1
|
Bodnar RJ. A 40-year analysis of central neuroanatomical and neurochemical circuits mediating homeostatic intake and hedonic intake and preferences in rodents. Brain Res 2025; 1857:149604. [PMID: 40180145 DOI: 10.1016/j.brainres.2025.149604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
This perspective review was written in response to the celebration of the 60th anniversary of the journal, Brain Research, and covers the evolving focus of my laboratory's work over 40 years in the neurobiological substrates of ingestive behavior in rodents. Following our initial work examining the effects of systemic and ventricular administration of general and selective opioid receptor agonists and antagonists on food intake under spontaneous, deprivation, glucoprivic and hedonic conditions, my laboratory in close collaboration with Drs. Gavril Pasternak and Ying-Xian Pan utilized an antisense oligodoxynucleotide knock-down technique affecting MOR-1, DOR-1, KOR-1 and ORL-1 genes as well as against G-protein subunits to study receptor mediation of opioid receptor agonist-induced feeding as well as feeding following regulatory challenges. Our laboratory employed intracerebral microinjection techniques to map limbic nucleus accumbens and ventral tegmental area central brain circuits mediating homeostatic and hedonic feeding responses through the use of selective mu, delta1, delta2 and kappa opioid receptor subtype agonists in combination with general and selective opioid, dopamineric, glutamatergic and GABAergic antagonists administered into the same site or the reciprocal site, allowing for the identification of a distributed brain network mediating these ingestive effects. Our laboratory in close collaboration with Dr. Anthony Sclafani then focused on the pharmacological, neuroanatomical and learning mechanisms related to the development of sugar- (sucrose, glucose and fructose) and fat- (corn oil) conditioned flavor preferences (CFP) in rats, and on murine genetic variance in food intake, preferences and the process of appetition.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, and Psychology Doctoral Program, The Graduate Center, City University of New York, United States.
| |
Collapse
|
2
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
3
|
Karkhanis A, Holleran KM, Jones SR. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:53-88. [PMID: 29056156 DOI: 10.1016/bs.irn.2017.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic.
Collapse
Affiliation(s)
| | | | - Sara R Jones
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
4
|
Douglas Braymer H, Zachary H, Schreiber AL, Primeaux SD. Lingual CD36 and nutritional status differentially regulate fat preference in obesity-prone and obesity-resistant rats. Physiol Behav 2017; 174:120-127. [PMID: 28302572 DOI: 10.1016/j.physbeh.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/20/2017] [Accepted: 03/11/2017] [Indexed: 11/16/2022]
Abstract
Lingual fatty acid receptors (i.e. CD36) mediate the orosensory perception of fat/fatty acids and may contribute to the susceptibility to develop obesity. The current study tested the hypothesis that fat/fatty acid preference in obesity-prone (OP, Osborne-Mendel) and obesity-resistant (OR, S5B/Pl) rats is mediated by nutritional status and lingual CD36. To determine if nutritional status affected linoleic acid (LA) preference in OP and OR rats, rats were either fasted overnight or fed a high fat diet (60% kcal from fat). In OR rats, fasting increased the preference for higher concentrations of LA (1.0%), while consumption of a high fat diet decreased LA preference. In OP rats, fasting increased the preference for lower concentrations of LA (0.25%), however high fat diet consumption did not alter LA preference. To determine if lingual CD36 mediated the effects of an overnight fast on LA preference, the expression of lingual CD36 mRNA was assessed and the effect of lingual application of CD36 siRNA on LA preference was determined. Fasting increased lingual CD36 mRNA expression in OR rats, but failed to alter lingual CD36 mRNA in OP rats. Following an overnight fast, application of lingual CD36 siRNA led to a decrease in LA preference in OR, but not OP rats. Lingual application of CD36 siRNA was also used to determine if lingual CD36 mediated the intake and preference for a high fat diet in OP and OR rats. CD36 siRNA decreased the preference and intake of high fat diet in OR rats, but not OP rats. The results from this study suggest that the dysregulation of lingual CD36 in OP rats is a potential factor leading to increased fat intake and fat preference and an enhanced susceptibility to develop obesity.
Collapse
Affiliation(s)
- H Douglas Braymer
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Hannah Zachary
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Allyson L Schreiber
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States
| | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States.
| |
Collapse
|
5
|
|
6
|
Fushiki T. Why fat is so preferable: from oral fat detection to inducing reward in the brain. Biosci Biotechnol Biochem 2014; 78:363-9. [DOI: 10.1080/09168451.2014.905186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Potential mechanisms underlying the high palatability of fat can be assessed by reviewing animal studies on fat detection and brain patterns during reward behavior. Fatty acids are likely recognized by receptors on taste buds, with the signals transmitted to the brain through taste nerves. Ingested oil is broken down and absorbed in the gastrointestinal tract, which also sends signals to the brain through unknown mechanisms. Information from both sensory receptors and peripheral tissue is integrated by the brain, resulting in a strong appetite for fatty foods via a reward system. Understanding mechanisms of fat recognition will prove valuable in the development of strategies to manage the high palatability of foods.
Collapse
Affiliation(s)
- Tohru Fushiki
- Division of Food Science & Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Primeaux SD, Braymer HD, Bray GA. CD36 mRNA in the gastrointestinal tract is differentially regulated by dietary fat intake in obesity-prone and obesity-resistant rats. Dig Dis Sci 2013; 58:363-70. [PMID: 22915197 PMCID: PMC4201504 DOI: 10.1007/s10620-012-2364-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND The gastrointestinal tract (GI) is important for detection and transport of consumed nutrients and has been implicated in susceptibility to diet-induced obesity in various rat strains. AIMS The current studies investigated the regulation of CD36, a receptor which facilitates uptake of long-chain fatty acids, in the GI tract of obesity-prone Osborne-Mendel and obesity-resistant S5B rats fed a high-fat diet. METHODS Osborne-Mendel and S5B rats consumed a high-fat diet (HFD, 55 % kcal from fat) or a low-fat diet (10 % kcal from fat) for either 3 or 14 days. CD36 messenger RNA (mRNA) levels were measured from circumvallate papillae of the tongue and from duodenal enterocytes. RESULTS In Osborne-Mendel rats, consumption of HFD for 3 and 14 days led to an increase in CD36 mRNA on circumvallate papillae and in duodenal enterocytes. CD36 mRNA levels were positively correlated with body weight gain and kilocalories consumed at 3 days. In S5B rats, consumption of HFD for 3 days did not alter CD36 mRNA levels on circumvallate papillae or in the duodenum. Duodenal CD36 levels were elevated in S5B rats following 14 days of HFD consumption. CD36 mRNA levels in the duodenum were positively correlated with body weight gain and kilocalories consumed at 14 days. CONCLUSIONS These data support the differential sensing of nutrients by two regions of the GI tract of obesity-prone and obesity-resistant rats consuming HFD and suggest a role for CD36 in the strain-specific susceptibility to obesity.
Collapse
Affiliation(s)
- Stefany D. Primeaux
- Joint Diabetes, Endocrinology and Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA. Internal Medicine-Endocrinology, Diabetes & Metabolism, LSUHSC-NO, 1542 Tulane Ave, Box T4 M-2, New Orleans, LA 70112, USA
| | | | - George A. Bray
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
8
|
Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1423-39. [PMID: 20861277 DOI: 10.1152/ajpregu.00126.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract serves as a portal sensing incoming nutrients and relays mechanical and chemosensory signals of a meal to higher brain centers. Prolonged consumption of dietary fat causes adaptive changes within the alimentary, metabolic, and humoral systems that promote a more efficient process for energy metabolism from this rich source, leading to storage of energy in the form of adipose tissue. Furthermore, prolonged ingestion of dietary fats exerts profound effects on responses to signals involved in termination of a meal. This article reviews the effects of ingested fat on gastrointestinal motility, hormone release, and neuronal substrates. It focuses on changes in sensitivity to satiation signals resulting from chronic ingestion of high-fat diet, which may lead to disordered appetite and dysregulation of body weight.
Collapse
Affiliation(s)
- Mihai Covasa
- L'Institute National de la Recherche Agronomique, Centre de Recherche, Microbiologie de l'Alimentation au service de la Santé Humaine (MICALIS), Neurobiology of Ingestive Behavior, Jouy-en-Josas, France.
| |
Collapse
|
9
|
|
10
|
Taha SA. Preference or fat? Revisiting opioid effects on food intake. Physiol Behav 2010; 100:429-37. [PMID: 20211638 PMCID: PMC2886174 DOI: 10.1016/j.physbeh.2010.02.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/16/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
It is well established that opioid signaling in the central nervous system constitutes a powerful stimulus for food intake. The role of opioids in determining food preference, however, is less well defined. Opioids have been proposed to promote intake of preferred foods, or, alternatively, to preferentially increase consumption of fat. In the present manuscript, I comprehensively review results from previous studies investigating this issue. Data from these studies suggests a mechanism for opioid action that may reconcile the previously proposed hypotheses: opioid effects on food intake do appear to be largely specific for fat consumption, but individual animals' sensitivity to this effect may be dependent on baseline food preferences. In addition, I highlight the possibility that the selectivity of endogenous opioid effects may importantly differ from that of exogenous agonists in the degree to which baseline preferences, rather than macronutrient intake, are altered. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Sharif A Taha
- University of Utah School of Medicine, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108, United States.
| |
Collapse
|
11
|
Liu X, York DA, Bray GA. Regulation of ghrelin gene expression in stomach and feeding response to a ghrelin analogue in two strains of rats. Peptides 2004; 25:2171-7. [PMID: 15572207 DOI: 10.1016/j.peptides.2004.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 08/30/2004] [Accepted: 08/30/2004] [Indexed: 11/27/2022]
Abstract
Ghrelin is a peptide produced by the stomach and released into the circulation. As a natural ligand of the growth hormone secretagogue (GHS) receptor, it stimulates growth hormone secretion but it also stimulates feeding in humans and rodents. The orexigenic effect of ghrelin has been related to AgRP/NPY and orexin pathways. We proposed that ghrelin might be involved in the susceptibility to diet induced obesity and in the regulation of macronutrient selection. We have investigated these hypotheses in two strains of rat, the Osborne-Mendel (OM) rat that prefers diets high in fat and is sensitive to dietary obesity and the S5B/P1 (S5B) rat that prefers a low fat diet and is resistant to high fat diet induced obesity. OM and S5B rats were adapted to a choice of high fat (HF) and low fat (LF) diet for 2 weeks. GHRP-2, an analogue of ghrelin, was injected intraperitoneally into satiated and 24 h fasted rats at doses of 10, 30 and 90 nmol. Food intake was measured over the next 4 h period. In satiated S5B rats, GHRP-2 stimulated intake of the LF diet in a dose dependent manner but did not affect the intake of the HF diet. In satiated OM rats, 90 nmol of GHRP-2 stimulated HF intake. In contrast, neither fasted OM nor S5B rats increased the intake of either HF or LF diet in response to GHRP-2. Fasting for 18 h induced a large rise in ghrelin mRNA in stomach of OM rats but not in S5B rats. There were no significant differences in plasma total ghrelin. An increase in ghrelin mRNA in stomach immediately before the onset of the dark cycle was observed in OM but not in S5B rats. Active ghrelin level was significantly affected by different feeding conditions in both OM and S5B rats adapted on HF diet with a trend to increase after 48 h of fasting and to decline to basal levels following 10 h of refeeding. These data suggest that ghrelin stimulates the intake of the preferred macronutrient. In addition, a differential regulation of ghrelin gene expression between OM and S5B rats may be important in their differential sensitivity to HF diet-induced obesity.
Collapse
Affiliation(s)
- Xiaotuan Liu
- Experimental Obesity Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
12
|
Bodnar RJ. Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides 2004; 25:697-725. [PMID: 15165728 DOI: 10.1016/j.peptides.2004.01.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 01/15/2004] [Accepted: 01/16/2004] [Indexed: 11/25/2022]
Abstract
This invited review, based on the receipt of the Third Gayle A. Olson and Richard D. Olson Prize for the publication of the outstanding behavioral article published in the journal Peptides in 2002, examines the 30-year historical perspective of the role of the endogenous opioid system in feeding behavior. The review focuses on the advances that this field has made over the past 30 years as a result of the timely discoveries that were made concerning this important neuropeptide system, and how these discoveries were quickly applied to the analysis of feeding behavior and attendant homeostatic processes. The discoveries of the opioid receptors and opioid peptides, and the establishment of their relevance to feeding behavior were pivotal in studies performed in the 1970s. The 1980s were characterized by the establishment of opioid receptor subtype agonists and antagonists and their relevance to the modulation of feeding behavior as well as by the use of general opioid antagonists in demonstrating the wide array of ingestive situations and paradigms involving the endogenous opioid system. The more recent work from the 1990s to the present, utilizes the advantages created by the cloning of the opioid receptor genes, the development of knockout and knockdown techniques, the systematic utilization of a systems neuroscience approach, and establishment of the reciprocity of how manipulations of opioid peptides and receptors affect feeding behavior with how feeding states affect levels of opioid peptides and receptors. The role of G-protein effector systems in opioid-mediated feeding responses, which was the subject of the prize-winning article, is then reviewed.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Subprogram, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Sipols AJ, Bayer J, Bennett R, Figlewicz DP. Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides 2002; 23:2181-7. [PMID: 12535697 DOI: 10.1016/s0196-9781(02)00246-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hormone insulin acts in the central nervous system (CNS) as a regulator of body adiposity and food intake. Recent work from our laboratory has provided evidence that one way by which insulin may decrease food intake is by decreasing the rewarding properties of food. Evidence from others suggests that endogenous opioids may mediate the palatable properties of foods, and insulin may decrease nonfood-related reward via interaction with some CNS kappa opioid systems. In the present study we examined the ability of insulin to interact with exogenous or endogenous kappa opioids to modulate feeding of palatable sucrose pellets by nondeprived rats. Insulin (5 mU intracerebroventricular (i.c.v.), t=-3h) completely reversed the ability of the exogenous kappa agonist U50,488 (26 microg, i.c.v., t=-15 min) to stimulate 90-min sucrose feeding (211+/-32% reduced to 125+/-23% of 90-min baseline intake). Further, i.c.v. insulin (5 mU, t=-3h) interacted with a subthreshold dose of the kappa receptor antagonist norbinaltorphimine (5 microg, i.c.v., t=-15 min) to decrease the 90-min sucrose intake baseline (77+/-11% versus 109+/-10% of 90 min baseline intake, insulin/norbinaltorphimine versus norbinaltorphimine). Together these studies provide new evidence that insulin in the CNS may decrease the action of CNS kappa opioid system(s) that mediate palatable feeding.
Collapse
Affiliation(s)
- A J Sipols
- Institute of Experimental and Clinical Medicine, and Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | | | | |
Collapse
|
14
|
Mei J, Sörhede-Winzell M, Erlanson-Albertsson C. Plasma enterostatin: identification and release in rats in response to a meal. OBESITY RESEARCH 2002; 10:688-94. [PMID: 12105292 DOI: 10.1038/oby.2002.93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To discover a possible absorption and/or secretion of enterostatin into the circulating blood, as well as to compare the levels of circulating enterostatin after high-fat feeding and low-fat feeding. RESEARCH METHODS AND PROCEDURES Using a specific enzyme-linked immunosorbent assay, plasma enterostatin levels were determined after feeding a high-fat, a high-fat/-sucrose, or a low-fat meal to Sprague-Dawley rats deprived of food overnight. RESULTS The enterostatin levels were increased by all diets; the response to the high-fat and the high-fat/-sucrose meals was greater in magnitude and duration than that to the low-fat meal. In addition, enterostatin levels correlated with the intake of dietary fat. Plasma enterostatin levels after high-fat feeding were found to be similar to those after intravenous administration of exogenous enterostatin known to inhibit high-fat food intake. Gel chromatography of pooled postprandial plasma extracts followed by high-performance liquid chromatography analysis showed that plasma enterostatin was identical to synthetic enterostatin. Affinity cross-linking of plasma proteins with 125I-enterostatin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by autoradiography, revealed a single band with a molecular weight of about 66 kDa, indicating the presence of a potential enterostatin-binding protein in plasma. DISCUSSION The measurements of plasma enterostatin may be a sensitive indicator for the measurement of fat intake.
Collapse
Affiliation(s)
- Jie Mei
- Department of Cell and Molecular Biology, University of Lund, Lund, Sweden
| | | | | |
Collapse
|
15
|
Berger K, Sivars U, Winzell MS, Johansson P, Hellman U, Rippe C, Erlanson-Albertsson C. Mitochondrial ATP synthase--a possible target protein in the regulation of energy metabolism in vitro and in vivo. Nutr Neurosci 2002; 5:201-10. [PMID: 12041876 DOI: 10.1080/10284150290008604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The increasing prevalence of obesity in the Western world has stimulated an intense search for mechanisms regulating food intake and energy balance. A number of appetite-regulating peptides have been identified, their receptors cloned and the intracellular events characterized. One possible energy-dissipating mechanism is the mitochondrial uncoupling of ATP-synthesis from respiratory chain oxidation through uncoupling proteins, whereby energy derived from food could be dissipated as heat, instead of stored as ATP. The exact role of the uncoupling proteins in energy balance is, however, uncertain. We show here that mitochondrial F1F0-ATP synthase itself is a target protein for an anorectic peptide, enterostatin, demonstrated both after affinity purification of rat brain membranes and through a direct physical interaction between enterostatin and purified F1-ATP synthase. In insulinoma cells (INS-1) enterostatin was found to target F1F0-ATP synthase, causing an inhibition of ATP production, an increased thermogenesis and increased oxygen consumption. The experiments suggest a role of mitochondrial F1F0-ATP synthase in the suppressed insulin secretion induced by enterostatin. It could be speculated that this targeting mechanism is involved in the decreased energy efficiency following enterostatin treatment in rat.
Collapse
Affiliation(s)
- Karin Berger
- Department of Cell and Molecular Biology, Biomedical Center, University of Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
Imaizumi M, Takeda M, Sawano S, Fushiki T. Opioidergic contribution to conditioned place preference induced by corn oil in mice. Behav Brain Res 2001; 121:129-36. [PMID: 11275290 DOI: 10.1016/s0166-4328(00)00388-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously reported that voluntary intake of corn oil in the light box showed place preference in the conditioned place preference (CPP) test in mice. In the present study, we investigated the contribution of opioidergic systems to the corn oil-induced CPP in mice. Acquisition of the place preference by corn oil intake was blocked by i.p. injections of an opioid mu antagonist, naloxone (0.1 and 0.3 mg/kg), and delta antagonists, 7-benzylidenenaltrexone (0.5 mg/kg) and naltriben (0.5 mg/kg) 15 min before conditioning. The opioid kappa agonist U-50488H (1 and 3 mg/kg i.p.) also blocked corn oil-induced CPP. Naloxone (1 mg/kg, i.p.) and naltriben (0.5 mg/kg, i.p.) did not affect corn oil intake in the home cage. However, 7-benzylidenenaltrexone (0.5 mg/kg, i.p.) and U-50488H (1 mg/kg i.p.) decreased and increased the corn oil intake, respectively. These results suggested that the rewarding effects of corn oil in the CPP test are at least partially mediated via opioidergic systems through mu and delta receptors. Further, we showed that an opioid kappa agonist reduced the rewarding effects of corn oil in the CPP test in mice, although it increased corn oil intake.
Collapse
Affiliation(s)
- M Imaizumi
- Laboratory of Nutrition Chemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
17
|
Jeanrenaud B, Rohner-Jeanrenaud F. Effects of neuropeptides and leptin on nutrient partitioning: dysregulations in obesity. Annu Rev Med 2001; 52:339-51. [PMID: 11160783 DOI: 10.1146/annurev.med.52.1.339] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Body weight homeostasis is maintained via a series of complex interactions that occur between the brain (particularly the hypothalamus) and the periphery, notably via the hormone leptin, which is synthesized in and secreted from adipose tissue. Under normal conditions, a dynamic equilibrium exists between anabolic neuropeptides (orexigenic peptides), which favor food intake, decrease energy expenditure, and facilitate fat storage, and catabolic ones (anorexigenic peptides), which decrease food intake, increase energy expenditure, and facilitate the loss of fat stores. Secreted leptin, although it may have some direct peripheral effects, exerts its action principally within the brain. Following its transport through the blood-brain barrier, leptin reaches the hypothalamic area, where it binds to its long receptor isoform. After a specific signaling cascade, leptin inhibits many of the orexigenic neuropeptides while favoring many of the anorexigenic ones. Thus, leptin decreases food intake and body weight, and it increases fat oxidation and energy expenditure, ultimately favoring leanness. Lack of leptin secretion, the inability of leptin to reach the brain, or the inability of leptin to interact with hypothalamic leptin receptors, prevent leptin's effects and lead to obesity.
Collapse
Affiliation(s)
- B Jeanrenaud
- Geneva University, Chemin des Piverts 6, 1226 Geneva, Switzerland.
| | | |
Collapse
|
18
|
White CL, Kashima K, Bray GA, York DA. Effect of a serotonin 1-A agonist on food intake of Osborne-Mendel and S5B/P1 rats. Physiol Behav 2000; 68:715-22. [PMID: 10764902 DOI: 10.1016/s0031-9384(99)00243-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The effect on food intake of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin 1-A agonist, has been evaluated in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl rats were tested at 8 weeks and 16 weeks of age. Both strains were adapted to choose between two diets-a 56% fat energy diet, and a 10% fat energy diet-which were equicaloric for protein (24% energy). Daily food intake was measured for 2 weeks before injection of 8-OH-DPAT. The younger OM rats had no diet preference, while the older OM rats preferred the high-fat diet. The younger S5B/P1 rats preferred the low-fat diet, while the older S5B/P1 rats had no diet preference. Satiated rats were injected subcutaneously with 8-OH-DPAT at doses of 0.3, 1.0, or 3.0 mg/kg or vehicle. During the light phase, subcutaneous 8-OH-DPAT increased the intake of the high-fat diet in the 16-week-old OM rats but not the 8-week-old OM rats. 8-OH-DPAT had no effect on the low-fat diet intake in either age OM rat. The 8-week-old S5B/P1 rats showed a significant decrease in intake of the high-fat diet in response to 8-OH-DPAT, whereas an increase in the intake of the low-fat diet was observed in the older S5B/P1 rats. These data are consistent with the hypothesis that increased fat preference in Osborne-Mendel rats may result in part from altered serotonin activity of 5-HT(1A) receptors.
Collapse
Affiliation(s)
- C L White
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|