1
|
Elesgaray R, Caniffi C, Savignano L, Romero M, Mac Laughlin M, Arranz C, Costa MA. Renal actions of atrial natriuretic peptide in spontaneously hypertensive rats: the role of nitric oxide as a key mediator. Am J Physiol Renal Physiol 2012; 302:F1385-94. [DOI: 10.1152/ajprenal.00624.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg−1·min−1). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (Gi) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by Gi protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through Gi protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.
Collapse
Affiliation(s)
- Rosana Elesgaray
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Lucía Savignano
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Mariana Romero
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Myriam Mac Laughlin
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Cristina Arranz
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - María A. Costa
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Costa MA, Elesgaray R, Caniffi C, Fellet A, Mac Laughlin M, Arranz C. Role of nitric oxide as a key mediator on cardiovascular actions of atrial natriuretic peptide in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 298:H778-86. [DOI: 10.1152/ajpheart.00488.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective was to study atrial natriuretic peptide (ANP) effects on mean arterial pressure (MAP) and cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHRs), investigating the receptors and signaling pathways involved. In vivo, SHRs and Wistar-Kyoto (WKY) rats were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg−1·min−1) for 1 h. MAP and nitrites and nitrates excretion (NOx) were determined. NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) NOS expression were measured in the heart and aorta. In vitro, heart and aortic NOS activity induced by ANP was determined in the presence of iNOS and nNOS inhibitors, natriuretic peptide receptor (NPR)-A/B blocker, Gi protein, and calmodulin inhibitors. As a result, ANP diminished MAP and increased NOx in both groups. Cardiovascular NOS activity was higher in SHRs than in WKY rats. ANP increased NOS activity, but the activation was lower in SHRs than in WKY rats. ANP had no effect on NOS isoform expression. NOS activity induced by ANP was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in ventricle and aorta but not in atria. Cardiovascular NOS response to ANP was reduced by Gi protein and calmodulin inhibitors in both groups. In conclusion, in atria, ventricle, and aorta, ANP interacts with NPR-C receptors, activating Ca2+-calmodulin eNOS through Gi protein. In ventricle and aorta, NOS activation also involves NPR-A/B. The NOS response to ANP was impaired in heart and aorta of SHRs. The impaired NO-system response to ANP in hypertensive animals, involving alterations in the signaling pathway, could participate in the maintenance of high blood pressure in this model of hypertension.
Collapse
Affiliation(s)
- María A. Costa
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosana Elesgaray
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Fellet
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Myriam Mac Laughlin
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina Arranz
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Pandey KN. Ligand-mediated endocytosis and intracellular sequestration of guanylyl cyclase/natriuretic peptide receptors: role of GDAY motif. Mol Cell Biochem 2010; 334:81-98. [PMID: 19941037 PMCID: PMC4316816 DOI: 10.1007/s11010-009-0332-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/04/2009] [Indexed: 12/31/2022]
Abstract
The guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), also referred to as GC-A, is a single polypeptide molecule having a critical function in blood pressure regulation and cardiovascular homeostasis. GC-A/NPRA, which resides in the plasma membrane, consists of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular cytoplasmic region containing a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic domain. After binding with atrial and brain natriuretic peptides (ANP and BNP), GC-A/NPRA is internalized and sequestered into intracellular compartments. Therefore, GC-A/NPRA is a dynamic cellular macromolecule that traverses different subcellular compartments through its lifetime. This review describes the roles of short-signal sequences in the internalization, trafficking, and intracellular redistribution of GC-A/NPRA from cell surface to cell interior. Evidence indicates that, after internalization, the ligand-receptor complexes dissociate inside the cell and a population of GC-A/NPRA recycles back to the plasma membrane. Subsequently, the disassociated ligands are degraded in the lysosomes. However, a small percentage of the ligand escapes the lysosomal degradative pathway, and is released intact into culture medium. Using pharmacologic and molecular perturbants, emphasis has been placed on the cellular regulation and processing of ligand-bound GC-A/NPRA in terms of receptor trafficking and down-regulation in intact cells. The discussion is concluded by examining the functions of short-signal sequence motifs in the cellular life-cycle of GC-A/NPRA, including endocytosis, trafficking, metabolic processing, inactivation, and/or down-regulation in model cell systems.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University School of Medicine, SL-39 1430 Tulane Ave, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Natriuretic peptides in vascular physiology and pathology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:59-93. [PMID: 18703404 DOI: 10.1016/s1937-6448(08)00803-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four major natriuretic peptides have been isolated: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and Dendroaspis-type natriuretic peptide (DNP). Natriuretic peptides play an important role in the regulation of cardiovascular homeostasis maintaining blood pressure and extracellular fluid volume. The classical endocrine effects of natriuretic peptides to modulate fluid and electrolyte balance and vascular smooth muscle tone are complemented by autocrine and paracrine actions that include regulation of coronary blood flow and, therefore, myocardial perfusion; modulation of proliferative responses during myocardial and vascular remodeling; and cytoprotective anti-ischemic effects. The actions of natriuretic peptides are mediated by the specific binding of these peptides to three cell surface receptors: type A natriuretic peptide receptor (NPR-A), type B natriuretic peptide receptor (NPR-B), and type C natriuretic peptide receptor (NPR-C). NPR-A and NPR-B are guanylyl cyclase receptors that increase intracellular cGMP concentration and activate cGMP-dependent protein kinases. NPR-C has been presented as a clearance receptor and its activation also results in inhibition of adenylyl cyclase activity. The wide range of effects of natriuretic peptides might be the base for the development of new therapeutic strategies of great benefit in patients with cardiovascular problems including coronary artery disease or heart failure. This review summarizes current literature concerning natriuretic peptides, their receptors and their effects on fluid/electrolyte balance, and vascular and cardiac physiology and pathology, including primary hypertension and myocardial infarction. In addition, we will attempt to provide an update on important issues regarding natriuretic peptides in congestive heart failure.
Collapse
|
5
|
Woodard GE, Zhao J, Rosado JA. Different effect of ATP on ANP receptor guanylyl cyclase in spontaneously hypertensive and normotensive rats. Acta Physiol (Oxf) 2006; 188:195-206. [PMID: 17054659 DOI: 10.1111/j.1748-1716.2006.01628.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM Natriuretic peptide receptor A (NPR-A) is the main physiological receptor for atrial natriuretic peptide (ANP). Maximal activation of NPR-A guanylyl cyclase (GC) requires ANP binding and ATP interaction with a putative cytoplasmic site. This study investigates the regulatory effect of ATP on GC-coupled NPR-A activity in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS Cyclic GMP production and competitive inhibition of [(125)I]ANP(1-28) binding were performed in solubilized glomerular and papillary renal membranes. RESULTS Here, we report that incubation of renal glomerular and papillary membranes with ATP induced a concentration-dependent increase in basal and ANP(1-28)-stimulated GC activity that was significantly greater in SHR than in age-matched WKY. ATPgammaS was more effective than ATP and induced a greater stimulation of cGMP production in SHR than in WKY. In contrast, in solubilized membranes ATP exerted an inhibitory role on basal and ANP(1-28)-induced GC activity, suggesting that an accessory protein is required for ATP-induced GC activation. ATP increases NPR-A affinity for ANP(1-28) and decreased B(max) in crude and solubilized membranes. Kinetic analysis of GC-coupled NPR-A revealed that ATP reduced the Km and increased the V(max), an effect that was greater in SHR. CONCLUSION Our observations indicate that ATP exerts a greater net effect on NPR-A in SHR than in WKY, which might explain the greater rate of cGMP production observed in SHR compared to WKY.
Collapse
Affiliation(s)
- G E Woodard
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA.
| | | | | |
Collapse
|
6
|
Li X, Woodard GE, Brown J, Rosado JA. Renal atrial natriuretic peptide receptors binding properties and function are resistant to DOCA-salt-induced hypertension in rats. ACTA ACUST UNITED AC 2006; 137:114-20. [PMID: 16904201 DOI: 10.1016/j.regpep.2006.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 05/27/2006] [Accepted: 06/12/2006] [Indexed: 11/22/2022]
Abstract
Atrial natriuretic peptide receptor types A (NPR-A) and C (NPR-C) binding properties and functional characteristics in renal glomeruli have been investigated in deoxycorticosterone acetate (DOCA)-treated hypertensive Wistar-Kyoto (WKY) rats and their respective controls. We found that DOCA administration had no significant effect on the maximum binding capacity or the affinity of renal NPR-A and NPR-C. NPR-C is involved in the regulation of cAMP production. Our results indicate that the cAMP production by NPR-C is not altered in DOCA-induced hypertension, since ANP(1-28), CNP(1-22) and C-ANP, which specifically bind to NPR-C, show a similar inhibitory effect on cAMP production stimulated by the physiological agonist histamine in glomeruli from DOCA-treated rats and controls. Finally, we have found that DOCA-induced hypertension does not modify NPR-A or NPR-C expression in rat glomerular membranes. These findings indicate that NPR-A and NPR-C binding properties and NPR-C-mediated inhibition of cAMP generation remain unaltered in DOCA-treated rats.
Collapse
Affiliation(s)
- Xiaohong Li
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Rm 8C-208, 10 Center Drive, MSC 1752, Bethesda, MD 20892-1752, USA.
| | | | | | | |
Collapse
|
7
|
Woodard GE, Li X, Brown J, Rosado JA. Receptor subtypes for vasonatrin peptide in renal glomeruli and arteries. ACTA ACUST UNITED AC 2005; 129:183-9. [PMID: 15927715 DOI: 10.1016/j.regpep.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Vasonatrin peptide (VNP) is a synthetic new member of the natriuretic peptide family. VNP is a chimera of CNP and ANP, which possesses the 22-amino acid ringed structure of CNP and the COOH terminus of ANP. VNP shares properties with ANP and CNP but also shows functional characteristics distinct from those induced by the original natriuretic peptides. This study investigates VNP binding to specific sites in the kidney and femoral artery, in order to clarify the nature of the receptors through which VNP exerts its effects. Using autoradiographic techniques we have found that VNP binds to renal and arterial tissue sections. VNP binding was displaced by incubation in the presence of 1 microM ANP(1-28), CNP(1-22) and C-ANP, which suggests that VNP mostly binds to NPR-C. Cross-linking studies performed in rat glomerular membranes confirmed that VNP mainly binds to the 67 kDa-NPR-C-like protein and also to NPR-A. Consistent with this, our results indicate that VNP inhibits cAMP synthesis stimulated by the physiological agonist histamine in a concentration-dependent manner, without having any effect on basal cAMP production. Finally, we have found that VNP increases cGMP production in rat renal glomeruli, suggesting that this peptide functionally binds to NPR-A.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (Building 10, Rm 8C-208), 10 Center Drive, MSC 1752 Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
8
|
Garg R, Pandey KN. Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression. Peptides 2005; 26:1009-23. [PMID: 15911069 DOI: 10.1016/j.peptides.2004.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 09/08/2004] [Indexed: 10/25/2022]
Abstract
Natriuretic peptide receptor-A (NPRA) is the biological receptor of the peptide hormones atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The level and activity of this receptor determines the biological effects of ANP and BNP in different tissues mainly directed towards the maintenance of salt and water homeostasis. The core transcriptional machinery of the TATA-less Npr1 gene, which encodes NPRA, consists of three SP1 binding sites and the inverted CCAAT box. This promoter region of Npr1 gene has been shown to contain several putative binding sites for the known transcription factors, but the functional significance of most of these regulatory sequences is yet to be elucidated. The present review discusses the current knowledge of the functional significance of the promoter region of Npr1 gene and its transcriptional regulation by a number of factors including different hormones, growth factors, changes in extracellular osmolarity, and certain physiological and patho-physiological conditions.
Collapse
Affiliation(s)
- Renu Garg
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | |
Collapse
|
9
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
10
|
Woodard GE, Zhao J, Rosado JA, Brown J. Patterning of renal cGMP production by the natriuretic peptide receptor type A and blood pressure in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2004; 119:45-51. [PMID: 15093696 DOI: 10.1016/j.regpep.2003.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/23/2003] [Accepted: 12/23/2003] [Indexed: 11/23/2022]
Abstract
Although important advances have been made over past decades in studying the mechanisms of hypertension, the nature of cellular signaling patterns involved and their relationship remain unclear. High cGMP production rates in isolated renal glomeruli have been presented as a characteristic of spontaneously hypertensive rat (SHR) even before the development of hypertension, which suggests that this event might be a cause of the increase in blood pressure. Using cross-breeding between SHR and WKY parental strains to obtain F1 and F2 hybrids, we have investigated the patterning of high blood pressure and cGMP production rates. We have found that, in the F2 population, the mean blood pressure and both basal and ANP(1-28)-stimulated cGMP production are similar to the parental SHR. In addition, we have found a positive correlation between blood pressure and high cGMP production rates in the F2 population. The higher cGMP production was not a consequence of hypertension, since in DOCA-salt hypertensive rats cGMP production was similar to that observed in normotensive WKY rats. These observations suggest that high cGMP production is a characteristic linked to hypertension. Finally, reciprocal crosses between the SHR and WKY parental strains showed that in the F1 population blood pressure but not cGMP production are associated with the Y chromosome.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
11
|
Woodard GE, Li X, Rosado JA. Water deprivation enhances the inhibitory effect of natriuretic peptides on cAMP synthesis in rat renal glomeruli. Am J Physiol Renal Physiol 2004; 287:F418-26. [PMID: 15126246 DOI: 10.1152/ajprenal.00069.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigates the effect of water deprivation on the expression of atrial natiruretic peptide (ANP)(1-28) binding sites in rat kidney. Water deprivation increased the B(max) of glomerular binding sites for ANP(1-28) and C-type natriuretic peptide (CNP)(1-22) without modifying their affinity, an effect that was prevented in the presence of C-atrial natriuretic factor (C-ANF), suggesting that natriuretic peptide receptor-C (NPR-C) binding sites might be enhanced. Our results indicate that ANP(1-28), CNP(1-22), and C-ANF inhibit cAMP synthesis directly stimulated by forskolin or by the physiological agonists histamine and 5-hydroxytryptamine. The inhibitory effect was found to be significantly greater in water-deprived rats than in controls. Our observations suggest that this effect must be attributed to the 67-kDa NPR-C-like protein, because the 67- and 77-kDa NPR-C-like proteins show high and low affinities for CNP(1-22), respectively, and the enhanced inhibitory effect of CNP on cAMP generation in water-deprived rats was detected at subnanomolar concentrations. In addition, using affinity cross-linking studies we have observed that water deprivation increases the expression of the 67-kDa NPR-C-like protein, and HS-142, which binds to NPR-A and the 77-kDa NPR-C-like but not the 67-kDa protein, reduced ligand internalization without affecting cAMP inhibition by ANP(1-28). Finally, we have found that ligand binding to the 67-kDa NPR-C-like protein is reduced by GTPgammaS, suggesting that this receptor is associated with a G protein in renal glomeruli. The enhanced inhibitory role of natriuretic peptides on cAMP synthesis induced by water deprivation may influence glomerular function in the rat kidney.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bldg. 10, Rm. 8C-208, 10 Center Dr., MSC 1752, Bethesda, MD 20892-1752, USA.
| | | | | |
Collapse
|
12
|
Woodard GE, Zhao J, Rosado JA, Brown J. Differences between natriuretic peptide receptors in the olfactory bulb and hypothalamus from spontaneously hypertensive and normotensive rat brain. Neurosci Res 2004; 47:421-9. [PMID: 14630346 DOI: 10.1016/j.neures.2003.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natriuretic peptide receptor-A (NPR-A) functional characteristics in the hypothalamus and olfactory bulb (OB) have been investigated in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Autoradiographic studies demonstrate a decreased number of atrial natriuretic peptide (ANP) binding sites in the olfactory bulb and hypothalamus in SHR compared to WKY rats. We found that NPR-A showed a lower maximal binding capacity (B(max)) and higher affinity in SHR than in WKY rats both in the olfactory bulb and hypothalamus. However, despite the lower B(max) in SHR, both ANP(1-28) and ANP(5-25) stimulated similar or greater cGMP production than in WKY rats. These differences were found even before the development of hypertension. NPR-A in the olfactory bulb and hypothalamus from 3-week-old SHR showed a lower B(max) and K(d) and a higher cGMP production rate than in WKY rats, suggesting that these characteristics are intrinsic of NPR-A in SHR, instead of being a result of hypertension itself. The present study provides evidences for altered NPR-A receptor properties and function in the olfactory bulb and hypothalamus from SHR, which might be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|