1
|
Roser SM, Munarin F, Polucha C, Minor AJ, Choudhary G, Coulombe KLK. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins. ACS Biomater Sci Eng 2025; 11:1612-1628. [PMID: 39945764 DOI: 10.1021/acsbiomaterials.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Therapeutic protein delivery has ushered in a promising new generation of disease treatment, garnering more recognition for its clinical potential than ever. However, proteins' limited stability, extremely short average half-lives, and evidenced toxicity following systemic delivery continue to undercut their efficacy. Biomaterial-based protein delivery, however, demonstrates the potential to overcome these obstacles. To this end, we have developed a heparinized alginate and collagen hydrogel for the local, sustained delivery of therapeutic proteins. In an effort to match this ubiquitous application of protein delivery to various disease states and target tissues with sufficient versatility, we identified three distinct delivery modes as design targets. A shear-thinning, low-viscosity injectable for minimal tissue damage, a higher-viscosity gel plug for subcutaneous injection, and a submillimeter-thickness film for solid-form implantation were optimized and characterized in this work. In vitro assessments confirmed feasible injection control, mechanical stability for up to 6 h of unsubmerged storage, and isotropic early collagen fibril assembly. Release kinetics were assessed both in vitro and in vivo, demonstrating up to 14 days of functional vascular endothelial growth factor delivery. Rodent models of pulmonary hypertension, subcutaneous injection, and myocardial infarction, three promising applications of protein therapeutics, were used to assess the feasible delivery and biocompatibility of the injectable gel, gel plug, and film, respectively. Histological evaluation of the delivered materials and surrounding tissue showed high biocompatibility with cell and blood vessel infiltration, remodeling, and integration with the host tissue. Our successful customization of the biomaterial to heterogeneous delivery modes demonstrates its versatile capacity for the local, sustained delivery of therapeutic proteins for a diverse array of regenerative medicine applications.
Collapse
Affiliation(s)
- Stephanie M Roser
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Fabiola Munarin
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Collin Polucha
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Gaurav Choudhary
- Division of Cardiology, Providence VA Medical Center, Providence, Rhode Island 02908, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Kareen L K Coulombe
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
2
|
Okpe PC, Folorunso O, Aigbodion VS, Obayi C. Hydroxyapatite synthesis and characterization from waste animal bones and natural sources for biomedical applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35440. [PMID: 38923882 DOI: 10.1002/jbm.b.35440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Hydroxyapatites (HAps) synthesized from waste animal bones have recently gained attention due to their outstanding properties. This is because there is a need to fabricate scaffolds with desirable mechanical strength, ability to withstand high temperatures, and insoluble in solvents such as water, acetone, ethanol, and isopropyl alcohol. This study is an extensive summary of many articles on the routes of synthesis/preparation of HAp, and the optimum processing parameter, and the biomedical application areas, such as: drug administration, dental implants, bone tissue engineering, orthopedic implant coatings, and tissue regeneration/wound healing. A broad catalog of the synthesis methods (and combination methods), temperature/time, shape/size, and the calcium-to-phosphorous (Ca/P) value of diverse waste animal bone sources were reported. The alkaline hydrolysis method is proposed to be suitable for synthesizing HAp from natural sources due to the technique's ability to produce intrinsic HAp. The method is also preferred to the calcination method owing to the phase transformation that takes place at high temperatures during calcinations. However, calcinations aid in removing impurities and germs during heating at high temperatures. When compared to calcination technique, alkaline hydrolysis method results in crystalline HAp; the higher degree of crystallinity is disadvantageous to HAp bioactivity. In addition, the standardization and removal of impurities and contaminants, thorough biocompatibility to ensure clinical safety of the HAp to the human body, and improvement of the mechanical strength and toughness to match specific requirements for the various biomedical applications are the important areas for future studies.
Collapse
Affiliation(s)
- Promise Chinonso Okpe
- Department of Biomedical Engineering, Federal University of Allied Health Sciences, Enugu, Nigeria
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka, Nigeria
| | - Oladipo Folorunso
- Chemical, Metallurgical, and Materials Engineering Department, Tshwane University of Technology, Pretoria, South Africa
- French South African Institute of Technology (F'SATI)/Department of Electrical Engineering, Tshwane University of Technology, Pretoria, South Africa
| | - Victor Sunday Aigbodion
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka, Nigeria
- Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 534, Auckland Park, Johannesburg, South Africa
| | - Camillus Obayi
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
3
|
Pal D, Das P, Mukherjee P, Roy S, Chaudhuri S, Kesh SS, Ghosh D, Nandi SK. Biomaterials-Based Strategies to Enhance Angiogenesis in Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:2725-2741. [PMID: 38630965 DOI: 10.1021/acsbiomaterials.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shyam Sundar Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
4
|
Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, Ding Q, Ding C, Liu W. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. Int J Biol Macromol 2023; 248:125949. [PMID: 37494997 DOI: 10.1016/j.ijbiomac.2023.125949] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Polysaccharides, being a natural, active, and biodegradable polymer, have garnered significant attention due to their exceptional properties. These properties make them ideal for creating multifunctional hydrogels that can be used as wound dressings for skin injuries. Polysaccharide hydrogel has the ability to both simulate the natural extracellular matrix, promote cell proliferation, and provide a suitable environment for wound healing while protecting it from bacterial invasion. Polysaccharide hydrogels offer a promising solution for repairing damaged skin. This review provides an overview of the mechanisms involved in skin damage repair and emphasizes the potential of polysaccharide hydrogels in this regard. For different skin injuries, polysaccharide hydrogels can play a role in promoting wound healing. However, we still need to conduct more research on polysaccharide hydrogels to provide more possibilities for skin damage repair.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hongyuan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lina Ma
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
5
|
Development of Growth Factor Releasing Hyaluronic Acid-Based Hydrogel for Pulp Regeneration: A Preliminary Study. Gels 2022; 8:gels8120825. [PMID: 36547349 PMCID: PMC9778203 DOI: 10.3390/gels8120825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Growth factors play essential roles as signaling molecules in pulp regeneration. We investigated the effect of a hyaluronic acid (HA)-collagen hybrid hydrogel with controlled release of fibroblast growth factor (FGF)-2 and platelet-derived growth factor (PDGF)-BB on human pulp regeneration. The cell interaction and cytotoxicity of the HA-collagen hybrid hydrogel, the release kinetics of each growth factor, and the effects of the released growth factors on pulp cell proliferation were examined. The vitality of pulp cells was maintained. The amounts of FGF-2 and PDGF-BB released over 7 days were 68% and 50%, respectively. Groups with a different concentration of growth factor (FGF-2: 100, 200, 500, and 1000 ng/mL; PDGF-BB: 10, 50, 100, 200, and 500 ng/mL) were experimented on days 1, 3, 5, and 7. Considering FGF-2 concentration, significantly increased pulp cell proliferation was observed on days 1, 3, 5, and 7 in the 100 ng/mL group and on days 3, 5, and 7 in the 200 ng/mL group. In the case of PDGF-BB concentration, significantly increased pulp cell proliferation was observed at all four time points in the 100 ng/mL group and on days 3, 5, and 7 in the 50, 200, and 500 ng/mL groups. This indicates that the optimal concentration of FGF-2 and PDGF-BB for pulp cell proliferation was 100 ng/mL and that the HA-collagen hybrid hydrogel has potential as a controlled release delivery system for FGF-2 and PDGF-BB.
Collapse
|
6
|
Aksoy Körpe D, Güler S, Aydin HM, Duman M. Effects of alginate-chitosan core-shell nanoparticles encapsulated in gelatin methacrylate hydrogel on chondrogenesis of mesenchymal stem cells. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2014484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Didem Aksoy Körpe
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Selcen Güler
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
- Center for Bioengineering, Hacettepe University, Ankara, Turkey
| | - Memed Duman
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey
- Center for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Sun Q, Shen Z, Liang X, He Y, Kong D, Midgley AC, Wang K. Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. MATERIALS 2021; 14:ma14237468. [PMID: 34885623 PMCID: PMC8658964 DOI: 10.3390/ma14237468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
Bile duct injury (BDI) and bile tract diseases are regarded as prominent challenges in hepatobiliary surgery due to the risk of severe complications. Hepatobiliary, pancreatic, and gastrointestinal surgery can inadvertently cause iatrogenic BDI. The commonly utilized clinical treatment of BDI is biliary-enteric anastomosis. However, removal of the Oddi sphincter, which serves as a valve control over the unidirectional flow of bile to the intestine, can result in complications such as reflux cholangitis, restenosis of the bile duct, and cholangiocarcinoma. Tissue engineering and biomaterials offer alternative approaches for BDI treatment. Reconstruction of mechanically functional and biomimetic structures to replace bile ducts aims to promote the ingrowth of bile duct cells and realize tissue regeneration of bile ducts. Current research on artificial bile ducts has remained within preclinical animal model experiments. As more research shows artificial bile duct replacements achieving effective mechanical and functional prevention of biliary peritonitis caused by bile leakage or obstructive jaundice after bile duct reconstruction, clinical translation of tissue-engineered bile ducts has become a theoretical possibility. This literature review provides a comprehensive collection of published works in relation to three tissue engineering approaches for biomimetic bile duct construction: mechanical support from scaffold materials, cell seeding methods, and the incorporation of biologically active factors to identify the advancements and current limitations of materials and methods for the development of effective artificial bile ducts that promote tissue regeneration.
Collapse
Affiliation(s)
- Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Zefeng Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| |
Collapse
|
8
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
9
|
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1234. [PMID: 32630377 PMCID: PMC7353122 DOI: 10.3390/nano10061234] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1-100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Vishalli
- Faculty of Medical Sciences, Krishna Institute of Medical Sciences “Deemed to be University”, Karad, Maharashtra 415539, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| |
Collapse
|
10
|
Bahadoran M, Shamloo A, Nokoorani YD. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep 2020; 10:7342. [PMID: 32355267 PMCID: PMC7193649 DOI: 10.1038/s41598-020-64480-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
In the present study, a hybrid microsphere/hydrogel system, consisting of polyvinyl alcohol (PVA)/sodium alginate (SA) hydrogel incorporating PCL microspheres is introduced as a skin scaffold to accelerate wound healing. The hydrogel substrate was developed using the freeze-thawing method, and the proportion of the involved polymers in its structure was optimized based on the in-vitro assessments. The bFGF-encapsulated PCL microspheres were also fabricated utilizing the double-emulsion solvent evaporation technique. The achieved freeze-dried hybrid system was then characterized by in-vitro and in-vivo experiments. The results obtained from the optimization of the hydrogel showed that increasing the concentration of SA resulted in a more porous structure, and higher swelling ability, elasticity and degradation rate, but decreased the maximum strength and elongation at break. The embedding of PCL microspheres into the optimized hydrogel structure provided sustained and burst-free release kinetics of bFGF. Besides, the addition of drug-loaded microspheres led to no significant change in the degradation mechanism of the hydrogel substrate; however, it reduced its mechanical strength. Furthermore, the MTT assay represented no cytotoxic effect for the hybrid system. The in-vivo studies on a burn-wound rat model, including the evaluation of the wound closure mechanism, and histological analyses indicated that the fabricated scaffold efficiently contributed to promoting cell-induced tissue regeneration and burn-wound healing.
Collapse
Affiliation(s)
- Maedeh Bahadoran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
11
|
Anas M, Jana S, Mandal TK. Vesicular assemblies of thermoresponsive amphiphilic polypeptide copolymers for guest encapsulation and release. Polym Chem 2020. [DOI: 10.1039/d0py00135j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive amphiphilic polypeptide copolymers are synthesized via different polymerization techniques for their self-assembly into vesicular aggregates for guest encapsulation and release.
Collapse
Affiliation(s)
- Mahammad Anas
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Somdeb Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tarun K. Mandal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
12
|
Preparation of injectable forms of immobilized protein drugs using UV-curable gelatin derivatives. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Ferreira Soares DC, Oda CMR, Monteiro LOF, de Barros ALB, Tebaldi ML. Responsive polymer conjugates for drug delivery applications: recent advances in bioconjugation methodologies. J Drug Target 2018; 27:355-366. [PMID: 30010436 DOI: 10.1080/1061186x.2018.1499747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Caroline Mari Ramos Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andre Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
14
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
15
|
Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: Still facing a long way ahead. J Control Release 2018; 279:181-197. [DOI: 10.1016/j.jconrel.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
|
16
|
Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 2017; 103:467-476. [DOI: 10.1016/j.ijbiomac.2017.05.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
|
17
|
Park JW, Hwang SR, Yoon IS. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules 2017; 22:E1259. [PMID: 28749427 PMCID: PMC6152378 DOI: 10.3390/molecules22081259] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/18/2023] Open
Abstract
Growth factors are endogenous signaling molecules that regulate cellular responses required for wound healing processes such as migration, proliferation, and differentiation. However, exogenous application of growth factors has limited effectiveness in clinical settings due to their low in vivo stability, restricted absorption through skin around wound lesions, elimination by exudation prior to reaching the wound area, and other unwanted side effects. Sophisticated systems to control the spatio-temporal delivery of growth factors are required for the effective and safe use of growth factors as regenerative treatments in clinical practice, such as biomaterial-based drug delivery systems (DDSs). The current review describes the roles of growth factors in wound healing, their clinical applications for the treatment of chronic wounds, and advances in growth factor-loaded DDSs for enhanced wound healing, focusing on micro- and nano-particulate systems, scaffolds, hydrogels, and other miscellaneous systems.
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Seung Rim Hwang
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea.
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
18
|
Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:691-705. [PMID: 28697631 DOI: 10.1080/21691401.2017.1349778] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nasim Annabi
- c Biomaterials Innovation Research Center, Brigham and Women's Hospital , Harvard Medical School , Cambridge , MA , USA.,d Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Northeastern University , Boston , MA , USA
| | - Rovshan Khalilov
- f Institute of Radiation Problems , National Academy of Sciences of Azerbaijan , Baku , Azerbaijan
| | - Abolfazl Akbarzadeh
- g Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Samiei
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,h Department of Endodontics, Faculty of Dentistry , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Effat Alizadeh
- i Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Soodabeh Davaran
- i Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Azadeh Montaseri
- j Department of Anatomical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
19
|
Fan H, Liu H, Zhu R, Li X, Cui Y, Hu Y, Yan Y. Comparison of Chondral Defects Repair with In Vitro and In Vivo Differentiated Mesenchymal Stem Cells. Cell Transplant 2017; 16:823-32. [PMID: 18088002 DOI: 10.3727/000000007783465181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to compare chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells (MSCs). A novel PLGA-gelatin/chondroitin/hyaluronate (PLGA-GCH) hybrid scaffold with transforming growth factor-β1 (TGF-β1)-impregnated microspheres (MS-TGF) was fabricated to mimic the extracellular matrix. MS-TGF showed an initial burst release (22.5%) and a subsequent moderate one that achieved 85.1% on day 21. MSCs seeded on PLGA-GCH/MS-TGF or PLGA-GCH were incubated in vitro and showed that PLGA-GCH/MS-TGF significantly augmented proliferation of MSCs and glycosaminoglycan synthesis compared with PLGA-GCH. Then MSCs seeded on PLGA-GCH/MS-TGF were implanted and differentiated in vivo to repair chondral defect on the right knee of rabbit (in vivo differentiation repair group), while the contralateral defect was repaired with in vitro differentiated MSCs seeded on PLGA-GCH (in vitro differentiation repair group). The histology observation demonstrated that in vivo differentiation repair showed better chondrocyte morphology, integration, and subchondral bone formation compared with in vitro differentiation repair 12 and 24 weeks postoperatively, although there was no significant difference after 6 weeks. The histology grading score comparison also demonstrated the same results. The present study implies that in vivo differentiation induced by PLGA-GCH/MS-TGF and the host microenviroment could keep chondral phenotype and enhance repair. It might serve as another way to induce and expand seed cells in cartilage tissue engineering.
Collapse
Affiliation(s)
- Hongbin Fan
- Institute of Orthopaedics & Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Haifeng Liu
- Research Institute of Polymer Material, Tianjin University, Tianjin, PR China
| | - Rui Zhu
- Department of Engineering, Military Engineering University, Xi'an, PR China
| | - Xusheng Li
- Institute of Orthopaedics & Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yuming Cui
- Institute of Orthopaedics & Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yunyu Hu
- Institute of Orthopaedics & Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yongnian Yan
- Department of Mechanical Engineering, Tsinghua University, Beijing, PR China
| |
Collapse
|
20
|
Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Pharm Res 2017; 34:1152-1170. [PMID: 28342056 PMCID: PMC5418324 DOI: 10.1007/s11095-017-2147-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are responsible for bone formation during embryogenesis and bone regeneration and remodeling. The osteoinductive action of BMPs, especially BMP-2 and BMP-7, has led to their use in a range of insurmountable treatments where intervention is required for effective bone regeneration. Introduction of BMP products to the market, however, was not without reports of multiple complications and side effects. Aiming for optimization of the therapeutic efficacy and safety, efforts have been focused on improving the delivery of BMPs to lower the administered dose, localize the protein, and prolong its retention time at the site of action. A major challenge with these efforts is that the protein stability should be maintained. With this review we attempt to shed light on how the stability of BMPs can be affected in the formulation and delivery processes. We first provide a short overview of the current standing of the complications experienced with BMP products. We then discuss the different delivery parameters studied in association with BMPs, and their influence on the efficacy and safety of BMP treatments. In particular, the literature addressing the stability of BMPs and their possible interactions with components of the delivery system as well as their sensitivity to conditions of the formulation process is reviewed. In summary, recent developments in the fields of bioengineering and biopharmaceuticals suggest that a good understanding of the relationship between the formulation/delivery conditions and the stability of growth factors such as BMPs is a prerequisite for a safe and effective treatment.
Collapse
|
21
|
Bose A, Jana S, Saha A, Mandal TK. Amphiphilic polypeptide-polyoxazoline graft copolymer conjugate with tunable thermoresponsiveness: Synthesis and self-assembly into various micellar structures in aqueous and nonaqueous media. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
23
|
Dudani JS, Buss CG, Akana RT, Kwong GA, Bhatia SN. Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2919-2928. [PMID: 29706854 PMCID: PMC5914179 DOI: 10.1002/adfm.201505142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Postoperative infection and thromboembolism represent significant sources of morbidity and mortality but cannot be easily tracked after hospital discharge. Therefore, a molecular test that could be performed at home would significantly impact disease management. Our lab has previously developed intravenously delivered 'synthetic biomarkers' that respond to dysregulated proteases to produce a urinary signal. These assays, however, have been limited to chronic diseases or acute diseases initiated at the time of diagnostic administration. Here, we formulate a subcutaneously administered sustained release system by using small PEG scaffolds (<10 nm) to promote diffusion into the bloodstream over a day. We demonstrate the utility of a thrombin sensor to identify thrombosis and an MMP sensor to measure inflammation. Finally, we developed a companion paper ELISA using printed wax barriers with nanomolar sensitivity for urinary reporters for point-of-care detection. Our approach for subcutaneous delivery of nanosensors combined with urinary paper analysis may enable facile monitoring of at-risk patients.
Collapse
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Colin G. Buss
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Reid T.K. Akana
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gabriel A. Kwong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
24
|
Guarino V, Cirillo V, Ambrosio L. Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Rev Med Devices 2015; 13:83-102. [PMID: 26619260 DOI: 10.1586/17434440.2016.1126505] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the last decade, bicomponent fibers have been proposed to fabricate bio-inspired systems for tissue repair, regenerative medicine, medical healthcare and clinical applications. In comparison with monocomponent fibers, key advantage concerns their ability of self-adapting to the physiological conditions through an extended pattern of signals--morphological, chemical and physical ones--confined at the single fiber level. Hydrophobic/hydrophilic phases may be variously organized by tuneable processing modes (i.e., blending, core/shell, interweaving) thus offering different benefits in terms of biological activity, fluid sorption and molecular transport properties (first generation). The possibility to efficiently graft cell-adhesive proteins and peptide sequences onto the fiber surface mediated by spacers or impregnating hydrogels allows to trigger cell late activities by a controlled and sustained release in vitro of specific biomolecules (i.e., morphogens, growth factors). Here, we introduce an overview of current approaches based on bicomponent fiber use as extra cellular matrix analogs with cell-instructive functions and hierarchal organization of living tissues.
Collapse
Affiliation(s)
- Vincenzo Guarino
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| | - Valentina Cirillo
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| | - Luigi Ambrosio
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| |
Collapse
|
25
|
Ahmadi-Aghkand F, Gholizadeh-Ghaleh Aziz S, Panahi Y, Daraee H, Gorjikhah F, Gholizadeh-Ghaleh Aziz S, Hsanzadeh A, Akbarzadeh A. Recent prospective of nanofiber scaffolds fabrication approaches for skin regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1635-41. [DOI: 10.3109/21691401.2015.1111232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Costa AMS, Alatorre-Meda M, Alvarez-Lorenzo C, Mano JF. Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3648-3652. [PMID: 25764987 DOI: 10.1002/smll.201500192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes.
Collapse
Affiliation(s)
- Ana M S Costa
- 3B's Research group - Biomaterials, Biodegradables and Biomimetics - Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, GMR, Portugal
| | - Manuel Alatorre-Meda
- 3B's Research group - Biomaterials, Biodegradables and Biomimetics - Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, GMR, Portugal
- Investigador de Cátedras CONACyT comisionado al Centro de Graduados e Investigación en Química del Instituto, Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, 22510, Tijuana, BC, Mexico
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - João F Mano
- 3B's Research group - Biomaterials, Biodegradables and Biomimetics - Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, GMR, Portugal
| |
Collapse
|
27
|
Zhu W, Castro NJ, Cheng X, Keidar M, Zhang LG. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration. PLoS One 2015. [PMID: 26222527 PMCID: PMC4519315 DOI: 10.1371/journal.pone.0134729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP) treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone) electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin) loaded poly(lactic-co-glycolic) acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production). Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture) in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Nathan J. Castro
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Xiaoqian Cheng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mu Y, Wu F, Lu Y, Wei L, Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine (Lond) 2015; 9:1869-83. [PMID: 25325242 DOI: 10.2217/nnm.14.70] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve tissue regeneration approaches have gained much attention in recent years, and nerve conduits (NCs), which facilitate nerve tissue regeneration, have become an attractive alternative to nerve autologous graft. Several methods are proposed to fabricate NCs, including electrospinning, which is a widely used approach for NCs and other tissue scaffolds, and has advantages such as the ability to control the thickness, diameter and porosity of fibers, as well as its simple experimental set up. This article gives an overview of electrospun fibers for nerve conduits utilized in peripheral and central nerve regeneration. Natural and synthetic materials with different mechanical strength, degradation rates and biocompatibility are proposed. Several bioactive proteins that can help the process of nerve regeneration are introduced. Finally, some approaches to control the morphology of electrospun fibers and to deliver bioactive proteins are discussed in detail.
Collapse
Affiliation(s)
- Ying Mu
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, PR China
| | | | | | | | | |
Collapse
|
29
|
Hasani-Sadrabadi MM, Hajrezaei SP, Emami SH, Bahlakeh G, Daneshmandi L, Dashtimoghadam E, Seyedjafari E, Jacob KI, Tayebi L. Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1809-19. [PMID: 25933690 DOI: 10.1016/j.nano.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Advancement of bone tissue engineering as an alternative for bone regeneration has attracted significant interest due to its potential in reducing the costs and surgical trauma affiliated with the effective treatment of bone defects. We have improved the conventional approach of producing polymeric nanoparticles, as one of the most promising choices for drug delivery systems, using a microfluidics platform, thus further improving our control over osteogenic differentiation of mesenchymal stem cells. Molecular dynamics simulations were carried out for theoretical understanding of our experiments in order to get a more detailed molecular-scale insight into the drug-carrier interactions. In this work, with the sustained intracellular delivery of dexamethasone from microfluidics-synthesized nanoparticles, we explored the effects of particle design on controlling stem cell fates. We believe that the insights learned from this work will lead to the discovery of new strategies to tune differentiation for in situ differentiation or stem cell therapeutics. FROM THE CLINICAL EDITOR The use of mesenchymal stem cells has been described by many researchers as a novel therapy for bone regeneration. One major hurdle in this approach is the control of osteogenic differentiation. In this article, the authors described elegantly their microfluidic system in which dexamethasone loaded nanoparticles were produced. This system would allow precise fabrication of nanoparticles and consequently higher efficiency in cellular differentiation.
Collapse
Affiliation(s)
- Mohammad Mahdi Hasani-Sadrabadi
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Center of Excellence in Biomaterials, Department of Biomedical Engineering and Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sana Pour Hajrezaei
- Center of Excellence in Biomaterials, Department of Biomedical Engineering and Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Shahriar Hojjati Emami
- Center of Excellence in Biomaterials, Department of Biomedical Engineering and Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ghasem Bahlakeh
- Center of Excellence in Biomaterials, Department of Biomedical Engineering and Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Leila Daneshmandi
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Erfan Dashtimoghadam
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Karl I Jacob
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA; Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
30
|
Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1551-73. [PMID: 25804415 DOI: 10.1016/j.nano.2015.03.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Current advances in novel drug delivery systems (DDSs) to release growth factors (GFs) represent a great opportunity to develop new therapies or enhance the effectiveness of available medical treatments. These advances are particularly relevant to the field of regenerative medicine, challenging healthcare issues such as wound healing and skin repair. To this end, biocompatible biomaterials have been extensively studied to improve in vivo integration of DDSs, to enhance the bioactivity of the released drugs and to deliver bioactive molecules in a localised and controlled manner. Thus, this review presents an overview of DDSs to release GFs for skin regeneration, particularly emphasising on (i) polymeric micro and nanospheres, (ii) lipid nanoparticles, (iii) nanofibrous structures, (iv) hydrogels and (v) scaffolds. In addition, this review summarises the current animal models available for studying wound healing and the clinical trials and marketed medications based on GF administration indicated for chronic wound treatment. FROM THE CLINICAL EDITOR Chronic wounds currently pose a significant burden worldwide. With advances in science, novel drug delivery systems have been developed for growth factors delivery. In this comprehensive review, the authors highlighted current drug delivery systems for the enhancement of wound healing and their use in clinical settings.
Collapse
Affiliation(s)
- Garazi Gainza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | | | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain.
| |
Collapse
|
31
|
Nga VDW, Lim J, Choy DKS, Nyein MA, Lu J, Chou N, Yeo TT, Teoh SH. Effects of polycaprolactone-based scaffolds on the blood-brain barrier and cerebral inflammation. Tissue Eng Part A 2015; 21:647-53. [PMID: 25335965 DOI: 10.1089/ten.tea.2013.0779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe pathoanatomical and mechanical injuries compromise patient recovery and survival following penetrating brain injury (PBI). The realization that the blood-brain barrier (BBB) plays a major role in dictating post-PBI events has led to rising interests in possible therapeutic interventions through the BBB. Recently, the choroid plexus has also been suggested as a potential therapeutic target. The use of biocompatible scaffolds for the delivery of therapeutic agents, but little is known about their interaction with cerebral tissue, which has important clinical implications. Therefore, the authors have sought to investigate the effect of polycaprolactone (PCL) and PCL/tricalcium phosphate (PCL/TCP) scaffolds on the maintenance of BBB phenotype posttraumatic brain injury. Cranial defects of 3 mm depth were created in Sprague Dawley rats, and PCL and PCL/TCP scaffolds were subsequently implanted in predetermined locations for a period of 1 week and 1 month. Higher endothelial barrier antigen (EBA) expressions from PCL-based scaffold groups (p>0.05) were found, suggesting slight advantages over the sham group (no scaffold implantation). PCL/TCP scaffold group also expressed EBA to a higher degree (p>0.05) than PCL scaffolds. Importantly, higher capillary count and area as early as 1 week postimplantation suggested lowered ischemia from the PCL/TCP scaffold group as compared with PCL and sham. Evaluation of interlukin-1β expression suggested that the PCL and PCL/TCP scaffolds did not cause prolonged inflammation. BBB transport selectivity was evaluated by the expression of aquaporin-4 (AQP-4). Attenuated expression of AQP-4 in the PCL/TCP group (p<0.05) suggested that PCL/TCP scaffolds altered BBB selectivity to a lower degree as compared with sham and PCL groups, pointing to potential clinical implications in reducing cerebral edema. Taken together, the responses of PCL-based scaffolds with brain tissue suggested safety, and encourages further preclinical evaluation in PBI management with these scaffolds.
Collapse
|
32
|
Izadifar M, Haddadi A, Chen X, Kelly ME. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. NANOTECHNOLOGY 2015; 26:012001. [PMID: 25474543 DOI: 10.1088/0957-4484/26/1/012001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N5A9, Canada
| | | | | | | |
Collapse
|
33
|
Sampath Kumar T, Madhumathi K, Rajkamal B, Zaheatha S, Rajathi Malar A, Alamelu Bai S. Enhanced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers. Colloids Surf B Biointerfaces 2014; 123:542-8. [DOI: 10.1016/j.colsurfb.2014.09.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/26/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
|
34
|
Kong X, Wang J, Cao L, Yu Y, Liu C. Enhanced osteogenesis of bone morphology protein-2 in 2- N ,6- O -sulfated chitosan immobilized PLGA scaffolds. Colloids Surf B Biointerfaces 2014; 122:359-367. [DOI: 10.1016/j.colsurfb.2014.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
|
35
|
Inaba H, Sanghamitra NJM, Fukai T, Matsumoto T, Nishijo K, Kanamaru S, Arisaka F, Kitagawa S, Ueno T. Intracellular Protein Delivery System with Protein Needle–GFP Construct. CHEM LETT 2014. [DOI: 10.1246/cl.140481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroshi Inaba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | | | - Toshihiro Fukai
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Takahiro Matsumoto
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Kaname Nishijo
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Shuji Kanamaru
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Fumio Arisaka
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Susumu Kitagawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Takafumi Ueno
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| |
Collapse
|
36
|
García AJ. PEG-maleimide hydrogels for protein and cell delivery in regenerative medicine. Ann Biomed Eng 2014; 42:312-22. [PMID: 23881112 PMCID: PMC3875614 DOI: 10.1007/s10439-013-0870-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/15/2013] [Indexed: 01/05/2023]
Abstract
Protein- and cell-based therapies represent highly promising strategies for regenerative medicine, immunotherapy, and oncology. However, these therapies are significantly limited by delivery considerations, particularly in terms of protein stability and dosing kinetics as well as cell survival, engraftment, and function. Hydrogels represent versatile and robust delivery vehicles for proteins and cells due to their high water content that retains protein biological activity, high cytocompatibility and minimal adverse host reactions, flexibility and tunability in terms of chemistry, structure, and polymerization format, ability to incorporate various biomolecules to convey biofunctionality, and opportunity for minimally invasive delivery as injectable carriers. This review highlights recent progress in the engineering of poly(ethylene glycol) hydrogels cross-linked using maleimide reactive groups for protein and cell delivery.
Collapse
Affiliation(s)
- Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,
| |
Collapse
|
37
|
Kavitha T, Kang IK, Park SY. Poly(acrylic acid)-grafted graphene oxide as an intracellular protein carrier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:402-409. [PMID: 24377671 DOI: 10.1021/la404337d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A pH-sensitive poly(acrylic acid)-grafted graphene oxide (GO-PAA) nanocarrier was synthesized by in situ atom transfer radical polymerization to allow the oral delivery of hydrophilic macromolecular proteins in their active forms to specific cells or organs. The synthesis, morphology, and physiochemical properties of GO-PAA were examined. A model protein, bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) (BSAFITC), was loaded onto GO-PAA through noncovalent interactions and its release was arrested at acidic pH similar to stomach, whereas at pH similar to intestine it was reduced, which paves way for site specific delivery without its degradation in the gastrointestinal tract. Confocal laser microscopy showed that the BSAFITC-loaded GO-PAA was internalized by KB cells by endocytosis and released into cytoplasm. Thus the GO-PAA as a transmembrane transporter is a new class of drug transporters with potential protein delivery applications.
Collapse
Affiliation(s)
- Thangavelu Kavitha
- Department of Polymer Science and Engineering, Kyungpook National University , Daegu 702-701, Republic of Korea
| | | | | |
Collapse
|
38
|
Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 2014; 3:29-47. [PMID: 16359251 DOI: 10.1586/17434440.3.1.29] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transplantation of organs, their surgical reconstruction or implantation of synthetic devices that can perform the function of organs, are the currently available methods for treating loss of tissue/organs in humans. However, the limitations associated with these techniques have led to the development of tissue engineering. One of the primary goals of tissue engineering is to provide growth factor delivery systems that can induce desired cell responses both in vitro and in vivo, in order to cause accelerated tissue regeneration. To make growth factors a more therapeutically viable alternative for the treatment of chronic degenerative diseases, a wide range of natural and synthetic materials have been employed as vehicles for their controlled delivery. The choice of material and design of the carrier device influence the mode of immobilization of growth factors on the scaffolds and their local/systemic administration. From a tissue engineer's perspective, materials could be used for designing scaffolds as well as for delivering single or multiple growth factors. Therefore, this review discusses growth factor delivery systems, with particular reference to carrier-based growth factor delivery systems with a focus on materials.
Collapse
Affiliation(s)
- Rajesh Vasita
- Indian Institute of Technology - Kanpur, Department of Biological Sciences and Bioengineering, Kanpur-208016, Uttar-Pradesh, India.
| | | |
Collapse
|
39
|
Jung YS, Park W, Na K. Succinylated polysaccharide-based thermosensitive polyelectrostatic complex for protein drug delivery. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911513517781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to develop a thermosensitive polyelectrostatic complex, based on polysaccharides, as carriers for long-term protein delivery. We developed a thermosensitive polyelectrostatic complex formed through combined electrostatic and hydrophobic interactions. The copolymer (succinylated pullulan -poly(l-lactide)) showed thermosensitivity in aqueous solution and complexed with protein (lysozyme) via electrostatic attractions and hydrophobic interactions at physiological temperature which formed a thermosensitive polyelectrostatic complex. The particle size of the thermosensitive polyelectrostatic complex was decreased from ~520 nm at 4°C to ~190 nm at 37.5°C. These thermosensitive polyelectrostatic complexes were stable in serum and salt conditions, and maintained the bioactivity of encapsulated protein for 36 days. The thermosensitive polyelectrostatic complex had prolonged in vivo stability that was greater than the polyelectrostatic complex. Based on stability and bioactivity tests for the lysozyme-loaded thermosensitive polyelectrostatic complexes, the potential of the long-term protein delivery carrier in physiological conditions was confirmed.
Collapse
Affiliation(s)
- Young-Seok Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Wooram Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| |
Collapse
|
40
|
Thumsing S, Israsena N, Boonkrai C, Supaphol P. Preparation of bioactive glycosylated glial cell-line derived neurotrophic factor-loaded microspheres for medical applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.40168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saowapa Thumsing
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok 10330 Thailand
| | - Nipan Israsena
- Department of Pharmacology; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
- The Stem Cell and Cell Therapy Research Unit, Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
- The Neuroscience of Headache Research Unit, Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
| | - Chatikorn Boonkrai
- The Stem Cell and Cell Therapy Research Unit, Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
- The Neuroscience of Headache Research Unit, Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
| | - Pitt Supaphol
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok 10330 Thailand
- The Center of Excellence on Petrochemical and Materials Technology; Chulalongkorn University; Bangkok 10330 Thailand
| |
Collapse
|
41
|
Azagarsamy MA, Anseth KS. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew Chem Int Ed Engl 2013; 52:13803-7. [PMID: 24173699 PMCID: PMC4545280 DOI: 10.1002/anie.201308174] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 12/16/2022]
Abstract
On the right wavelength: Photolabile molecular units that undergo photocleavage under light of different wavelengths can be used for the independent release of different dyes/proteins from a single, preloaded storage hydrogel. The controlled release of each protein allowed them to be delivered sequentially and at experimenter-determined times.
Collapse
Affiliation(s)
- Malar A Azagarsamy
- Department of Chemical & Biological Engineering, Howard Hughes Medical institute and the BioFrontiers Institute, University of Colorado at Boulder, 596 UCB Boulder, CO 80303 (USA)
| | | |
Collapse
|
42
|
Azagarsamy MA, Anseth KS. Wavelength-Controlled Photocleavage for the Orthogonal and Sequential Release of Multiple Proteins. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Abstract
Linear polymers have been considered the best molecular structures for the formation of efficient protein conjugates due to their biological advantages, synthetic convenience and ease of functionalization. In recent years, much attention has been dedicated to develop synthetic strategies that produce the most control over protein conjugation utilizing linear polymers as scaffolds. As a result, different conjugate models, such as semitelechelic, homotelechelic, heterotelechelic and branched or star polymer conjugates, have been obtained that take advantage of these well-controlled synthetic strategies. Development of protein conjugates using nanostructures and the formation of said nanostructures from protein-polymer bioconjugates are other areas in the protein bioconjugation field. Although several polymer-protein technologies have been developed from these discoveries, few review articles have focused on the design and function of these polymers and nanostructures. This review will highlight some recent advances in protein-linear polymer technologies that employ protein covalent conjugation and successful protein-nanostructure bioconjugates (covalent conjugation as well) that have shown great potential for biological applications.
Collapse
|
44
|
Du M, Zhu Y, Yuan L, Liang H, Mou C, Li X, Sun J, Zhuang Y, Zhang W, Shi Q, Chen B, Dai J. Assembled 3D cell niches in chitosan hydrogel network to mimic extracellular matrix. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Mahkam M, Mohammadi R, Siadat SOR. Synthesis and Evaluation of Biocompatible pH-Sensitive Hydrogels as Colon-Specific Drug Delivery Systems. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Matsumoto NM, González-Toro DC, Chacko RT, Maynard HD, Thayumanavan S. Synthesis of Nanogel-Protein Conjugates. Polym Chem 2013; 4:2464-2469. [PMID: 24761162 PMCID: PMC3991815 DOI: 10.1039/c3py00085k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent conjugation of bovine serum albumin (BSA) to disulfide cross-linked polymeric nanogels is reported. Polymeric nanogel precursors were synthesized via a reversible addition-fragmentation chain transfer (RAFT) random copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and pyridyl disulfide methacrylate (PDSMA). Reaction of the p(PEGMA-co-PDSMA) with dithiothreitol resulted in the formation of nanogels. PDSMA serves as both a crosslinking agent and a reactive handle for the surface modification of the nanogels. Lipophilic dye, DiI, was sequestered within the nanogels by performing the crosslinking reaction in the presence of the hydrophobic molecule. Thiol-enriched BSA was conjugated to nanogels loaded with DiI via a disulfide reaction between the BSA and the surface exposed nanogel pyridyl disulfides. Conjugation was confirmed by fast protein liquid chromatography, dynamic light scattering, and agarose and polyacrylamide gel electrophoresis. We expect that this methodology is generally applicable to the preparation of nanogel-protein therapeutics.
Collapse
Affiliation(s)
- Nicholas M. Matsumoto
- Department of Chemistry and Biochemistry and California Nanosystems Institute, 607 Charles E. Young Drive East, University of California, Los Angeles, CA 90095-1569
| | | | - Reuben T. Chacko
- Department of Chemistry, University of Massachusetts at Amherst, Amherst Massachusetts 01003
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and California Nanosystems Institute, 607 Charles E. Young Drive East, University of California, Los Angeles, CA 90095-1569
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts at Amherst, Amherst Massachusetts 01003
| |
Collapse
|
47
|
|
48
|
Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater 2013; 8:022001. [DOI: 10.1088/1748-6041/8/2/022001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Son SR, Linh NTB, Yang HM, Lee BT. In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:015009. [PMID: 27877567 PMCID: PMC5090585 DOI: 10.1088/1468-6996/14/1/015009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/24/2012] [Indexed: 05/24/2023]
Abstract
Scaffolds were fabricated by electrospinning using polycaprolactone (PCL) blended with poly(methyl methacrylate) (PMMA) in ratios of 10/0, 7/3, 5/5 and 3/7. The PCL/PMMA ratio affected the fiber diameter, contact angle, tensile strength and biological in vitro and in vivo properties of the scaffolds, and the 7/3 ratio resulted in a higher mechanical strength than 5/5 and 3/7. In vitro cytotoxicity and proliferation of MG-63 osteoblast cells on these blended scaffolds were examined by MTT assay, and it was found that PCL/PMMA blends are suitable for osteoblast cell proliferation. Confocal images and expression of proliferating cell nuclear antigen confirmed the good proliferation and expression of cells on the 7/3 PCL/PMMA fibrous scaffolds. In vivo bone formation was examined using rat models, and bone formation was observed on the 7/3 PCL/PMMA scaffold within 2 months. In vitro and in vivo results suggest that 7/3 PCL/PMMA scaffolds can be used for bone tissue regeneration.
Collapse
Affiliation(s)
- So-Ra Son
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, 366-1, Ssangyong-dong, Cheonan, Chungnam 330-090, Republic of Korea
| | - Nguyen-Thuy Ba Linh
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, 366-1, Ssangyong-dong, Cheonan, Chungnam 330-090, Republic of Korea
| | - Hun-Mo Yang
- Department of Physiology, College of Medicine, Soonchunhyang University, 366-1, Ssangyong-dong, Cheonan, Chungnam 330-090, Republic of Korea
| | - Byong-Taek Lee
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, 366-1, Ssangyong-dong, Cheonan, Chungnam 330-090, Republic of Korea
| |
Collapse
|
50
|
Basu B, Swain SK, Sarkar D. Cryogenically cured hydroxyapatite–gelatin nanobiocomposite for bovine serum albumin protein adsorption and release. RSC Adv 2013. [DOI: 10.1039/c3ra42369g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|