1
|
Lee CH, Ha GW, Kim JH, Kim SH. Modulation in Natriuretic Peptides System in Experimental Colitis in Rats. Dig Dis Sci 2016; 61:1060-8. [PMID: 26660905 DOI: 10.1007/s10620-015-3969-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Renin-angiotensin system is involved in the pathophysiology of colonic inflammation. However, there are a few reports about modulation of natriuretic peptide system. AIMS This study investigates whether a local atrial natriuretic peptide (ANP) system exists in rat colon and whether ANP plays a role in the regulation of colonic motility in experimental colitis rat model. METHODS Experimental colitis was induced by an intake of 5 % dextran sulfate sodium (DSS) dissolved in tap water for 7 days. After rats were killed, plasma hormone concentrations and mRNAs for natriuretic peptide system were measured. Functional analysis of colonic motility in response to ANP was performed using taenia coli. RESULTS DSS-treated colon showed an increased necrosis with massive infiltration of inflammatory cells. The colonic natriuretic peptide receptor-A mRNA level and particulate guanylyl cyclase activity in response to ANP from colonic tissue membranes were higher, and the mRNA levels of ANP and natriuretic peptide receptor-B were lower in DSS-treated rats than in control rats. ANP decreased the frequency of basal motility in a dose-dependent manner but did not change the amplitude. The inhibitory responses of frequency of basal motility to ANP and 8-bromo-cGMP were enhanced in DSS-treated rat colon. CONCLUSION In conclusion, augmentation of inhibitory effect on basal motility by ANP in experimental colitis may be due an increased expression of colonic natriuretic peptide receptor-A mRNA. These data suggest that local natriuretic peptide system is partly involved in the pathophysiology of experimental colitis.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Surgery, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Gi Won Ha
- Department of Surgery, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Jong Hun Kim
- Department of Surgery, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea.
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, 20 Gunjiro, Dukjingu, Jeonju, 561-180, Korea.
| |
Collapse
|
2
|
Kozakai T, Sakate M, Takizawa S, Uchide T, Kobayashi H, Oishi K, Ishida N, Saida K. Effect of feeding behavior on circadian regulation of endothelin expression in mouse colon. Life Sci 2014; 118:232-7. [PMID: 25010841 DOI: 10.1016/j.lfs.2014.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023]
Abstract
AIMS The function, regulation and gene expression of the endothelin (ET) system in the intestine is not well understood. We investigated the dependence on feeding schedule and biological clock of the regulation of ET-1 gene expression in mouse colon. MAIN METHODS Mice were fed freely, fasted for 48 h and re-fed after fasting. KEY FINDINGS Where indicated ET-1 gene expression was highest in the colon compared with other tissues examined in fasted mice. Fasting increased the level, while maintaining the rhythmicity, of ET-1 gene expression in epithelial colonic tissue. Re-feeding, however, decreased ET-1 gene expression and suppressed rhythmic oscillation, and the rhythmicity also changed for gene expression for circadian clocks, period-1 and period-2 (Per1 and Per2). Furthermore, the decrease in ET-1 gene expression induced by re-feeding was blocked by pre-treatment with hexamethonium and atropine. The daily change in ET-1 gene expression in colon, which depends on feeding schedule via the autonomic nervous system, is synchronized with peripheral circadian oscillators under conditions of free feeding and fasting but not re-feeding. The decrease in ET-1 gene expression in the proximal colon induced by re-feeding occurs via the nervous system. SIGNIFICANCE ET-1 plays an important physiological role, which is dependent on feeding behavior.
Collapse
Affiliation(s)
- Takaharu Kozakai
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Yamagata University, Faculty of Education, Art and Science, Kojirakawa 1-4-12, Yamagata 990-8560, Japan
| | - Mitsue Sakate
- International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Satoshi Takizawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Uchide
- Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hisato Kobayashi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Katsutaka Oishi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Institute for Biomedical Research, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Norio Ishida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Institute for Biomedical Research, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kaname Saida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Institute for Biomedical Research, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
3
|
Kozakai T, Sakate M, Saida K. Regulation of endothelin-1 expression and function by nutrient stress in mouse colon epithelia. Scand J Gastroenterol 2008; 43:886-94. [PMID: 18584528 DOI: 10.1080/00365520701792372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The endothelin (ET) system is influenced by a variety of stress conditions in many tissues. However, the effects of nutrient stress conditions on ET expression and its function are not well understood in the intestinal tract, while ET-1 gene expression and peptide were found in the intestinal tract. The aim of this study was to investigate the effect of feeding and fasting on the expression of ET-1 and short-circuit current (Isc) induced by ET-1 in mouse colon. MATERIAL AND METHODS Mice were fed freely, fasted for 48 h, and re-fed after fasting, respectively. ET-1 mRNA levels and peptide concentrations were analyzed using real-time polymerase chain reaction (PCR) and sandwich ELISA, respectively. Isc of epithelial tissue was measured under short-circuit conditions using a Ussing chamber. RESULTS ET-1 mRNA expression and peptide concentrations in epithelial colonic tissue were significantly increased 48 h after fasting, and decreased within 2 h of re-feeding after a 48-h fast. Furthermore, the addition of ET-1 to the serosal but not the mucosal side increased Isc in colonic epithelia. An increase in Isc was caused by chloride ion (Cl(-)) secretion because Isc induced by ET-1 was blocked by bumetanide and Cl(- -) free conditions. In addition, an increase in Isc induced by ET-1 in colon excised from fasted mice was much lower than that obtained from free-fed mice. CONCLUSIONS Gene expression, peptide concentration, and the function of ET-1 in mouse colonic epithelia are regulated by nutrient stress.
Collapse
Affiliation(s)
- Takaharu Kozakai
- National Institute of Advanced Industrial Science and Technology (AIST), Institute for Biological Resources and Functions, Ibaraki, Japan
| | | | | |
Collapse
|
4
|
Albertoni Borghese MF, Majowicz MP, Ortiz MC, Delgado MF, Sterin Speziale NB, Vidal NA. Renal sodium-glucose cotransporter activity and aquaporin-2 expression in rat kidney during chronic nitric oxide synthase inhibition. Nephron Clin Pract 2007; 107:p77-86. [PMID: 17940347 DOI: 10.1159/000109822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 07/01/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The renal sodium glucose cotransporter (SGLT2) and the water channel aquaporin-2 (AQP2) play a critical role in tubular sodium and water reabsorption and in the regulation of extracellular fluid volume both in physiologic and pathophysiologic conditions. However, there is little information about SGLT2 and AQP2 expression and/or activity in hypertension and there are no reports during hypertension induced by chronic nitric oxide synthase (NOS) inhibition. METHODS Hypertension was induced in rats by oral administration of N(G)-nitro-L-arginine methyl ester (L-NAME) (20 mg/kg/24 h) for 6 (H6) or 12 (H12) weeks. SGLT2 activity was measured using alpha-(14)C-methylglucose active uptake. The expression level of transporters was assessed by immunohistochemistry and/or immunoblotting. RESULTS SGLT2 activity was reduced in both H6 and H12; this was due neither to a decrease in SGLT2 expression nor to a change in membrane phospholipid composition. In H6, AQP2 expression diminished only in the inner medulla (IM), while in H12 it diminished in both outer (OM) and IM. This reduced expression of AQP2 may partially account for the increased urinary volume and decreased urinary osmolality in H12, since we obtained a strong correlation between AQP2 expression and these urinary parameters in both OM and IM. CONCLUSION We propose that in rats in which hypertension is induced by NOS inhibition, SGLT2 activity and AQP2 expression are modified to compensate for the elevated arterial pressure. However, we cannot discount the possibility that the observed changes are due to the decrease in NO production itself.
Collapse
Affiliation(s)
- María F Albertoni Borghese
- Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
5
|
Coon S, Kim J, Shao G, Sundaram U. Na-glucose and Na-neutral amino acid cotransport are uniquely regulated by constitutive nitric oxide in rabbit small intestinal villus cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1030-5. [PMID: 16099871 DOI: 10.1152/ajpgi.00124.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na-nutrient cotransport processes are not only important for the assimilation of essential nutrients but also for the absorption of Na in the mammalian small intestine. The effect of constitutive nitric oxide (cNO) on Na-glucose (SGLT-1) and Na-amino acid cotransport (NAcT) in the mammalian small intestine is unknown. Inhibition of cNO synthase with N(G)-nitro-l-arginine methyl ester (L-NAME) resulted in the inhibition of Na-stimulated (3)H-O-methyl-D-glucose uptake in villus cells. However, Na-stimulated alanine uptake was not affected in these cells. The L-NAME-induced reduction in SGLT-1 in villus cells was not secondary to an alteration in basolateral membrane Na-K-ATPase activity, which provides the favorable Na gradient for this cotransport process. In fact, SGLT-1 was inhibited in villus cell brush-border membrane (BBM) vesicles prepared from animals treated with L-NAME. Kinetic studies demonstrated that the mechanism of inhibition of SGLT-1 was secondary to a decrease in the affinity for glucose without a change in the maximal rate of uptake of glucose. Northern blot studies demonstrated no change in the mRNA levels of SGLT-1. Western blot studies demonstrated no significant change in the immunoreactive protein levels of SGLT-1 in ileal villus cell BBM from L-NAME-treated rabbits. These studies indicate that inhibition of cNO production inhibits SGLT-1 but not NAcT in the rabbit small intestine. Therefore, whereas cNO promotes Na-glucose cotransport, it does not affect NAcT in the mammalian small intestine.
Collapse
Affiliation(s)
- Steven Coon
- Section of Digestive Diseases, West Virginia University Medical Center, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
6
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
7
|
Majowicz MP, Gonzalez Bosc LV, Albertoni Borghese MF, Delgado MF, Ortiz MC, Sterin Speziale N, Vidal NA. Atrial natriuretic peptide and endothelin-3 target renal sodium-glucose cotransporter. Peptides 2003; 24:1971-6. [PMID: 15127950 DOI: 10.1016/j.peptides.2003.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial natriuretic peptide (ANP) and endothelin (ET) are endogenous vasoactive factors that exert potent diuretic and natriuretic actions. We have previously shown that ANP and ET-3 act through an NO pathway to inhibit the sodium-glucose cotransporter (SGLT) in the intestine [Gonzalez Bosc LV, Elustondo PA, Ortiz MC, Vidal NA. Effect of atrial natriuretic peptide on sodium-glucose cotransport in the rat small intestine. Peptides 1997; 18: 1491-5; Gonzalez Bosc LV, Majowicz MP, Ortiz MC, Vidal NA. Effects of endothelin-3 on intestinal ion transport. Peptides 2001; 22: 2069-75.]. Here we address the role of ANP and ET-3 on SGLT activity in renal proximal tubules. In rat renal cortical brush border membranes (BBV), fluorescein isothiocianate (FITC) labeling revealed a specific 72-kD peptide that exhibits increased FITC labeling in the presence of Na+ and D-glucose. Using alpha-14C-methylglucose active uptake, rat BBV were shown to possess SGLT activity with an affinity constant (K(0.5) approximately 2.4 mM) that is consistent with the expression of the low-affinity, high-capacity SGLT2 isoform. SGLT2 activity in these preparations is dramatically inhibited by ANP and ET-3. This inhibition is independent of changes in membrane lipids and is mimicked by the cGMP analogue, 8-Br-cGMP, suggesting the involvement of cGMP/PKG pathways. These results are the first demonstration that both ANP and ET-3 inhibit rat cortical renal SGLT2 activity, and suggest a novel mechanism by which these vasoactive substances modulate hydro-saline balance at the proximal tubular nephron level.
Collapse
Affiliation(s)
- M P Majowicz
- Biología Celular e Histología, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | | | | | | | | | | | | |
Collapse
|