1
|
Pimple P, Sawant A, Nair S, Sawarkar SP. Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment. Crit Rev Ther Drug Carrier Syst 2024; 41:1-50. [PMID: 37938189 DOI: 10.1615/critrevtherdrugcarriersyst.2023044057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The eye is one a unique sophisticated human sense organ with a complex anatomical structure. It is encased by variety of protective barriers as responsible for vision. There has been a paradigm shift in the prevalence of several major vision threatening ocular conditions with enhanced reliance on computer-based technologies in our workaday life and work-from-home modalities although aging, pollution, injury, harmful chemicals, lifestyle changes will always remain the root cause. Treating posterior eye diseases is a challenge faced by clinicians worldwide. The clinical use of conventional drug delivery systems for posterior eye targeting is restricted by the ocular barriers. Indeed, for overcoming various ocular barriers for efficient delivery of the therapeutic moiety and prolonged therapeutic effect requires prudent and target-specific approaches. Therefore, for efficient drug delivery to the posterior ocular segment, advancements in the development of sustained release and nanotechnology-based ocular drug delivery systems have gained immense importance. Therapeutic efficacy and patient compliance are of paramount importance in clinical translation of these investigative drug delivery systems. This review provides an insight into the various strategies employed for improving the treatment efficacies of the posterior eye diseases. Various drug delivery systems such as systemic and intraocular injections, implants have demonstrated promising outcomes, along with that they have also exhibited side-effects, limitations and strategies employed to overcome them are discussed in this review. The application of artificial intelligence-based technologies along with an appreciation of disease, delivery systems, and patient-specific outcomes will likely enable more effective therapy for targeting the posterior eye segment.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Apurva Sawant
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujit Nair
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| |
Collapse
|
2
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
3
|
Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629084 DOI: 10.1016/j.msec.2017.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A unique method was used to facilitate ocular drug delivery from periocular route by drug loaded magnetic sensitive particles. Injection of particles in periocular space along the eye axis followed by application of magnetic field in front of the eye would trigger the magnetic polymeric particles to move along the direction of magnetic force and reside against the outer surface of the sclera. This technique prevents removal of drug in the periocular space, observed in conventional transscleral drug delivery systems and hence higher amount of drug can enter the eye in a longer period of time. The experiments were performed by fresh human sclera and an experimental setup. Experimental setup was designed by side by side diffusion cell and hydrodynamic and thermal simulation of the posterior segment of the eye were applied. Magnetic polymeric particles were synthesized by alginate as a model polymer, iron oxide nanoparticles as a magnetic agent and diclofenac sodium as a model drug and characterized by SEM, TEM, DLS and FT-IR techniques. According to the SEM images, the size range of particles is around 60 to 800nm. The results revealed that the cumulative drug transfer from magnetic sensitive particles across the sclera improves by 70% in the presence of magnetic field. The results of this research show promising method of drug delivery to use magnetic properties to facilitate drug delivery to the back of the eye.
Collapse
|
4
|
Bisht R, Jaiswal JK, Rupenthal ID. Nanoparticle-loaded biodegradable light-responsive in situ forming injectable implants for effective peptide delivery to the posterior segment of the eye. Med Hypotheses 2017; 103:5-9. [PMID: 28571808 DOI: 10.1016/j.mehy.2017.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Diseases affecting the posterior segment the eye, such as age-related macular degeneration (AMD), are the leading cause of blindness worldwide. Conventional dosage forms, such as eye drops, have to surmount several elimination mechanisms and complex barriers to achieve therapeutic concentrations at the target site often resulting in low anterior segment bioavailability (ca. 2-5%) with generally none of the drug reaching posterior segment tissues. Thus, frequent intravitreal injections are currently required to treat retinal conditions which have been associated with poor patient compliance due to pain, risk of infection, hemorrhages, retinal detachment and high treatment related costs. To partially overcome these issues, ocular implants have been developed for some posterior segment indications; however, the majority require surgical implantation and removal at the end of the intended treatment period. The transparent nature of the cornea and lens render light-responsive systems an attractive strategy for the management of diseases affecting the back of the eye. Light-responsive in situ forming injectable implants (ISFIs) offer various benefits such as ease of application in a minimally invasive manner and more site specific control over drug release. Moreover, the biodegradable nature of such implants avoids the need for surgical removal after release of the payload. Incorporating drug-loaded polymeric nanoparticles (NPs) into these implants may reduce the high initial burst release from the polymeric matrix and further sustain drug release thus avoiding the need for frequent injections as well as minimizing associated side effects. However, light-responsive systems for ophthalmic application are still in their early stages of development with limited reports on their safety and effectiveness. We hypothesize that the innovative design and properties of NP-containing light-responsive ISFIs can serve as a platform for effective management of ocular diseases requiring long term treatment.
Collapse
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jagdish K Jaiswal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
5
|
Fialho SL, Souza PAF, Fulgêncio GO, Miranda MMO, Pereira BG, Haddad A, Messias A, Jorge R, Silva-Cunha A. In vivorelease and retinal safety of intravitreal implants of thalidomide in rabbit eyes and antiangiogenic effect on the chorioallantoic membrane. J Drug Target 2013; 21:837-45. [DOI: 10.3109/1061186x.2013.829074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Kesavan K, Kant S, Singh PN, Pandit JK. Mucoadhesive Chitosan-Coated Cationic Microemulsion of Dexamethasone for Ocular Delivery:In VitroandIn VivoEvaluation. Curr Eye Res 2012; 38:342-52. [DOI: 10.3109/02713683.2012.745879] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Das S, Bellare JR, Banerjee R. Protein based nanoparticles as platforms for aspirin delivery for ophthalmologic applications. Colloids Surf B Biointerfaces 2012; 93:161-8. [PMID: 22305122 DOI: 10.1016/j.colsurfb.2011.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
Abstract
Most conventional ophthalmic dosage forms, though simplistic are limited by poor bioavailability in the posterior chamber of the eye. Application of nanotechnology has the potential to overcome this problem. By varying aspirin albumin ratios from 0.06 to 1.0, we obtained electrokinetically stable, pharmacologically active albumin based aspirin nanoparticles of <200 nm diameter with low polydispersity. In vitro release study showed nanoparticle formulation can release aspirin at a sustained rate for prolonged duration (90% at 72 h) and 11% drug release in the posterior chamber over a period of 72 h under simulated condition. Stability of the formulation was well maintained on storage for six months and after reconstitution for 24 h. The formulation showed no hemolysis in contrast to the high hemolysis due to the free drug. This study shows that aspirin loaded albumin nanoparticles prepared by coacervation holds promise as a formulation for topical delivery in diabetic retinopathy.
Collapse
Affiliation(s)
- Saikat Das
- Department of Biosciences and BioEngineering, Indian Institute of Technology Bombay, Bombay, India
| | | | | |
Collapse
|
8
|
Fialho SL, Rêgo MB, Siqueira RC, Jorge R, Haddad A, Rodrigues AL, Maia-Filho A, Silva-Cunha A. Safety and Pharmacokinetics of an Intravitreal Biodegradable Implant of Dexamethasone Acetate in Rabbit Eyes. Curr Eye Res 2009; 31:525-34. [PMID: 16769612 DOI: 10.1080/02713680600719036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The treatment of vitreoretinal diseases is limited and, nowadays, new drug delivery approaches have been reported in order to increase drug bioavailability. The objective of the current study was to determine the pharmacokinetic profile of a biodegradable dexamethasone acetate implant inserted into the vitreous of rabbits and to evaluate its potential signs of toxicity to the rabbits' eyes. The results showed that the intravitreous drug concentration remained within the therapeutic range along the 8-week period of evaluation. The system under study was not toxic to the normal rabbit retina, and no significant increase in intraocular pressure was observed.
Collapse
Affiliation(s)
- S L Fialho
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Miller DJ, Li SK, Tuitupou AL, Kochambilli RP, Papangkorn K, Mix DC, Higuchi WI, Higuchi JW. Passive and oxymetazoline-enhanced delivery with a lens device: pharmacokinetics and efficacy studies with rabbits. J Ocul Pharmacol Ther 2009; 24:385-91. [PMID: 18665810 DOI: 10.1089/jop.2007.0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aims of this study were to assess the trans-scleral delivery of dexamethasone phosphate (DexP) with a prototype lens device and a formulation comprising a vasoconstrictor and to determine the efficacy of this delivery system in treating experimentally induced uveitis in a rabbit model. METHODS Passive trans-scleral delivery was performed on New Zealand white rabbits in vivo, using the lens device and a formulation of 0.034 M oxymetazoline (OMZ, the vasoconstrictor) and 0.5 M of dexamethasone sodium phosphate (DexNaP). Trans-scleral delivery of DexP without OMZ was the control. The amounts of DexP delivered into the eye and its distributions in the eye were determined by dissection of the eye and high-performance liquid chromatography assay in the pharmacokinetics study. The efficacy of the DexP delivery system in treating lipopolysaccharide-induced uveitis was also evaluated in the rabbit model in vivo. The effect of OMZ upon DexP delivery and its treatment efficacy was studied by comparing the DexP results with and without OMZ. RESULTS In the pharmacokinetics study, the amounts of DexP delivered into the eye using the lens system with OMZ were significantly higher than those without OMZ. The results in the efficacy study showed a better treatment outcome with OMZ to relieve the symptoms of endotoxin-induced uveitis in rabbits. CONCLUSIONS The potential of vasoconstrictors to enhance eye disease treatments in passive trans-scleral drug delivery was demonstrated. The higher DexP level in the eye and the improvement of the outcome in the efficacy study in the presence of the vasoconstrictor are consistent with the hypothesis that the vasoconstrictor enhances drug delivery by decreasing clearance.
Collapse
|
10
|
Abstract
Research into treatment modalities affecting vision is rapidly progressing due to the high incidence of diseases such as diabetic macular edema, proliferative vitreoretinopathy, wet and dry age-related macular degeneration and cytomegalovirus retinitis. The unique anatomy and physiology of eye offers many challenges to developing effective retinal drug delivery systems. Historically, drugs have been administered to the eye as liquid drops instilled in the cul-de-sac. However retinal drug delivery is a challenging area. The transport of molecules between the vitreous/retina and systemic circulation is restricted by the blood-retinal barrier, which is made up of retinal pigment epithelium and endothelial cells of the retinal blood vessels. An increase in the understanding of drug absorption mechanisms into the retina from local and systemic administration has led to the development of various drug delivery systems, such as biodegradable and non-biodegradable implants, microspheres, nanoparticles and liposomes, gels and transporter-targeted prodrugs. Such diversity in approaches is an indication that there is still a need for an optimized noninvasive or minimally invasive drug delivery system to the eye. A number of large molecular weight compounds (i.e., oligonucleotides, RNA aptamers, peptides and monoclonal antibodies) have been and continue to be introduced as new therapeutic entities. However, for high molecular weight polar compounds the mechanism of epithelial transport is primarily through the tight junctions in the retinal pigment epithelium, as these agents undergo limited transcellular diffusion. Delivery and administration of these new drugs in a safe and effective manner is still a major challenge facing pharmaceutical scientists. In this review article, the authors discuss various drug delivery strategies, devices and challenges associated with drug delivery to the retina.
Collapse
Affiliation(s)
- Kumar G Janoria
- University of Missouri-Kansas City, Department of Pharmaceutical Sciences, School of Pharmacy, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
11
|
Olejnik O, Hughes P. Drug delivery strategies to treat age-related macular degeneration. Adv Drug Deliv Rev 2005. [DOI: 10.1016/j.addr.2005.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li SK, Molokhia SA, Jeong EK. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging. Pharm Res 2005; 21:2175-84. [PMID: 15648248 DOI: 10.1007/s11095-004-7669-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The objective was to assess the permeation and clearance of model ionic permeants after subconjunctival injection with nuclear magnetic resonance imaging (MRI). METHODS New Zealand white rabbit was the animal model and manganese ion (Mn2+) and manganese ethylenediaminetetraacetic acid complex (MnEDTA2-) were the model permeants. The current study was divided into three parts: in vitro, postmortem, and in vivo. Transscleral passive permeation experiments were conducted with excised sclera in side-by-side diffusion cells in vitro. Subconjunctival delivery experiments were conducted with rabbits postmortem and in vivo. The distribution and elimination of the probe permeants from the subconjunctival space after subconjunctival injections were determined by MRI. RESULTS The data of excised sclera in vitro suggest large effective pore size for transscleral transport and negligible pore charge effects upon the permeation of the ionic permeants. The permeability coefficients of Mn2+ and MnEDTA2- across the sclera in vitro were 3.6 x 10(-5) cm/s and 2.4 x 10(-5) cm/s, respectively. Although relatively high sclera permeability was observed in vitro, subconjunctival injections in vivo did not provide significant penetration of Mn2+ and MnEDTA2- into the globe; permeant concentrations in the eye were below the detection limit, which corresponds to less than 0.05% of the concentration of the injection solution (e.g., less than 0.02 mM when 40 mM injection solution was used). The volume of the subconjunctival pocket and the concentration of the permeants in the pocket were observed to decrease with time after the injection, and this could contribute to the lower than expected subconjunctival absorption in vivo. Different from the results in vivo, experiments with rabbits postmortem show significant penetration of Mn2+ and MnEDTA2- into the globe with the permeants primarily delivered into the anterior segment of the eye. This difference suggests blood vasculature clearance as a main barrier for passive transscleral transport. The data also show that the pars plicata/pars plana is the least resistance pathway for passive transscleral drug delivery of the polar permeants, and there are indications of the presence of another barrier, possibly the retinal epithelium and/or Bruch's membrane, at the back of the eye. CONCLUSIONS Subconjunctival delivery of the ionic permeants in vivo cannot be quantitatively predicted by the in vitro results. MRI is a noninvasive complementary technique to traditional pharmacokinetic methods. It can provide insights into ocular pharmacokinetics without permeant redistribution that can occur in surgical procedure postmortem in traditional pharmacokinetic studies when the blood vasculature barrier is absent.
Collapse
Affiliation(s)
- S Kevin Li
- Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
13
|
Einmahl S, Ponsart S, Bejjani RA, D'Hermies F, Savoldelli M, Heller J, Tabatabay C, Gurny R, Behar-Cohen F. Ocular biocompatibility of a poly(ortho ester) characterized by autocatalyzed degradation. ACTA ACUST UNITED AC 2003; 67:44-53. [PMID: 14517860 DOI: 10.1002/jbm.a.10597] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The biocompatibility of autocatalyzed poly(ortho ester) (POE(70)LA(30)), a viscous, hydrophobic, bioerodible polymer, was investigated. POE(70)LA(30) was synthesized, sterilized by gamma irradiation, and injected in rabbit eyes at adequate volumes through subconjunctival, intracameral, intravitreal, and suprachoroidal routes. Clinical examinations were performed postoperatively at regular time points for 6 mo, and histopathologic analysis was carried out to confirm tissular biocompatibility. After subconjunctival injection, the polymer was well tolerated and persisted in the subconjunctival space for about 5 weeks. In the case of intracameral injections, polymer biocompatibility was good; the POE(70)LA(30) bubble was still present in the anterior chamber for up to 6 mo after injection. No major histopathologic anomalies were detected, with the exception of a localized Descemet membrane thickening. After intravitreal administration, POE(70)LA(30) biocompatibility was excellent, and no inflammatory reaction could be detected during the observation period. The polymer was degraded in approximately 3 mo. Suprachoroidal injections of POE(70)LA(30) were reproducible and well tolerated. POE(70)LA(30) triggered a slight elevation of the retina and choroid upon clinical observation. The polymer was detectable in the suprachoroidal space for about 6 mo. No inflammatory reaction and no major retinal anomalies could be detected by histology. In conclusion, POE(70)LA(30) appears to be a promising biomaterial for intraocular application, potentially providing sustained drug delivery over an extended period of time, with a good tolerance.
Collapse
Affiliation(s)
- Suzanne Einmahl
- School of Pharmacy, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|