DOI: 10.1016/j.brainresrev.2009.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 12/21/2022]
|
49
|
Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 2009; 460:395-403. [PMID: 20091047 DOI: 10.1007/s00424-009-0772-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/30/2022]
Abstract
It is well established that idiopathic generalized epilepsies (IGEs) show a polygenic origin and may arise from dysfunction of various types of voltage- and ligand-gated ion channels. There is an increasing body of literature implicating both high- and low-voltage-activated (HVA and LVA) calcium channels and their ancillary subunits in IGEs. Cav2.1 (P/Q-type) calcium channels control synaptic transmission at presynaptic nerve terminals, and mutations in the gene encoding the Cav2.1 alpha1 subunit (CACNA1A) have been linked to absence seizures in both humans and rodents. Similarly, mutations and loss of function mutations in ancillary HVA calcium channel subunits known to co-assemble with Cav2.1 result in IGE phenotypes in mice. It is important to note that in all these mouse models with mutations in HVA subunits, there is a compensatory increase in thalamic LVA currents which likely leads to the seizure phenotype. In fact, gain-of-function mutations have been identified in Cav3.2 (an LVA or T-type calcium channel encoded by the CACNA1H gene) in patients with congenital forms of IGEs, consistent with increased excitability of neurons as a result of enhanced T-type channel function. In this paper, we provide a broad overview of the roles of voltage-gated calcium channels, their mutations, and how they might contribute to the river that terminates in epilepsy.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | |
Collapse
|
50
|
Gülhan Aker R, Tezcan K, Carçak N, Sakalli E, Akin D, Onat FY. Localized cortical injections of ethosuximide suppress spike-and-wave activity and reduce the resistance to kindling in genetic absence epilepsy rats (GAERS). Epilepsy Res 2009; 89:7-16. [PMID: 19939632 DOI: 10.1016/j.eplepsyres.2009.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/15/2009] [Accepted: 10/21/2009] [Indexed: 01/27/2023]
Abstract
Models of genetic absence epilepsy are resistant to secondary generalization of focal limbic seizures. This correlates with the postnatal development of spike-and-wave discharges (SWDs), a hallmark of absence seizures arising from a cortical focus in the perioral region of somatosensory cortex. Ethosuximide injected at this site suppresses SWDs. The effect of this suppression on kindling in "Genetic Absence Epilepsy Rats from Strasbourg" (GAERS), has been compared for postnatal 30 day (PN30) rats having immature SWDs and adult (>4 months) rats having mature SWDs. Non-epileptic Wistar and GAERS rats were implanted with a basolateral amygdaloid stimulation electrode, bilateral injection cannulas into the cortical perioral focus, and cortical recording electrodes. Following recovery cortical injections of ethosuximide or saline were made and after 30min rats were given 36 stimulations or until Racine's stage 5 seizures were produced. All Wistar rats (PN30 and adult) treated with saline or ethosuximide reached stage 5. Of GAERS given saline, 33% (PN30) and 43% (adults) were resistant to kindling; after ethosuximide pups behaved like Wistars, but adults showed a delay in kindling relative to Wistars. These findings imply that mechanisms underlying kindling resistance are related but not limited to SWD activity in animals with genetic absence epilepsy.
Collapse
Affiliation(s)
- Rezzan Gülhan Aker
- Department of Pharmacology and Clinical Pharmacology, Marmara University School of Medicine, Istanbul 34660, Turkey.
| | | | | | | | | | | |
Collapse
|