1
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
2
|
Shan S, Hu J, Zheng Z, Gui S, Long Y, Wu D, He N. Development and Assessment of Acyclovir Gel Plaster Containing Sponge Spicules. J Pharm Sci 2023; 112:2879-2890. [PMID: 37331627 DOI: 10.1016/j.xphs.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Acyclovir is an acyclic purine nucleoside analog that is highly effective in inhibiting the herpes simplex virus. However, topical acyclovir has poor efficacy because of its low skin permeability. This study aimed to develop an acyclovir gel plaster containing sponge spicules (AGP-SS) to achieve synergistic improvements in skin absorption and deposition of acyclovir. The process of preparing the gel plaster was optimized by orthogonal experiments, while the composition of the formulation was optimized using the Plackett-Burman and Box-Behnken experimental designs. The selected formula was tested for physical properties, in vitro release, stability, ex vivo permeation, skin irritation, and pharmacokinetics. The optimized formulation exhibited good physical characteristics. In vitro release and ex vivo permeation studies showed that acyclovir release from AGP-SS was dominated by diffusion with significantly higher skin permeation (20.00 ± 1.07 μg/cm2) than that of the controls (p < 0.05). Dermatopharmacokinetic analyses revealed that the maximum concentration (78.74 ± 11.12 μg/g), area under the curve (1091.81 ± 29.05 μg/g/h) and relative bioavailability (197.12) of AGP-SS were higher than those of the controls. Therefore, gel plaster containing sponge spicules show potential for development as transdermal delivery systems to achieve higher skin absorption and deposition of acyclovir, especially in deep skin layers.
Collapse
Affiliation(s)
- Shuang Shan
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Jie Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, People's Republic of China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, People's Republic of China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, People's Republic of China.
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, People's Republic of China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, People's Republic of China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, People's Republic of China
| | - Yanqiu Long
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Danqing Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, People's Republic of China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, People's Republic of China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, People's Republic of China.
| |
Collapse
|
3
|
Lewter LA, Johnson MC, Treat AC, Kassick AJ, Averick S, Kolber BJ. Slow-sustained delivery of naloxone reduces typical naloxone-induced precipitated opioid withdrawal effects in male morphine-dependent mice. J Neurosci Res 2022; 100:339-352. [PMID: 32772457 PMCID: PMC9809991 DOI: 10.1002/jnr.24627] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 01/05/2023]
Abstract
Thousands of individuals die each year from opioid-related overdoses. While naloxone (Narcan®) is currently the most widely employed treatment to reverse opioid toxicity, high or repeated doses of this antidote often lead to precipitated opioid withdrawal (POW). We hypothesized that a slow linear release of naloxone from a nanoparticle would induce fewer POW symptoms compared to high-dose free naloxone. First, we measured the acute impact of covalent naloxone nanoparticles (Nal-cNPs) on morphine-induced antinociception in the hotplate test. We found that Nal-cNP treatment blocked the antinociceptive effect of morphine within 15 min of administration. Next, we tested the impact of Nal-cNPs on POW symptoms in male morphine-dependent mice. To induce morphine dependence, mice were treated with 5 mg/kg morphine (or saline) twice-daily for six consecutive days. On day 7 mice received 5 mg/kg morphine (or saline) injections 2 hr prior to receiving treatment of either unmodified free naloxone, a high or low dose of Nal-cNP, empty nanoparticle (cNP-empty), or saline. Behavior was analyzed for 0-6 hr followed by 24 and 48 hr time points after treatment. As expected, free naloxone induced a significant increase in POW behavior in morphine-dependent mice compared to saline-treated mice upon free naloxone administration. In comparison, reduced POW behavior was observed with both doses of Nal-cNP. Side effects of Nal-cNP on locomotion and fecal boli production were measured and no significant side-effects were observed. Overall, our data show that sustained release of naloxone from a covalent nanoparticle does not induce severe POW symptoms in morphine-dependent mice.
Collapse
Affiliation(s)
- Lakeisha A. Lewter
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Marisa C. Johnson
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Anny C. Treat
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Andrew J. Kassick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA,Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA,Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Benedict J. Kolber
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Yin S, Dong M, Dong J, Gu W, Lu S, Yao J, Chen J. Transdermal Delivery of Chinese Medicine. NOVEL DRUG DELIVERY SYSTEMS FOR CHINESE MEDICINES 2021:77-94. [DOI: 10.1007/978-981-16-3444-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Guo W, Shi K, Xiang G, Lu D, Dou H, Xie C, Chen L. Effects of Rhizoma Drynariae Cataplasm on Fracture Healing in a Rat Model of Osteoporosis. Med Sci Monit 2019; 25:3133-3139. [PMID: 31030207 PMCID: PMC6503747 DOI: 10.12659/msm.914568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Osteoporosis is an increasingly prevalent disease characterized by decreased bone mass and deterioration of the bone microstructure, which contribute to increased fragility and subsequent fragility fractures, especially in elderly individuals. Rhizoma Drynariae (DRE) is among the most frequently used herbal medicines for the treatment of osteoporosis. Transdermal delivery is a proven novel pathway for drug treatment and has several advantages over traditional drug delivery routes. MATERIAL AND METHODS Female Sprague-Dawley osteoporotic fracture model rats were divided into 3 groups: the control group, the DRE (90 mg/kg/day) group and the DRE cataplasm (containing 30 mg DRE, administered at right femur site daily) group. At 3 and 6 weeks after operation, we performed x-ray, histological, and biomechanical analyses, and evaluated bone marrow density of the femur. RESULTS Treatment with DRE increased callus formation and bone union compared with the control group. Moreover, DRE enhanced bone strength at the femoral diaphysis in the osteoporotic fractures in rats by increasing the ultimate load and stiffness compared with the control group. Furthermore, DRE restored the trabecular bone mineral density in the femur compared with the control group. DRE cataplasm application further enhanced the therapeutic effects against osteoporotic fracture in this rat model. CONCLUSIONS DRE cataplasm application might be useful against osteoporotic fracture.
Collapse
Affiliation(s)
- Weijun Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Kesi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Guangheng Xiang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Di Lu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Haicheng Dou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Chenglong Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Long Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
7
|
Rosa SG, Pesarico AP, Tagliapietra CF, da Luz SC, Nogueira CW. Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome. J Psychopharmacol 2017; 31:1250-1262. [PMID: 28857657 DOI: 10.1177/0269881117724353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal and clinical researches indicate that the opioid system exerts a crucial role in the etiology of mood disorders and is a target for intervention in depression treatment. This study investigated the contribution of the opioid system to the antidepressant-like action of acute or repeated m-trifluoromethyl-diphenyl diselenide administration to Swiss mice. m-Trifluoromethyl-diphenyl diselenide (50 mg/kg, intragastric) produced an antidepressant-like action in the forced swimming test from 30 min to 24 h after treatment. This effect was blocked by the µ and δ-opioid receptor antagonists, naloxonazine (10 mg/kg, intraperitoneally) and naltrindole (3 mg/kg, intraperitoneally), and it was potentiated by a κ-opioid receptor antagonist, norbinaltrophimine (1 mg/kg, subcutaneously ). Combined treatment with subeffective doses of m-trifluoromethyl-diphenyl diselenide (10 mg/kg, intragastric) and morphine (1 mg/kg, subcutaneously) resulted in a synergistic antidepressant-like effect. The opioid system contribution to the m-trifluoromethyl-diphenyl diselenide antidepressant-like action was also demonstrated in the modified tail suspension test, decreasing mouse immobility and swinging time and increasing curling time, results similar to those observed using morphine, a positive control. Treatment with m-trifluoromethyl-diphenyl diselenide induced neither tolerance to the antidepressant-like action nor physical signs of withdrawal, which could be associated with the fact that m-trifluoromethyl-diphenyl diselenide did not change the mouse cortical and hippocampal glutamate uptake and release. m-Trifluoromethyl-diphenyl diselenide treatments altered neither locomotor nor toxicological parameters in mice. These findings demonstrate that m-trifluoromethyl-diphenyl diselenide elicited an antidepressant-like action by direct or indirect μ and δ-opioid receptor activation and the κ-opioid receptor blockade, without inducing tolerance, physical signs of withdrawal and toxicity.
Collapse
Affiliation(s)
- Suzan G Rosa
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Ana P Pesarico
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Carolina F Tagliapietra
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Sônia Ca da Luz
- 2 Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina W Nogueira
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|