1
|
Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW. Bioassay-guided detection, identification and assessment of antibacterial and anti-inflammatory compounds from olive tree flower extracts by high-performance thin-layer chromatography linked to spectroscopy. J Pharm Biomed Anal 2024; 239:115912. [PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Sheryn Wong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| |
Collapse
|
2
|
Noti V, Pontiki E, Hadjipavlou-Litina D. Development of Novel Pyrrole Derivatives and Their Cinnamic Hybrids as Dual COX-2/LOX Inhibitors. Molecules 2023; 28:7958. [PMID: 38138448 PMCID: PMC10746053 DOI: 10.3390/molecules28247958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Molecular hybridization has emerged as a promising approach in the treatment of diseases exhibiting multifactorial etiology. With regard to this, dual cyclooxygenase-2/lipoxygenase (COX-2/LOX) inhibitors could be considered a safe alternative to traditional non-steroidal anti-inflammatory drugs (tNSAIDs) and selective COX-2 inhibitors (coxibs) for the treatment of inflammatory conditions. Taking this into account, six novel pyrrole derivatives and pyrrole-cinnamate hybrids were developed as potential COX-2 and soybean LOX (sLOX) inhibitors with antioxidant activity. In silico calculations were performed to predict their ADMET (absorption, distribution, metabolism, excretion, toxicity) properties and drug-likeness, while lipophilicity was experimentally determined as RM values. All synthesized compounds (1-4, 5-8) could be described as drug-like. The results from the docking studies on COX-2 were in accordance with the in vitro studies. According to molecular docking studies on soybean LOX, the compounds displayed allosteric interactions with the enzyme. Pyrrole 2 appeared to be the most potent s-LOX inhibitor (IC50 = 7.5 μM). Hybrids 5 and 6 presented a promising combination of in vitro LOX (IC50 for 5 = 30 μM, IC50 for 6 = 27.5 μM) and COX-2 (IC50 for 5 = 0.55 μM, IC50 for 6 = 7.0 μM) inhibitory activities, and therefore could be used as the lead compounds for the synthesis of more effective multi-target agents.
Collapse
Affiliation(s)
| | | | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.N.); (E.P.)
| |
Collapse
|
3
|
Jović MD, Agatonovic-Kustrin S, Ristivojević PM, Trifković JĐ, Morton DW. Bioassay-Guided Assessment of Antioxidative, Anti-Inflammatory and Antimicrobial Activities of Extracts from Medicinal Plants via High-Performance Thin-Layer Chromatography. Molecules 2023; 28:7346. [PMID: 37959765 PMCID: PMC10647317 DOI: 10.3390/molecules28217346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Natural products and their analogues have contributed significantly to treatment options, especially for anti-inflammatory and infectious diseases. Thus, the primary objective of this work was to compare the bioactivity profiles of selected medicinal plants that are historically used in folk medicine to treat inflammation and infections in the body. Chemical HPTLC fingerprinting was used to assess antioxidant, phenolic and flavonoid content, while bioassay-guided HPTLC was used to detect compounds with the highest antibacterial and anti-inflammatory activities. The results of this study showed that green tea leaf, walnut leaf, St. John's wort herb, wild thyme herb, European goldenrod herb, chamomile flower, and immortelle flower extracts were strong radical scavengers. Green tea and nettle extracts were the most active extracts against E. coli, while calendula flower extract showed significant potency against S. aureus. Furthermore, green tea, greater celandine, and fumitory extracts exhibited pronounced potential in suppressing COX-1 activity. The bioactive compounds from the green tea extract, as the most bioactive, were isolated by preparative thin-layer chromatography and characterized with their FTIR spectra. Although earlier studies have related green tea's anti-inflammatory properties to the presence of catechins, particularly epigallocatechin-3-gallate, the FTIR spectrum of the compound from the most intense bioactive zone showed the strongest anti-inflammatory activity can be attributed to amino acids and heterocyclic compounds. As expected, antibacterial activity in extracts was related to fatty acids and monoglycerides.
Collapse
Affiliation(s)
- Marko D. Jović
- Innovation Centre of the Faculty of Chemistry Ltd., University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Department of Rural Clinical Sciences, La Trobe University, Edwards Road, Bendigo, VIC 3550, Australia
| | - Petar M. Ristivojević
- Department of Analytical Chemistry, Centre of Excellence for Molecular Food Sciences, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - Jelena Đ. Trifković
- Department of Analytical Chemistry, Centre of Excellence for Molecular Food Sciences, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - David W. Morton
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Department of Rural Clinical Sciences, La Trobe University, Edwards Road, Bendigo, VIC 3550, Australia
| |
Collapse
|
4
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
5
|
Javid H, Saeedian Moghadam E, Farahmandfar M, Manouchehrabadi M, Amini M, Salimi M, Torkaman-Boutorabi A. Biological Activity of Novel Pyrrole Derivatives as Antioxidant Agents Against 6-OHDA Induced Neurotoxicity in PC12 Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e140450. [PMID: 38444711 PMCID: PMC10912899 DOI: 10.5812/ijpr-140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 03/07/2024]
Abstract
Background Neuroinflammation and oxidative stress are critical factors involved in the pathogenesis of Parkinson's disease (PD), the second most common progressive neurodegenerative disease. Additionally, lipid peroxidation end products contribute to inflammatory responses by activating pro-inflammatory genes. Lipid peroxidation occurs as a result of either the overproduction of intracellular reactive oxygen species (ROS) or the reaction of cyclooxygenases (COXs). Objectives In this study, we examined the role of 1,5-diaryl pyrrole derivatives against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in a cellular model of PD. Methods PC12 cells were pre-treated with compounds 2-(4-chlorophenyl)-5-methyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrrole (A), 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-methyl-1H-pyrrole (B), and 1-(2-chlorophenyl)-2-(4-chlorophenyl)-5-methyl-1H-pyrrole (C), respectively, 24 h before exposure to 6-OHDA. We conducted various assays, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), ROS, and lipid peroxidation assays, Hoechst staining, Annexin V/PI, Western blotting analysis and ELISA method, to assess the neuroprotective effects of pyrrole derivatives on 6-OHDA-induced neurotoxicity. Results Our results demonstrated that apoptosis induction was inhibited by controlling the lipid peroxidation process in the in vitro model following pre-treatment with compounds A, B, and, somehow, C. Furthermore, compounds A and C likely act by suppressing the COX-2/PGE2 pathway, a mechanism not attributed to compound B. Conclusions These findings suggest that the novel synthetic pyrrolic derivatives may be considered promising neuroprotective agents that can potentially prevent the progression of PD.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Manouchehrabadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
El-Barbary AA, Imam DR, El–Tahawy MM, El-Hallouty SM, Kheder NA, Khodair AI. Unexpected synthesis, characterization, biological evaluations, and computational details of novel nucleosides containing triazine-pyrrole hybrid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Elewa SI, El-Farargy AF, Nafie MS, Mansour E. Synthesis, and Cytotoxic Activity of Novel Pyrazoline-Thiazolidinone Derivatives with Molecular Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Safaa I. Elewa
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed F. El-Farargy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Sharqia, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Eman Mansour
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Saleh EAM, Kotian SY, Al Dawsari AM, Hassan I, Husain K, Abishad PC, Byrappa K, Sharabi RSSAL, Rai KML. Synthesis, Antioxidant, and Antibacterial Activities of Two Novel Series of 3,5-Disubstituted Isoxazole Ether-Linked Isoxazolines and 3,5-Disubstituted Pyrazole Ether-Linked Isoxazolines Mediated by Chloramine-T. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Oh KK, Adnan M, Cho DH. Network pharmacology-based study to identify the significant pathways of Lentinula edodes against cancer. J Food Biochem 2022; 46:e14258. [PMID: 35633195 DOI: 10.1111/jfbc.14258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Lentinula edodes (LE) is known as a good food source with potent anticancer efficacy, but its active chemical compounds and pathways against cancer have not been revealed. This study was to uncover the active chemical constituents and pathways of LE against cancer through network pharmacology. The chemical compositions were recognized by gas chromatography-mass spectrometry (GC-MS) and filtered drug-like compounds (DLCs) by SwissADME. Targets related to filtered compounds were recognized by two public databases and the final overlapping targets were identified by Venn diagram. Then, protein-protein interaction (PPI) and pathway-target-compound (PTC) networks were built by RStudio. Ultimately, we recognized the key compounds and targets via molecular docking test (MDT). A total of 33 compounds from LE were accepted by Lipinski's rule were selected as DLCs. The 33 compounds were associated with 108 targets and a key target (cyclooxygenase2 [COX2]) was identified through PPI networks. Most significantly, inactivation of pathways in cancer and activation of peroxisome proliferator activated receptor signaling pathway were significant pathways of LE. On MDT, we identified a key compound (Indole, 2-methyl-3-phenyl) on COX2 related to inactivation of athways in cancer, additionally, the number of 6 ergostane steroids was associated with the two pathways might be dual efficacy to alleviate inflammation against cancer. Overall, 13 targets, 11 compounds, and 2 key pathways of LE were identified as the significant elements to treat cancer. Hence, this study shows therapeutic evidence to verify the promising clinical effect of LE on cancer, suggesting that LE might be an important mushroom against cancer. PRACTICAL APPLICATIONS: Lentinula edodes (LE) has been used widely in cuisine as well as alternative medicines, especially, for anticancer. The LE has rich nutritional compounds including proteins, vitamins, polyphenols, and glucans, however, most of which have a critical hurdle as poor bioavailability not to be applicable for pharmaceuticals. Its main cause is very hydrophilic property. Thus, we adopted GC-MS analysis to identify lipophilic compounds to enhance cell permeability involved in bioavailability. The compounds selected from LE were confirmed by Lipinski's rule for drug-like-compounds (DLCs). Then, we retrieved targets associated with DLCs, and multiple pathways, multiple targets, and multiple compounds against cancer on network-based analysis. In summary, our study reveals the medicinal value of LE on cancer based on the multicomponents. Overall, the aim of this work is to represent the pharmacological evidence to reveal the therapeutic efficacy of AC on cancer, suggesting that DLCs from AC might be alleviators to dampen cancer.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Md Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
10
|
Pan M, Wang X, Tong Y, Qiu X, Zeng X, Xiong B. Ruthenium-catalyzed acceptorless dehydrogenative coupling of amino alcohols and ynones to access 3-acylpyrroles. Chem Commun (Camb) 2022; 58:2379-2382. [PMID: 35080540 DOI: 10.1039/d1cc07018e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, a new strategy for the direct synthesis of functionalized pyrroles from β-amino alcohols and ynones via ruthenium-catalyzed acceptorless dehydrogenative coupling has been demonstrated. This developed methodology proceeds in an atom- and step-economic fashion together with the merits of broad substrate scope, operational simplicity, and water and hydrogen gas as the sole by-products, which provides an alternative and sustainable way to access functionalized pyrroles. Further, this method was applied to the rapid synthesis of the COX-1/COX-2 inhibitor and boron dipyrromethene derivative successfully.
Collapse
Affiliation(s)
- Mingshi Pan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Xiabin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
11
|
(E)-1-(3-Benzoyl-4-phenyl-1H-pyrrol-1-yl)-3-phenylprop-2-en-1-one. MOLBANK 2022. [DOI: 10.3390/m1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last decade, there has been an increasing effort to fight inflammatory conditions establishing new multitarget approaches. Chronic inflammation is implicated in many multifactorial diseases, constituting a great economic burden and a chronic health problem. In an attempt to develop new potent multifunctional anti-inflammatory agents, a cinnamic-pyrrole hybrid (6) was synthesized and screened for its antioxidant and anti-Lipoxygenase potential. The new compound, in comparison with its pyrrole precursor (4), showed improved biological activities. In silico calculations were performed to predict its drug-likeness. The examined derivative is considered orally bioavailable according to Lipinski’s rule of five. Compound 6 could be used as a lead for the synthesis of more effective hybrids.
Collapse
|
12
|
Mohareb RM, Bagato NMA, Radwan IT. Design, Synthesis, Molecular Docking and Biological Studies of New Heterocyclic Compounds Derived from -Diketonesas Novel EGFR and Pim-1 Inhibitors Endowed with Antitumor Activity. Anticancer Agents Med Chem 2022; 22:2558-2576. [PMID: 35023461 DOI: 10.2174/1871520622666220112104320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a disease illustrated by a shift in the controlled mechanisms that control both cell proliferation and differentiation. It is regarded as a prime health problem worldwide, leading cause of human death-rate exceeded only by cardiovascular diseases. Many reported work was concerned with the discovery of new antitumor compounds this encourage us to synthesis new anticancer agents. OBJECTIVE In this work, we are aiming to synthesize target molecules from 1,3-dicarbonyl compounds through many heterocyclization reactions. METHOD The reaction of either 4-methylaniline (1a) or 1-naphthylamine (1b) with diethyl malonate (2) gave the anilide derivatives 3a and 3b, respectively. The latter products underwent a series of heterocyclization reactions to give the pyridine, pyran andthiazole derivatives which confirmed with the required spectral data. RESULTS Thein-vitro antitumor evaluations of the newly synthesized products against four cancer cell lines MCF-7, NCI-H460, SF-268 and WI 38 as normal cell line were screened and the data revealed that compounds 11a, 18b, 18c and 20d showed high antitumor activity and 20dindividualize with potential antitumor activity towards cell lines with lowest cytotoxicity effect. Both EGFR and PIM-1 enzyme inhibition were investigated for the compound 20d and his inhibition effect was promising for each enzyme showing IC50=45.67 ng and 553.3 ng for EGFR and PIM-1, respectively. CONCLUSION Molecular docking results of compound 20d showed a strong binding interactions on both enzymes, where, good binding modes obtained on case of EGFR, which closely similar to the binding mode of standard Erlotinib. While, 20d showed complete superimposition binding interactions with VRV-cocrystallized ligand of PIM-1 that may expounds the in-vitro antitumor activity.
Collapse
Affiliation(s)
- Rafat Milad Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt
| | - Noha M Asaad Bagato
- Egyptian Petroleum Research Institute (EPRI), P.O. Box 11727, Nasr City, Cairo, A. R. Egypt
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, P.O. Box 11835, Cairo, Egypt
| |
Collapse
|
13
|
Sribala R, Srinivasan N, Rajalaksmi P, Indumathi S, Krishnakumar R. Crystal structure and Hirshfeld surface analysis of a pyrrolo-thia-zine complex. Acta Crystallogr E Crystallogr Commun 2021; 77:770-774. [PMID: 34422298 PMCID: PMC8340966 DOI: 10.1107/s2056989021006642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
In the title compound, diethyl 2,2-dioxo-4-(thio-phen-2-yl)-1-[(thio-phen-2-yl)meth-yl]-3,4,6,7,8,8a-hexa-hydro-1H-pyrrolo-[2,1-c][1,4]thia-zine-1,3-di-carboxyl-ate, C22H28NO6S3, the pyrrolo ring is in an envelope conformation while the thia-zine ring adopts a near chair conformation. The dihedral angles between the thia-zine ring and the methyl-thienyl, thienyl and pyrrolo rings are 64.0 (2), 87.92 (7) and 5.6 (2)°, respectively. In the crystal, the mol-ecules are linked by weak C-H⋯O hydrogen bonds. A Hirshfeld surface analysis was performed to investigate the inter-molecular inter-actions. Disorder of the methyl-thienyl group with site occupancies of 0. 792 (3) and 0.208 (3) is observed.
Collapse
Affiliation(s)
- R. Sribala
- Department of Physics, Thiagarajar College, Madurai - 625 009, India
| | - N. Srinivasan
- Department of Physics, Thiagarajar College, Madurai - 625 009, India
| | - P. Rajalaksmi
- Department of Physics, M.G.R College, Hosur - 635130, India
| | - S. Indumathi
- School of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India
| | - R.V. Krishnakumar
- Department of Physics, Thiagarajar College, Madurai - 625 009, India
| |
Collapse
|
14
|
Shen WB, Zhang TT, Zhang M, Wu JJ, Jiang XL, Ru GX, Gao GQ, Zhu XH. Cu( i)- and Au( i)-catalyzed regioselective oxidation of diynes: divergent synthesis of N-heterocycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00912e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The efficient and divergent construction of two types of valuable N-heterocycle is achieved easily, with the first example of the generation of α-oxo copper carbenes via copper-catalyzed oxidation of non-polarized alkynes.
Collapse
Affiliation(s)
- Wen-Bo Shen
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Ting-Ting Zhang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng Zhang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing-Jing Wu
- Qingdao Agricultural University Library, Qingdao 266109, China
| | - Xiao-Lei Jiang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Guang-Xin Ru
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Guang-Qin Gao
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiu-Hong Zhu
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
15
|
Abdel-Aziz AAM, El-Azab AS, AlSaif NA, Alanazi MM, El-Gendy MA, Obaidullah AJ, Alkahtani HM, Almehizia AA, Al-Suwaidan IA. Synthesis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activities of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: a molecular docking study. J Enzyme Inhib Med Chem 2020; 35:610-621. [PMID: 32013633 PMCID: PMC7034070 DOI: 10.1080/14756366.2020.1722120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/26/2022] Open
Abstract
Cyclic imides containing 3-benzenesulfonamide, oxime, and β-phenylalanine derivatives were synthesised and evaluated to elucidate their in vivo anti-inflammatory and ulcerogenic activity and in vitro cytotoxic effects. Most active anti-inflammatory agents were subjected to in vitro COX-1/2 inhibition assay. 3-Benzenesulfonamides (2-4, and 9), oximes (11-13), and β-phenylalanine derivative (18) showed potential anti-inflammatory activities with 71.2-82.9% oedema inhibition relative to celecoxib and diclofenac (85.6 and 83.4%, respectively). Most active cyclic imides 4, 9, 12, 13, and 18 possessed ED50 of 35.4-45.3 mg kg-1 relative to that of celecoxib (34.1 mg kg-1). For the cytotoxic evaluation, the selected derivatives 2-6 and 8 exhibited weak positive cytotoxic effects (PCE = 2/59-5/59) at 10 μM compared to the standard drug, imatinib (PCE = 20/59). Cyclic imides bearing 3-benzenesulfonamide (2-5, and 9), acetophenone oxime (11-14, 18, and 19) exhibited high selectivity against COX-2 with SI > 55.6-333.3 relative to that for celecoxib [SI > 387.6]. β-Phenylalanine derivatives 21-24 and 28 were non-selective towards COX-1/2 isozymes as indicated by their SI of 0.46-0.68.
Collapse
Affiliation(s)
- Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A. AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal A. El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Ebraheem Abdu Musad, Dawsari AMA, Abdalla ZEA, Husain K, Sharabi RSSA, Rai KML. Highly Efficient Synthesis of New 3,5-Substituted (Isoxazolines) and 2,3,5-Trisubstituted (Pyrazolines) Mediated by Chloramin-T and Their Evaluation of Antioxidant and Antibacterial Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Douadi K, Chafaa S, Douadi T, Al-Noaimi M, Kaabi I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA / BSA binding. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg Chem 2020; 102:103890. [DOI: 10.1016/j.bioorg.2020.103890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
19
|
Kubheka G, Mack J, Nyokong T, Shen Z. NIR Absorbing AzaBODIPY Dyes for pH Sensing. Molecules 2020; 25:molecules25163689. [PMID: 32823576 PMCID: PMC7465905 DOI: 10.3390/molecules25163689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022] Open
Abstract
Two near-infrared (NIR) absorbing di(thien-2-nyl)-di(dimethylanilino)azaBODIPY dyes 2a and 2b were synthesized and characterized that differ depending on whether the dimethylaniline substituents are introduced at the 3,5- or 1,7-positions of the azaBODIPY core. The main spectral bands lie at 824 and 790 nm, respectively, in CH2Cl2. The effect of substituent position on the photophysical and pH sensing properties was analyzed through a comparison of the optical properties with the results of time-dependent density functional theory (TD-DFT) calculations. Protonation of the dimethylamino nitrogen atoms eliminates the intramolecular charge transfer properties of these compounds, and this results in a marked blue-shift of the main absorption bands to 696 and 730 nm, respectively, in CH2Cl2, and a fluorescence “turn-on” effect in the NIR region. The pH dependence studies reveal that the pKa values of the non-protonated 2a and 2b molecules are ca. 6.9 (±0.05) and 7.3 (±0.05), respectively, while that of the monoprotonated species for both dyes is ca. 1.4 (±0.05) making them potentially suitable for use as colorimetric pH indicators under highly acidic conditions.
Collapse
Affiliation(s)
- Gugu Kubheka
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; (G.K.); (T.N.)
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; (G.K.); (T.N.)
- Correspondence: (J.M.); (Z.S.); Tel.: +27-46-603-7234 (J.M.); +86-25-8968-6679 (Z.S.)
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; (G.K.); (T.N.)
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
- Correspondence: (J.M.); (Z.S.); Tel.: +27-46-603-7234 (J.M.); +86-25-8968-6679 (Z.S.)
| |
Collapse
|
20
|
Kaur M, Yusuf M, Malhi DS, Sohal HS. Bis-dihydroisoxazolines: Synthesis, Structural Elucidation, Antimicrobial Evaluation, and DNA Photocleavage Assay. Curr Org Synth 2020; 17:671-678. [PMID: 32660404 DOI: 10.2174/1570179417666200713181959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Isoxazole is an active core found in many drugs. The aim of this work was to synthesize bis-isoxazoline compounds and to analyze the effect of linker chain length on biological activities. MATERIAL AND METHODS A simple, convenient, and efficient method for the conversion of bischalcones to new bis(4,5-dihydroisoxazole) derivatives was developed by using hydroxylamine hydrochloride under basic medium. Synthesized moieties were also evaluated for their antimicrobial potencies and DNA photocleavage assay. RESULTS AND DISCUSSION The synthesized compounds were more active than their chalcone precursors and the long-chain linkers (4e&4f) were more potent in antimicrobial, as well as in DNA photocleavage activity. CONCLUSION It was found that many of the tested bischalcones and bis-isoxazolines exhibited moderate to significant antimicrobial activity against various strains. Furthermore, the present study also provides significant information and interesting outcomes regarding cyclization, increasing the length of linker chains, and their effects on the DNA photocleavage and antimicrobial activities.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Punjab, India,Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | | | | |
Collapse
|
21
|
Christodoulou MS, Giofrè S, Beccalli EM, Foschi F, Broggini G. Divergent Conversion of 4-Naphthoquinone-substituted 4 H-Isoxazolones to Different Benzo-fused Indole Derivatives. Org Lett 2020; 22:2735-2739. [PMID: 32182085 DOI: 10.1021/acs.orglett.0c00709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
4,4-Disubstituted 4H-isoxazol-5-ones bearing a 1,4-naphthoquinone moiety undergo transformation into different types of benzoindolyl products depending on the different reaction conditions. A decarboxylative ring opening/ring closure promoted by catalytic [Ru(p-cymene)2Cl2]2 yields benzo[f]indole-4,9-diones. Alternatively, hydrogenation reactions provide the conversion of 4-(1,4-naphthoquinone)-substituted isoxazol-5-ones to benzo[g]indole compounds, with the level of reduction depending on the substituents present on the ring. Starting materials have been easily prepared by the functionalization of isoxazolinones with naphthoquinone under mild conditions.
Collapse
Affiliation(s)
- Michael S Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Egle M Beccalli
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Francesca Foschi
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
22
|
Wang T, Peng T, Wen X, Wang G, Liu S, Sun Y, Zhang S, Wang L. Design, Synthesis and Evaluation of 3-Substituted Coumarin Derivatives as Anti-inflammatory Agents. Chem Pharm Bull (Tokyo) 2020; 68:443-446. [PMID: 32173668 DOI: 10.1248/cpb.c19-01085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coumarin moiety has garnered momentous attention especially in the design of compounds with significant biological activities. In this work, a series of 3-substituted coumarin derivatives 6a-6l were synthesized and fully characterized. Most of the compounds could obviously inhibit the activity of cyclooxygenase-1 (COX-1) at the concentration of 10 µM. Besides, 6h and 6l exhibited highest inhibitory effects against COX-2 with inhibition rates of 33.48 and 35.71%, respectively. Detailed structure-activity relationships (SARs) were also discussed. In vivo studies, 6b, 6i and 6l could remarkably repress the xylene-induced ear swelling in mice at the dose of 20 mg/kg. Especially, 6l seemed to be the most effective compound at the dose of 10 mg/kg, displaying favorable anti-inflammatory activity comparable to indomethacin. All of these findings suggested that 6l might be utilized as a candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Science and Bio-engineering, Beijing University of Technology.,Beijing Institute of Radiation Medicine
| | - Tao Peng
- Beijing Institute of Radiation Medicine
| | | | - Gang Wang
- Beijing Institute of Radiation Medicine
| | | | - Yunbo Sun
- Beijing Institute of Radiation Medicine
| | | | - Lin Wang
- College of Life Science and Bio-engineering, Beijing University of Technology.,Beijing Institute of Radiation Medicine
| |
Collapse
|
23
|
Sroor FM, Basyouni WM, Tohamy WM, Abdelhafez TH, El-awady MK. Novel pyrrolo[2,3-d]pyrimidine derivatives: Design, synthesis, structure elucidation and in vitro anti-BVDV activity. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Synthesis and anticancer activity of some pyrido[2,3- d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors. Future Med Chem 2019; 11:2395-2414. [PMID: 31544523 DOI: 10.4155/fmc-2019-0050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Due to emergence of resistance to available anticancer agents, there is a need to search for new cytotoxic agents. Methods: Pyrido[2,3-d]pyrimidines (4-6) and their tricyclic derivatives (7-13) were prepared and screened for their cytotoxicity against breast MCF-7, prostate PC-3 and lung A-549 cancer cell lines as well as normal fibroblasts WI-38. Results: The most active compounds were 6b, 6e and 8d compared with doxorubicin. Moreover, compounds 6b and 8d induced apoptosis in PC-3 and MCF-7, respectively via activation of CASP3 (in PC-3 only), Bax, p53 and down regulation of Bcl2 in addition to CDK4/6 inhibition. Conclusion: Pyrido[2,3-d]pyrimidine represents an important core for discovery of new potent cytotoxic agents acting on the cell cycle via apoptosis induction through either intrinsic or extrinsic pathways.
Collapse
|
25
|
Yusuf M, Nisa S, Paul K. New Biphenyl‐Based Bispyrazolines: Synthesis, Antimicrobial, and Docking Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mohamad Yusuf
- Department of ChemistryPunjabi University Patiala 147002 Punjab India
| | - Shehneela Nisa
- Department of ChemistryPunjabi University Patiala 147002 Punjab India
| | - Kamaldeep Paul
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147003 Punjab India
| |
Collapse
|
26
|
Liu J, Yu Y. Efficient Access to 3, 4‐Diarylpyrroles through Selective Bromination and Subsequent Suzuki‐Coupling Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201900875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianhui Liu
- School of Petroleum and Chemical EngineeringDalian University of TechnologyPanjin Campus, Panjin, Liaoning Province 124221 P. R. China
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 P. R. China
| | - Yaqiang Yu
- School of Petroleum and Chemical EngineeringDalian University of TechnologyPanjin Campus, Panjin, Liaoning Province 124221 P. R. China
| |
Collapse
|
27
|
Patil VM, Anand P, Bhardwaj M, Masand N. Cinnamaldehyde Analogs: Docking Based Optimization, COX-2 Inhibitory In Vivo and In Vitro Studies. Curr Drug Discov Technol 2019; 17:154-165. [PMID: 30686258 DOI: 10.2174/1570163816666190125153951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/08/2018] [Accepted: 01/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past decade CADD has emerged as a rational approach in drug development so with the help molecular docking approach we planned to perform virtual screening of the designed data set of Schiff bases of cinnamaldehyde. The research work will be helpful to put some light on the drug receptor interactions required for anti-inflammatory activity. METHODS For carrying out virtual screening of the developed cinnamaldehyde Schiff base data set, AutoDock 4.0 was used. The active hits identified through in silico screening were synthesized. Anti-inflammatory evaluation was carried out using Carrageenan-induced paw oedema method. RESULTS Compounds V2A44, V2A55, V2A76, V2A82, V2A119, V2A141 and V2A142 has shown highest binding energy (-4.84, -4.76, -4.59, -4.78, -4.74, -4.85 and -4.72 kcal/mol, respectively) and the binding interactions with amino acids namely, Phe478, Glu479, Lys492, Ala493, Asp497 and Ile498. Some of the analogs have shown significant activity and were comparable to Indomethacin (standard drug). CONCLUSION Five new compounds have shown significant activity and the results obtained from in silico studies are parallel to those of in vivo studies.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Preeti Anand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Monika Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
28
|
Li J, Li D, Xu Y, Guo Z, Liu X, Yang H, Wu L, Wang L. Corrigendum to "Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents" [Bioorg. Med. Chem. Lett. 27 (3) (2017) 602-606]. Bioorg Med Chem Lett 2018; 28:3822. [PMID: 30385163 DOI: 10.1016/j.bmcl.2018.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingfen Li
- Department of Life Science, Huzhou Teachers' College, Huzhou 313000, People's Republic of China
| | - Dong Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yiming Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Zhenbo Guo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Lichuan Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Lisheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| |
Collapse
|
29
|
Synthesis of Multi-Substituted Pyrrole Derivatives Through [3+2] Cycloaddition with Tosylmethyl Isocyanides (TosMICs) and Electron-Deficient Compounds. Molecules 2018; 23:molecules23102666. [PMID: 30336556 PMCID: PMC6222313 DOI: 10.3390/molecules23102666] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
Pyrrole and its polysubstituted derivatives are important five-membered heterocyclic compounds, which exist alone or as a core framework in many pharmaceutical and natural product structures, some of which have good biological activities. The Van Leusen [3+2] cycloaddition reaction based on tosylmethyl isocyanides (TosMICs) and electron-deficient compounds as a substrate, which has been continuously developed due to its advantages such as operationally simple, easily available starting materials, and broadly range of substrates, is one of the most convenient methods to synthetize pyrrole heterocycles. In this review, we discuss the different types of two carbon synthons in the Van Leusen pyrrole reaction and give a summary of the progress of these synthesis methods in the past two decades.
Collapse
|
30
|
Attiq A, Jalil J, Husain K, Ahmad W. Raging the War Against Inflammation With Natural Products. Front Pharmacol 2018; 9:976. [PMID: 30245627 PMCID: PMC6137277 DOI: 10.3389/fphar.2018.00976] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last few decade Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are the drugs of choice for treating numerous inflammatory diseases including rheumatoid arthritis. The NSAIDs produces anti-inflammatory activity via inhibiting cyclooxygenase enzyme, responsible for the conversation of arachidonic acid to prostaglandins. Likewise, cyclooxegenase-2 inhibitors (COX-2) selectively inhibit the COX-2 enzyme and produces significant anti-inflammatory, analgesic, and anti-pyretic activity without producing COX-1 associated gastrointestinal and renal side effects. In last two decades numerous selective COX-2 inhibitors (COXIBs) have been developed and approved for various inflammatory conditions. However, data from clinical trials have suggested that the prolong use of COX-2 inhibitors are also associated with life threatening cardiovascular side effects including ischemic heart failure and myocardial infection. In these scenario secondary metabolites from natural product offers a great hope for the development of novel anti-inflammatory compounds. Although majority of the natural product based compounds exhibit more selectively toward COX-1. However, the data suggest that slight structural modification can be helpful in developing COX-2 selective secondary metabolites with comparative efficacy and limited side effects. This review is an effort to highlight the secondary metabolites from terrestrial and marine source with significant COX-2 and COX-2 mediated PGE2 inhibitory activity, since it is anticipated that isolates with ability to inhibit COX-2 mediated PGE2 production would be useful in suppressing the inflammation and its classical sign and symptoms. Moreover, this review has highlighted the potential lead compounds including berberine, kaurenoic acid, α-cyperone, curcumin, and zedoarondiol for further development with the help of structure-activity relationship (SAR) studies and their current status.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
31
|
Kaur R, Kumar K. One-pot synthesis of [4-(tert-butyl)-1H-pyrrol-3-yl](phenyl)methanone from tosylmethyl isocyanide and carbonyl compound. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2335-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Simulation results source for the identification of biological active compounds: synthesis, antimicrobial evaluation and SARs of three in one heterocyclic motifs. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 2018; 28:1797-1803. [PMID: 29678461 DOI: 10.1016/j.bmcl.2018.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023]
Abstract
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100 mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50 >100 μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Zhi-Yu Wei
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Qiang Chi
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Si Wang
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Jie Wu
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Li-Ping Liu
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| |
Collapse
|
34
|
Nedolya NA, Tarasova OA, Albanov AI, Trofimov BA. A New Facet of Azatriene Reactivity: A Short Cut to 5-Amino-3-methyl-4-(1H-pyrrol-1-yl)thiophene-2-carboxylates and 5-Amino-3-methyl-4-(1H-pyrrol-1-yl)thiophene-2-carbonitriles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nina A. Nedolya
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch; Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Olga A. Tarasova
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch; Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Alexander I. Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch; Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch; Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| |
Collapse
|
35
|
Essa FB, Bazbouz A, Alhilalb S, Ouf SA, Gomha SM. Synthesis and biological evaluation of an indole core-based derivative with potent antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3426-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Vafaee A, Davoodnia A, Bozorgmehr MR, Pordel M. Characterization and Molecular Docking Study of New 4-Acetamidoalkyl Pyrazoles As B-Raf /Cox-2 Inhibitors. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Regio- and diastereoselectivity of the cycloaddition of nitrones with N-propadienylindole and pyrroles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Aitha A, Payili N, Rekula SR, Yennam S, Anireddy JS. ′′One-Pot′′ Selective Synthesis of 3,4-Disubstituted Pyrroles and Benzo[f]indole-4,9-diones from 1,3-Indanedione, Aromatic Aldehydes and TosMIC. ChemistrySelect 2017. [DOI: 10.1002/slct.201700997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anjaiah Aitha
- Department of Medicinal Chemistry; Chemistry Services, GVK Biosciences Pvt. Ltd. Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad-; 500076 Telangana India
- Centre for Chemical Sciences & Technology, Institute of Science and Technology; Jawaharlal Nehru Technological University, Kukatpally, Hyderabad; 500072 Telangana India
| | - Nagaraju Payili
- Department of Medicinal Chemistry; Chemistry Services, GVK Biosciences Pvt. Ltd. Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad-; 500076 Telangana India
| | - Santhosh Reddy Rekula
- Department of Medicinal Chemistry; Chemistry Services, GVK Biosciences Pvt. Ltd. Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad-; 500076 Telangana India
| | - Satyanarayana Yennam
- Department of Medicinal Chemistry; Chemistry Services, GVK Biosciences Pvt. Ltd. Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad-; 500076 Telangana India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences & Technology, Institute of Science and Technology; Jawaharlal Nehru Technological University, Kukatpally, Hyderabad; 500072 Telangana India
| |
Collapse
|
39
|
[3+2] Cycloaddition of Tosylmethyl Isocyanide with Styrylisoxazoles: Facile Access to Polysubstituted 3-(Isoxazol-5-yl)pyrroles. Molecules 2017; 22:molecules22071131. [PMID: 28686192 PMCID: PMC6152356 DOI: 10.3390/molecules22071131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 01/24/2023] Open
Abstract
A facile access to polysubstituted 3-(isoxazol-5-yl)pyrroles was developed through [3+2] cycloaddition of tosylmethyl isocyanide (TosMIC) and styrylisoxazoles. In the presence of KOH, various styrylisoxazoles reacted smoothly with tosylmethyl isocyanide and analogs to deliver a wide range of 3-(isoxazol-5-yl)pyrroles at ambient temperature. This transformation is operationally simple, high-yielding, and displays broad substrate scope.
Collapse
|
40
|
Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators. Molecules 2017; 22:molecules22030461. [PMID: 28304349 PMCID: PMC6155178 DOI: 10.3390/molecules22030461] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 12/19/2022] Open
Abstract
A new series of pyrrolopyridines and pyrrolopyridopyrimidines have been synthesized from aminocyanopyrroles. The synthesized compounds have been characterized by FTIR, 1H-NMR and mass spectroscopy. The final compounds have been screened for in vitro pro-inflammatory cytokine inhibitory and in vivo anti-inflammatory activity. The biological results revealed that among all tested compounds some fused pyrroles, namely the pyrrolopyridines 3i and 3l, show promising activity. A docking study of the active synthesized molecules confirmed the biological results and revealed a new binding pose in the COX-2 binding site.
Collapse
|
41
|
Efremova MM, Kostikov RR, Stepakov AV, Panikorovsky TL, Shcherbakova VS, Ivanov AV, Molchanov AP. Unusual Lewis-acid catalyzed formal (3+3)-cycloaddition of azomethine imines and nitrones to N-vinylpyrroles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Kumar J, Chawla G, Akhtar M, Sahu K, Rathore V, Sahu S. Design, synthesis and pharmacological evaluation of some novel derivatives of 1-{[3-(furan-2-yl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl}-4-methyl piperazine. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Synthesis, Characterization, and Anti-Inflammatory Activities of Methyl Salicylate Derivatives Bearing Piperazine Moiety. Molecules 2016; 21:molecules21111544. [PMID: 27886112 PMCID: PMC6273818 DOI: 10.3390/molecules21111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022] Open
Abstract
In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.
Collapse
|
44
|
Anti-inflammatory activity effect of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on TPA-induced skin inflammation in mice. Bioorg Med Chem Lett 2016; 26:5334-5339. [DOI: 10.1016/j.bmcl.2016.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
|
45
|
Synthesis, anti-inflammatory, analgesic and COX-1/2 inhibition activities of anilides based on 5,5-diphenylimidazolidine-2,4-dione scaffold: Molecular docking studies. Eur J Med Chem 2016; 115:121-31. [DOI: 10.1016/j.ejmech.2016.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/19/2022]
|
46
|
Kumar K, More SS, Goyal S, Gangar M, Khatik GL, Rawal RK, Nair VA. A convenient synthesis of 4-alkyl-3-benzoylpyrroles from α,β-unsaturated ketones and tosylmethyl isocyanide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Moneer AA, Mohammed KO, El-Nassan HB. Synthesis of Novel Substituted Thiourea and Benzimidazole Derivatives Containing a Pyrazolone Ring as Anti-Inflammatory Agents. Chem Biol Drug Des 2016; 87:784-93. [PMID: 26684979 DOI: 10.1111/cbdd.12712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 01/25/2023]
Abstract
Two series of new 1-(alkyl/aryl)-3-{2-[(5-oxo-4,5-dihydro-1H-pyrazol-3-yl)amino]phenyl}thioureas 2a-h and 5-[2-(substituted amino)-1H-benzimidazol-1-yl]-4H-pyrazol-3-ols 3a-i were designed and synthesized as anti-inflammatory agents. The cyclooxygenase inhibitory activity of the newly synthesized compounds was investigated. All the compounds showed non-selective inhibition of COX-1 and COX-2 enzymes which was consistent with their docking results. Compounds 2c, 2f, 2g, 3b, and 3g that showed the highest COX-2 inhibitory activity were selected for further in vivo testing as anti-inflammatory agents using diclofenac as a reference drug. Two of the test compounds (2c and 3b) showed potent anti-inflammatory activity comparable to that of diclofenac with lower ulcerogenic effect relative to indomethacin. SAR study of the two series as cyclooxygenase inhibitors and anti-inflammatory agents was also provided.
Collapse
Affiliation(s)
- Ashraf A Moneer
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Khaled O Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hala B El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
48
|
Masoudi M, Anary-Abbasinejad M. A direct phosphine-mediated synthesis of polyfunctionalized pyrroles from arylglyoxals and β-enaminones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.11.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Khajuria R, Dham S, Kapoor KK. Active methylenes in the synthesis of a pyrrole motif: an imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Adv 2016. [DOI: 10.1039/c6ra03411j] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pyrrole is one of the most important azaheterocycles, due to its wide range of applications in pharmaceuticals and optoelectronic materials, coupled with its utility as an intermediate in natural products.
Collapse
Affiliation(s)
| | - Sumita Dham
- Government College for Women, Parade
- Jammu-180001
- India
| | | |
Collapse
|
50
|
Kazemi SS, Keivanloo A, Nasr-Isfahani H, Bamoniri A. Synthesis of novel 1,5-disubstituted pyrrolo[1,2-a]quinazolines and their evaluation for anti-bacterial and anti-oxidant activities. RSC Adv 2016. [DOI: 10.1039/c6ra21219k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of 1,5-disubstituted pyrrolo[1,2-a]quinazoline derivatives were prepared from 2-chloro-4-substituted quinazolines, propargyl alcohol, and secondary amines through novel multi-component reactions.
Collapse
Affiliation(s)
| | - Ali Keivanloo
- School of Chemistry
- Shahrood University of Technology
- Shahrood 36199-95161
- Iran
| | | | - Abdolhamid Bamoniri
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- Iran
| |
Collapse
|