1
|
Li J, Hamamura K, Yoshida Y, Kawano S, Uchinomiya S, Xie J, Scuteri D, Fukuoka K, Zaitsu O, Tsurusaki F, Terada Y, Tsukamoto R, Nishi T, Fukuda T, Oyama K, Bagetta G, Ojida A, Shimizu K, Ohdo S, Matsunaga N. Hericenone C attenuates the second phase of formalin-induced nociceptive behavior by suppressing the accumulation of CD11c-positive cells in the paw epidermis via phosphorylated P65. Biochem Biophys Res Commun 2024; 720:150077. [PMID: 38759303 DOI: 10.1016/j.bbrc.2024.150077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.
Collapse
Affiliation(s)
- Junhao Li
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shimpei Kawano
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Uchinomiya
- Department of Medical Chemistry and Chemical Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jiahongyi Xie
- Department of Agro-Environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Damiana Scuteri
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, 88100, Italy
| | - Kohei Fukuoka
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Orion Zaitsu
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumiaki Tsurusaki
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuma Terada
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryotaro Tsukamoto
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takumi Nishi
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Taiki Fukuda
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kosuke Oyama
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan; Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Akio Ojida
- Department of Medical Chemistry and Chemical Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigehiro Ohdo
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Kinyanjui MW, Fixman ED. Cell-penetrating peptides and proteins: new inhibitors of allergic airways disease. Can J Physiol Pharmacol 2008; 86:1-7. [PMID: 18418441 DOI: 10.1139/y07-125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are peptides that have the ability to efficiently traverse cellular membranes, either alone or in association with molecular cargo. Several naturally occurring PTDs, including those from HIV TAT and Drosophila antennapedia, have this unique activity. Synthetic CPPs, such as polyarginine, also have the ability to enter cells and transport a variety of cargo. While the precise mechanism(s) of cellular entry for individual CPPs may vary, it is likely that uptake is mediated, at least in part, through endocytosis. Moreover, biological activity of cell-penetrating peptides and proteins has been clearly demonstrated in a number of in vitro and in vivo studies. Recently, cell-penetrating proteins targeting the Ras GTPase and the phospholipid kinase PI3K (phosphoinositide 3-kinase) have been shown to inhibit eosinophil trafficking and survival in vitro. These proteins, as well as CPPs targeting the STAT-6 transcription factor or the T-cell costimulatory molecule CTLA-4 (cytotoxic T lymphocyte-associated antigen-4), have also been tested in animal models of asthma. Data from several groups, including ours, indicate that these molecules inhibit airway eosinophilic inflammation, airway hyperresponsiveness (AHR), and mucus production in experimental allergic airways disease. Thus, CPPs targeting these and other signaling molecules may also effectively inhibit allergic airways disease in humans.
Collapse
|
3
|
Markus RP, Ferreira ZS, Fernandes PACM, Cecon E. The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation 2007; 14:126-33. [PMID: 18073503 DOI: 10.1159/000110635] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The time course of the innate immunological response involves a pro-inflammatory phase followed by an anti-inflammatory phase. Pro-inflammatory responses serve as a defense against several stressor conditions, and sequential processes that shut down these responses are necessary to avoid exacerbation or the development of chronic diseases. In the present review, we put together recent data that show that the pineal gland is a player in bidirectional control of the inflammatory response. Healthy organisms stay in standby mode, ready to react. The nocturnal melatonin surge impairs the rolling and adherence of leukocytes to endothelial layers, limiting cell migration, and stimulates nocturnal production of IL-2 by T helper lymphocytes, exerting an immunostimulatory effect. Otherwise, the release of TNF-alpha from activated macrophages suppresses the nocturnal melatonin surge, allowing a full cell migration and inhibiting IL-2 production. In sequence, activated mononuclear and polymorphonuclear cells produce melatonin in a paracrine manner at the site of injury, which scavenges free radicals and collaborates to resolve the inflammatory response. The sequential diminution of TNF-alpha production is followed by the recovery of the nocturnal melatonin surge and IL-2 production. In summary, the immune-pineal axis, implicated in the sequential involvement of the melatonin produced by the pineal gland and immune-competent cells, is an integral participant of the innate immune response.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brasil.
| | | | | | | |
Collapse
|
5
|
de Lumley M, Hart DJ, Cooper MA, Symeonides S, Blackburn JM. A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-kappaB and NFAT families. J Mol Biol 2004; 339:1059-75. [PMID: 15178248 DOI: 10.1016/j.jmb.2004.03.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 02/11/2004] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
The Rel/NF-kappaB family of eukaryotic transcription factors bind DNA with high specificity and affinity as homo- or heterodimers to mediate a diverse range of biological processes. By comparison, the nuclear factor of activated T-cells (NFAT) family has been recognised as Rel homologues due to structural similarities between the DNA-binding domains, yet they bind DNA as lower-affinity monomers. The structural and functional overlap between the NF-kappaB and NFAT families suggests that they may be evolutionarily divergent from a common, monomeric ancestor but have evolved different mechanisms to achieve high-affinity binding to their target DNA sequences. In order to understand the origin of these mechanistic differences, we constructed two chimeric proteins, based on molecular modelling, comprising the DNA-binding domain of NFAT and the dimerisation domain of NF-kappaB p50, differing only in the position of the splice site. Biophysical characterisation of the wild-type and chimeric proteins revealed that one of the chimeras bound DNA as a high-affinity, NF-kappaB-like cooperative dimer, whilst the other bound as a lower-affinity, NFAT-like monomer, demonstrating the importance of the interdomain linker in controlling the intrinsic ability of NFATc to form dimers. In addition, we have studied the rate of exchange of monomers between preformed NF-kappaB dimers and have determined, for the first time, the intrinsic homodimerisation constant for NF-kappaB p50. These data support a model in which NF-kappaB proteins bind DNA both in vitro and in vivo as high-affinity preformed homo- or heterodimers, which in an unbound form can still exchange monomer units on a physiologically relevant timescale in vivo.
Collapse
Affiliation(s)
- Marie de Lumley
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
6
|
Sharma K, Wang RX, Zhang LY, Yin DL, Luo XY, Solomon JC, Jiang RF, Markos K, Davidson W, Scott DW, Shi YF. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 2000; 88:333-47. [PMID: 11337030 DOI: 10.1016/s0163-7258(00)00096-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptotic cell death mediated by the members of the tumor necrosis factor receptor family is an essential process involved in the regulation of cellular homeostasis during development, differentiation, and pathophysiological conditions. Among the cell death receptors comprising the tumor necrosis factor receptor superfamily, CD95/APO-1 (Fas) is the best characterized. The specific interaction of Fas with its cognate ligand, Fas ligand (FasL), elicits the activation of a death-inducing caspase (cysteine aspartic acid proteases) cascade, occurring in a transcription-independent manner. Caspase activation executes the apoptosis process by cleaving various intracellular substrates, leading to genomic DNA fragmentation, cell membrane blebbing, and the exposure of phagocytosis signaling molecules on the cell surface. Recent studies have shown that the Fas/FasL pathway plays an important role in regulating the life and death of the immune system through activation-induced cell death. In addition, these molecules have been implicated in aging, human immunodeficiency virus infection, drug abuse, stress, and cancer development. In this review, we will focus on the mechanisms that regulate Fas and FasL expression, and how their deregulation leads to diseases.
Collapse
Affiliation(s)
- K Sharma
- Department of Immunology, Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|