1
|
Mortazavi M, Pirbonyeh N, Javanmardi F, Emami A. Bioinformatics and Structural Analysis of Antigenic Variation in the Hemagglutinin Gene of the Influenza A(H1N1)pdm09 Virus Circulating in Shiraz (2013 to 2015). Microbiol Spectr 2023; 11:e0463022. [PMID: 37436149 PMCID: PMC10433955 DOI: 10.1128/spectrum.04630-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Circulating influenza A virus provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates, we could monitor amino acid changes and the stability of mutations that occurred in hemagglutinin (HA). HA is crucial to viral infection because it binds to ciliated cell receptors and mediates the fusion of cells and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. In this study, the locations of mutations in the structures of mutant HA were analyzed and the three-dimensional (3D) structures of these mutations were modeled in I-TASSER. Also, the location of these mutations was visualized and studied using Swiss PDB Viewer software and the PyMOL Molecular Graphics System. The crystal structure of the HA from A/California/07/2009 (3LZG) was used for further analysis. The new noncovalent bond formations in mutant luciferases were analyzed via WHAT IF and PIC, and protein stability was evaluated in the iStable server. We identified 33 and 23 mutations in A/Shiraz/106/2015 and A/California/07/2009 isolates, respectively; some mutations are located on the antigenic sites of Sa, Sb, Ca1, Ca2, and Cb HA1 and the fusion peptide of HA2. The results show that with the mutation some interactions are lost and new interactions are formed with other amino acids. The results of the free-energy analysis suggested that these new interactions have a destabilizing effect, which needs confirmation experimentally. IMPORTANCE Due to the fact that the mutations that occurred in the influenza virus HA cause the instability of the protein produced by the virus and antigenic changes and the escape of the virus from the immune system, the mutations that occurred in A/Shiraz/1/2013 were investigated in terms of energy level and stability. The mutations located in a globular portion of the HA are S188T, Q191H, S270P, K285Q, and P299L. On the other hand, the E374K, E46K-B, S124N-B, and I321V mutations are located in the stem portion of the HA (HA2). The change V252L mutation eliminates interactions with Ala181, Phe147, Leu151, and Trp153 and forms new interactions with Gly195, Asn264, Phe161, Met244, Tyr246, Leu165, and Trp167 which can change the stability of the HA structure. The K166Q mutation, which is located within the antigenic site Sa, causes the virus to escape from the immune response.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Neda Pirbonyeh
- Microbiology Department, Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Javanmardi
- Biostatistics Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- Microbiology Department, Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Antigenic Site Variation in the Hemagglutinin of Pandemic Influenza A(H1N1)pdm09 Viruses between 2009-2017 in Ukraine. Pathogens 2019; 8:pathogens8040194. [PMID: 31635227 PMCID: PMC6963832 DOI: 10.3390/pathogens8040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
The hemagglutinin (HA) is a major influenza virus antigen, which, once recognized by antibodies and substitutions in HA genes, helps virus in escaping the human immune response. It is therefore critical to perform genetic and phylogenetic analysis of HA in circulating influenza viruses. We performed phylogenetic and genetic analysis of isolates from Ukraine, the vaccine strain and reference strains were used to phylogenetically identify trends in mutation locations and substitutions. Ukrainian isolates were collected between 2009–2017 and clustered in the influenza genetic groups 2, 6, 7, and 8. Genetic changes were observed in each of the antigenic sites: Sa – S162T, K163Q, K163I; Sb – S185T, A186T, S190G, S190R; Ca1 – S203T, R205K, E235V, E235D, S236P; Ca2 – P137H, H138R, A141T, D222G, D222N; Cb – A73S, S74R, S74N. In spite of detected mutations in antigenic sites, Ukrainian isolates retained similarity to the vaccine strain A/California/07/09 circulated during 2009–2017. However, WHO recommended a new vaccine strain A/Michigan/45/2015 for the Southern Hemisphere after the emergence of the new genetic groups 6B.1 and 6B.2. Our study demonstrated genetic variability of HA protein of A(H1N1)pdm09 viruses isolated in 2009–2017 in Ukraine. Influenza surveillance is very important for understanding epidemiological situations.
Collapse
|
3
|
Khan A, AlBalwi MA, AlAbdulkareem I, AlMasoud A, AlAsiri A, AlHarbi W, AlSehile F, El-Saed A, Balkhy HH. Atypical influenza A(H1N1)pdm09 strains caused an influenza virus outbreak in Saudi Arabia during the 2009-2011 pandemic season. J Infect Public Health 2019; 12:557-567. [PMID: 30799182 DOI: 10.1016/j.jiph.2019.01.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The triple assortment influenza A(H1N1) virus emerged in spring 2009 and disseminated worldwide, including Saudi Arabia. This study was carried out to characterize Saudi influenza isolates in relation to the global strains and to evaluate the potential role of mutated residues in transmission, adaptation, and the pathogenicity of the virus. METHODS Nasopharyngeal samples (n = 6492) collected between September 2009 to March 2011 from patients with influenza-like illness were screened by PCR for influenza A(H1N1). Phylogenetic and Molecular evolutionary analysis were carried out to place the Saudi strains in relation to the global strains followed by Mutation analysis of surface and internal proteins. RESULTS Concatenated whole-genome phylogenetic analysis along with hemagglutinin (HA) signature changes, that is, Aspartic Acid (D) at position 187, P83S, S203T, and R223Q confirmed that the Saudi strains belong to the antigenic category of A/California/07/2009. However, phylogenetic analysis revealed unusual strains of A(H1N1) circulating in Saudi Arabia, not belonging to any of known clades, appearing in five distinct groups well supported by group-specific mutations and novel mutation complexes. These cases had characteristic inter- and intragroup substitution patterns while few of their closest matches showed up as sporadic cases the world over. Specific mutation patterns were detected within the functional domains of internal proteins PB2, PB1, PA, NP, NS1, and M2 having a putative role in viral fitness and virulence. Bayesian coalescent MCMC analysis revealed that Saudi strains belonged to cluster 2 of A(H1N1)pdm09 and spread a month later as compared to other strains of this cluster. CONCLUSION Influenza outbreak in Saudi Arabia during 2009-2011 was caused by atypical strains of influenza A(H1N1)pdm09, probably introduced in this community on multiple occasions. To understand the antigenic significance of these novel point mutations and mutation complexes require functional studies, which will be crucial for risk assessment of emergent strains and defining infection control measures.
Collapse
Affiliation(s)
- Anis Khan
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed A AlBalwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Ibraheem AlAbdulkareem
- Intramural health sciences research, Princess Nourah Bint Abdulrahman university, Riyadh, Saudi Arabia
| | - Abdulrahman AlMasoud
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman AlAsiri
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Wardah AlHarbi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Faisal AlSehile
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Aiman El-Saed
- Department of Infection Prevention & Control Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Hanan H Balkhy
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Infection Prevention & Control Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Kuznetsov NY, Tikhov RM, Godovikov IA, Medvedev MG, Lyssenko KA, Burtseva EI, Kirillova ES, Bubnov YN. Stereoselective synthesis of novel adamantane derivatives with high potency against rimantadine-resistant influenza A virus strains. Org Biomol Chem 2018; 15:3152-3157. [PMID: 28338150 DOI: 10.1039/c7ob00331e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of (R)- and (S)-isomers of new adamantane-substituted heterocycles (1,3-oxazinan-2-one, piperidine-2,4-dione, piperidine-2-one and piperidine) with potent activity against rimantadine-resistant strains of influenza A virus were synthesized through the transformation of adamantyl-substituted N-Boc-homoallylamines 8 into piperidine-2,4-diones 11 through the cyclic bromourethanes 9 and key intermediate enol esters 10. Biological assays of the prepared compounds were performed on the rimantadine-resistant S31N mutated strains of influenza A - A/California/7/2009(H1N1)pdm09 and modern pandemic strain A/IIV-Orenburg/29-L/2016(H1N1)pdm09. The most potent compounds were both enantiomers of the enol ester 10 displaying IC50 = 7.7 μM with the 2016 Orenburg strain.
Collapse
Affiliation(s)
- Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Rabdan M Tikhov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Ivan A Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Konstantin A Lyssenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Elena I Burtseva
- N.F. Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medicinal Sciences, Gamaleya 18, 123098, Moscow, Russian Federation
| | - Elena S Kirillova
- N.F. Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medicinal Sciences, Gamaleya 18, 123098, Moscow, Russian Federation
| | - Yuri N Bubnov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation. and N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
5
|
Characterization of the neuraminidase genes from human influenza A viruses circulating in Iran from 2010 to 2015. Arch Virol 2017; 163:391-400. [PMID: 29086107 DOI: 10.1007/s00705-017-3603-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Characterization of influenza viruses is critical for detection of new emerging variants. Herein, we analyzed the genetic diversity and drug susceptibility of the neuraminidase gene (NAs) expressed by influenza A/H1N1pdm09 and A/H3N2 viruses circulating in Iran from 2010 to 2015. METHODS We genetically analyzed the NAs of 38 influenza A/H1N1pdm09 and 35 A/H3N2 isolates. RESULTS The Iranian A/H1N1pdm09 viruses belonged to seven genogroups/subgenogroups, with the dominant groups being genogroups 6B and 6C. The A/H3N2 isolates fell into six gneogroups/subgenogroups, with the dominant genogroups being 3C and 3C.2a. The most common mutations detected among the A/H1N1pdm09 viruses included N44S, V106I, N200S, and N248D. All H1N1pdm09 viruses were genetically susceptible to the NAIs. However, one A/H1N1pdm09 virus from the 2013-2014 season possessed an NA-S247N mutation, which reduces the susceptibility to oseltamivir. In case of H3N2, none of the analyzed Iranian strains carried a substitution that might affect its susceptibility to NAIs. CONCLUSION The ongoing evolution of influenza viruses and the detect of influenza viruses with reduced susceptibility to NAIs warrants continuous monitoring of the circulating strains.
Collapse
|
6
|
New genetic variants of influenza A(H1N1)pdm09 detected in Cuba during 2011-2013. INFECTION GENETICS AND EVOLUTION 2015; 32:322-6. [PMID: 25839842 DOI: 10.1016/j.meegid.2015.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022]
Abstract
Influenza A(H1N1)pdm09 virus has evolved continually since its emergence in 2009. For influenza virus strains, genetic changes occurring in HA1 domain of the hemagglutinin cause the emergence of new variants. The aim of our study is to establish genetic associations between 35 A(H1N1)pdm09 viruses circulating in Cuba in 2011-2012 and 2012-2013 seasons, and A/California/07/2009 strain recommended by WHO as the H1N1 component of the influenza vaccine. The phylogenetic analysis revealed the circulation of clades 3, 6A, 6B, 6C and 7. Mutations were detected in the antigenic site or in the receptor-binding domains of HA1 segment, including S174P, S179N, K180Q, S202T, S220T and R222K. Substitutions S174P, S179N, K180Q and R222K were detected in Cuban strains for the first time.
Collapse
|
7
|
Qi W, Tian J, Su S, Huang L, Li H, Liao M. Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics. Proteomics 2015; 15:1512-24. [PMID: 25641917 DOI: 10.1002/pmic.201400309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/03/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
Some highly pathogenic H5N1, H7N9, and H10N8 isolated from China carried six internal genes from H9N2 avian influenza viruses (AIV) and the key amino acids at 627 in PB2 of these viruses had mutated to K. To investigate the mechanism of increased pathogenicity for H9N2 AIV PB2 627K, we analyzed the difference in mouse lung proteins expression response to PB2 K627E. By iTRAQ method, we found that the mutated K627E contributed to a set of differentially expressed lung proteins, including five upregulated proteins and nine downregulated proteins at 12 h postinfection; ten upregulated proteins and 25 downregulated proteins at 72 h postinfection. These proteins were chiefly involved within the cytoskeleton and motor proteins, antiviral proteins, regulation of glucocorticoids signal-associated proteins, pro- and anti-inflammatory proteins. Alteration of moesin, FKBP4, Hsp70, ezrin, and pulmonary surfactant protein A (sp-A) may play important roles in increasing virulence and decreasing lungs antiviral response. Further, three upregulated proteins (moesin, ezrin, and sp-A) caused by PB2 K627E were also confirmed in A549 cells. Moreover, overexpression of sp-A in A549 inhibited virus replication and downregulation promoted virus replication. In this study, sp-A as a potential virulence determinant associated H9N2 AIV PB2 E627K mutation was identified using comparative proteomics.
Collapse
Affiliation(s)
- Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
8
|
Puig-Barberà J, Natividad-Sancho A, Launay O, Burtseva E, Ciblak MA, Tormos A, Buigues-Vila A, Martínez-Úbeda S, Sominina A. 2012-2013 Seasonal influenza vaccine effectiveness against influenza hospitalizations: results from the global influenza hospital surveillance network. PLoS One 2014; 9:e100497. [PMID: 24945510 PMCID: PMC4063939 DOI: 10.1371/journal.pone.0100497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/24/2014] [Indexed: 01/14/2023] Open
Abstract
Background The effectiveness of currently licensed vaccines against influenza has not been clearly established, especially among individuals at increased risk for complications from influenza. We used a test-negative approach to estimate influenza vaccine effectiveness (IVE) against hospitalization with laboratory-confirmed influenza based on data collected from the Global Influenza Hospital Surveillance Network (GIHSN). Methods and Findings This was a multi-center, prospective, active surveillance, hospital-based epidemiological study during the 2012–2013 influenza season. Data were collected from hospitals participating in the GIHSN, including five in Spain, five in France, and four in the Russian Federation. Influenza was confirmed by reverse transcription-polymerase chain reaction. IVE against hospitalization for laboratory-confirmed influenza was estimated for adult patients targeted for vaccination and who were swabbed within 7 days of symptom onset. The overall adjusted IVE was 33% (95% confidence interval [CI], 11% to 49%). Point estimates of IVE were 23% (95% CI, −26% to 53%) for influenza A(H1N1)pdm09, 30% (95% CI, −37% to 64%) for influenza A(H3N2), and 43% (95% CI, 17% to 60%) for influenza B/Yamagata. IVE estimates were similar in subjects <65 and ≥65 years of age (35% [95% CI, −15% to 63%] vs.31% [95% CI, 4% to 51%]). Heterogeneity in site-specific IVE estimates was high (I2 = 63.4%) for A(H1N1)pdm09 in patients ≥65 years of age. IVE estimates for influenza B/Yamagata were homogenous (I2 = 0.0%). Conclusions These results, which were based on data collected from the GIHSN during the 2012–2013 influenza season, showed that influenza vaccines provided low to moderate protection against hospital admission with laboratory-confirmed influenza in adults targeted for influenza vaccination. In this population, IVE estimates against A(H1N1)pdm09 were sensitive to age group and study site. Influenza vaccination was moderately effective in preventing admissions with influenza B/Yamagata for all sites and age groups.
Collapse
Affiliation(s)
- Joan Puig-Barberà
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region FISABIO – Public Health, Valencia, Spain
- * E-mail:
| | - Angels Natividad-Sancho
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region FISABIO – Public Health, Valencia, Spain
| | - Odile Launay
- Université Paris Descartes, Sorbonne Paris Cité, Inserm, CIC 1417 and the French Vaccine Research Network (REIVAC), Paris, France
| | - Elena Burtseva
- D.I. Ivanovsky Institute of Virology, Moscow, Russian Federation
| | - Meral A. Ciblak
- National Influenza Reference Laboratory Cappa-Istanbul, Istanbul, Turkey
| | - Anita Tormos
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region FISABIO – Public Health, Valencia, Spain
| | - Amparo Buigues-Vila
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region FISABIO – Public Health, Valencia, Spain
| | - Sergio Martínez-Úbeda
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region FISABIO – Public Health, Valencia, Spain
| | - Anna Sominina
- Research Institute of Influenza, St. Petersburg, Russian Federation
| | | |
Collapse
|