1
|
Chemical profile of anti-epidemic sachet based on multiple sample preparation coupled with gas chromatography-mass spectrometry analysis combined with an embedded peaks resolution method and their action mechanisms. J Chromatogr A 2023; 1691:463816. [PMID: 36716594 DOI: 10.1016/j.chroma.2023.463816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The anti-epidemic sachet (Fang Yi Xiang Nang, FYXN) in traditional Chinese medicine (TCM) can prevent COVID-19 through volatile compounds that can play the role of fragrant and dampness, heat-clearing and detoxifying, warding off filth and pathogenic factors. Nevertheless, the anti-(mutant) SARS-CoV-2 compounds and the compounds related to the mechanism in vivo, and the mechanism of FYXN are still vague. In this study, the volatile compound set of FYXN was constructed by gas chromatography-mass spectrometry (GC-MS) based on multiple sample preparation methods, which include headspace (HS), headspace solid phase microextraction (HS-SPME) and pressurized liquid extraction (PLE). In addition, selective ion analysis (SIA) was used to resolve embedded chromatographic peaks present in HS-SPME results. Preliminary analysis of active compounds and mechanism of FYXN by network pharmacology combined with disease pathway information based on GC-MS results. A total of 96 volatile compounds in FYXN were collected by GC-MS analysis. 39 potential anti-viral compounds were screened by molecular docking. 13 key pathways were obtained by KEGG pathway analysis (PI3K-Akt signaling pathway, HIF-1 signaling pathway, etc.) for FYXN to prevent COVID-19. 16 anti-viral compounds (C95, C91, etc.), 10 core targets (RELA, MAPK1, etc.), and 16 key compounds related to the mechanism in vivo (C56, C30, etc.) were obtained by network analysis. The relevant pharmacological effects of key pathways and key compounds were verified by the literature. Finally, molecular docking was used to verify the relationship between core targets and key compounds, which are related to the mechanism in vivo. A variety of sample preparation methods coupled with GC-MS analysis combined with an embedded peaks resolution method and integrated with network pharmacology can not only comprehensively characterize the volatile compounds in FYXN, but also expand the network pharmacology research ideas, and help to discover the active compounds and mechanisms in FYXN.
Collapse
|
2
|
Guo W, Qiu M, Pu Z, Long N, Yang M, Ren K, Ning R, Zhang S, Peng F, Sun F, Dai M. Geraniol-a potential alternative to antibiotics for bovine mastitis treatment without disturbing the host microbial community or causing drug residues and resistance. Front Cell Infect Microbiol 2023; 13:1126409. [PMID: 36875515 PMCID: PMC9978373 DOI: 10.3389/fcimb.2023.1126409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Mastitis is one of the most prevalent diseases of dairy cows. Currently, mastitis treatment in dairy cows is mainly based on antibiotics. However, the use of antibiotics causes adverse effects, including drug resistance, drug residues, host-microbiome destruction, and environmental pollution. The present study sought to investigate the potentiality of geraniol as an alternative to antibiotics for bovine mastitis treatment in dairy cows. Additionally, the effectiveness of treatment, improvement in inflammatory factors, the influence on microbiome, presence of drug residues, and drug resistance induction were compared and analyzed comprehensively.Geraniol showed an equivalent therapeutic rate as antibiotics in the mouse infection model and cows with mastitis. Moreover, geraniol significantly inhibited the pathogenic bacteria and restored the microbial community while increasing the abundance of probiotics in milk. Notably, geraniol did not destroy the gut microbial communities in cows and mice, whereas antibiotics significantly reduced the diversity and destroyed the gut microbial community structure. Additionally, no geraniol residue was detected in milk four days after treatment discontinuation, but, antibiotic residues were detected in milk at the 7th day after drug withdrawal. In vitro experiments revealed that geraniol did not induce drug resistance in the Escherichia coli strain ATCC25922 and Staphylococcus aureus strain ATCC25923 after 150 generations of culturing, while antibiotics induced resistance after 10 generations. These results suggest that geraniol has antibacterial and anti-inflammatory effects similar to antibiotics without affecting the host-microbial community structure or causing drug residues and resistance. Therefore, geraniol can be a potential substitute for antibiotics to treat mastitis or other infectious diseases and be widely used in the dairy industry.
Collapse
Affiliation(s)
- Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhonghui Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ruihong Ning
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| |
Collapse
|
3
|
Lee SY, Shetye GS, Son SR, Lee H, Klein LL, Yoshihara JK, Ma R, Franzblau SG, Cho S, Jang DS. Anti-Microbial Activity of Aliphatic Alcohols from Chinese Black Cardamom (Amomum tsao-ko) against Mycobacterium tuberculosis H37Rv. PLANTS (BASEL, SWITZERLAND) 2022; 12:34. [PMID: 36616162 PMCID: PMC9823811 DOI: 10.3390/plants12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The fruits of Amomun tsao-ko (Chinese black cardamom; Zingiberaceae) contain an abundance of essential oils, which have previously demonstrated significant antimicrobial activity. In our preliminary search for natural anti-tuberculosis agents, an acetone extract of A. tsao-ko (AAE) exhibited strong antibacterial activity against Mycobacterium tuberculosis H37Rv. Therefore, the aim of this study was to find the principal compounds in an AAE against M. tuberculosis. Nine aliphatic compounds (1−9) including a new compound (1, tsaokol B) and a new natural unsaturated aliphatic diester (6), together with three acyclic terpenoids (10−12), were isolated from an AAE by repetitive chromatography. The structures of the isolates were determined by spectroscopic data analysis. All isolates were evaluated for activity against M. tuberculosis H37Rv. Isolated compounds 1−6, and 11 had MICs ranging from 0.6−89 µg/mL. In contrast, compounds 7 to 10, and 12 had MICs that were >100 µg/mL. Tsaokol A (3) was the most active compound with MICs of 0.6 µg/mL and 1.4 µg/mL, respectively, against replicating and nonreplicating M. tuberculosis. These results are the first to illustrate the potency of tsaokol A (3) as a natural drug candidate with good selectivity for treating tuberculosis.
Collapse
Affiliation(s)
- So Young Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gauri S. Shetye
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Lee
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, 1100 S. Ashland Ave, Chicago, IL 60607, USA
| | - Larry L. Klein
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeffrey K. Yoshihara
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rui Ma
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Yang S, Xue Y, Chen D, Wang Z. Amomum tsao-ko Crevost & Lemarié: a comprehensive review on traditional uses, botany, phytochemistry, and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1487-1521. [PMID: 35035319 PMCID: PMC8743105 DOI: 10.1007/s11101-021-09793-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 11/27/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED Tsaoko Fructus, the dried ripe fruit of Amomum tsao-ko Crevost & Lemarié, is used as both medicinal material and food additive. This review summarized the traditional uses, botany, phytochemistry, and pharmacological progress on Tsaoko Fructus. One classical prescription and the other 11 representative prescriptions containing Tsaoko Fructus were reviewed. The indications of these prescriptions are major in treating spleen and stomach disorders and epidemic febrile diseases including malaria. At least 209 compounds have been isolated and identified from Tsaoko Fructus, most of which belong to terpenoids, phenylpropanoids, and organic acids. Essential oil, crude extract, and some compounds were observed to have pharmacological activities such as anti-biotics, anti-inflammation, antioxidant, mostly via in vitro experiments. However, the mechanism of its medicinal uses remains unclear. This review provides a comprehensive understanding of Tsaoko Fructus, which will be beneficial to exploring the mechanism and potential medicinal applications of Tsaoko Fructus, as well as developing a rational quality control system for Tsaoko Fructus as a medicinal material in the future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09793-x.
Collapse
Affiliation(s)
- Siyuan Yang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu China
| | - Yafu Xue
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Daju Chen
- Institute of Biotechnology, Wenshan Academy of Agricultural Sciences, Wenshan, 663000 Yunnan China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
5
|
Analysis of the Active Components and Mechanism of Three Prescriptions in the Treatment of COVID-19 Via Network Pharmacology and Molecular Docking. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211047702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose: Prescriptions of Han-Shi-Yu-Fei (HSYF), Han-Shi-Zu-Fei (HSZF), and Yi-Du-Bi-Fei (YDBF) were effective in treating COVID-19. Based on network pharmacology and molecular docking, overlapping Traditional Chinese medicines (TCMs), their active components, and core targets were explored in this study. Methods: First, the overlapping TCMs and their active components were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) by evaluating Oral Bioactivity (OB) and Drug Likeness (DL). The overlapping targets of potential components and COVID-19 were collected by SwissTargetPrediction, Gene Cards, and Venn 2.1.0 databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were analyzed via DAVID6.8.1 database. Through comprehensive analysis of the “prescriptions-TCMs-components” (P-T-C), “components-targets-pathways” (C-T-P) and “protein–protein interaction” (PPI) networks constructed by Cytoscape 3.7.1 software, the active components and core targets were obtained. Finally, the binding energies of these components with ACE2 and SARS-CoV-2 3CL were analyzed by AutDockTools-1.5.6 and PyMOL software. Results: In all, five overlapping TCMs, 40 potential active components, and 47 candidate targets were obtained and analyzed in these prescriptions. There were 288 GO entries ( P < 0.05), including 211 biological process (BP), 40 cell composition (CC), and 37 molecular function (MF) entries. Most of the 105 KEGG pathways ( P < 0.05) were involved with viral infection and inflammation. Through “PPI” and “C-T-P” networks, the core targets (EGFR, PTGS2, CDK2, GSK3B, PIK3R1, and MAPK3) and active components (Q27134551, acanthoside B, neohesperidin, and irisolidone) with high degrees were obtained. Molecular docking results showed that the above-mentioned four components could inhibit the binding of ACE2 and SARS-COV-2 3CL to protect against COVID-19. Conclusion: In this study, the active components and core targets of three prescriptions in the treatment of COVID-19 were elaborated by network pharmacology and molecular docking, providing a reference for their applications.
Collapse
|
6
|
Shu Z, Chang K, Zhou Y, Peng C, Li X, Cai W, Wei L, Zheng Q, Tian H, Xia J, Yang K, Wang N, Liu J, Min X, Yan D, Sun J, Wu H, Li X, Zheng Y, Yu Z, Lu X, Yang Y, Jia T, Ji J, Zou Q, Wang Y, Xiao M, Zhang Q, Xiong Y, Sun F, Zhu Q, Jiang X, Wang G, Tang SCW, Zhang J, Li X, Zhang N, Zhang B, Tong X, Liu B, Zhou X, Chan KW, Li X. Add-On Chinese Medicine for Coronavirus Disease 2019 (ACCORD): A Retrospective Cohort Study of Hospital Registries. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:543-575. [PMID: 33683189 DOI: 10.1142/s0192415x21500257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chinese medicine (CM) was extensively used to treat COVID-19 in China. We aimed to evaluate the real-world effectiveness of add-on semi-individualized CM during the outbreak. A retrospective cohort of 1788 adult confirmed COVID-19 patients were recruited from 2235 consecutive linked records retrieved from five hospitals in Wuhan during 15 January to 13 March 2020. The mortality of add-on semi-individualized CM users and non-users was compared by inverse probability weighted hazard ratio (HR) and by propensity score matching. Change of biomarkers was compared between groups, and the frequency of CMs used was analyzed. Subgroup analysis was performed to stratify disease severity and dose of CM exposure. The crude mortality was 3.8% in the semi-individualized CM user group and 17.0% among the non-users. Add-on CM was associated with a mortality reduction of 58% (HR = 0.42, 95% CI: 0.23 to 0.77, [Formula: see text] = 0.005) among all COVID-19 cases and 66% (HR = 0.34, 95% CI: 0.15 to 0.76, [Formula: see text] = 0.009) among severe/critical COVID-19 cases demonstrating dose-dependent response, after inversely weighted with propensity score. The result was robust in various stratified, weighted, matched, adjusted and sensitivity analyses. Severe/critical patients that received add-on CM had a trend of stabilized D-dimer level after 3-7 days of admission when compared to baseline. Immunomodulating and anti-asthmatic CMs were most used. Add-on semi-individualized CM was associated with significantly reduced mortality, especially among severe/critical cases. Chinese medicine could be considered as an add-on regimen for trial use.
Collapse
Affiliation(s)
- Zixin Shu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Kai Chang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China.,College of Information Engineering, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Yana Zhou
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Chaoan Peng
- Wuhan Huangpi District Chinese Medicine Hospital, Wuhan 432200, P. R. China
| | - Xugui Li
- Hubei 672 Orthopedics Hospital of Integrated Chinese & Western Medicine, Wuhan 430079, P. R. China
| | - Wei Cai
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan 430014, P. R. China
| | - Li Wei
- Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430033, P. R. China
| | - Qiguang Zheng
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Haoyu Tian
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Jianan Xia
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Kuo Yang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Ning Wang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Jifen Liu
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Xiaojun Min
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Dengying Yan
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Jing Sun
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Huan Wu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xiaomeng Li
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yi Zheng
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Zecong Yu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xi Lu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yuxia Yang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Ting Jia
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Jinghui Ji
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Qunzheng Zou
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yinyan Wang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Minzhong Xiao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Qing Zhang
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Yajuan Xiong
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Feng Sun
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Qiang Zhu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xingxing Jiang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Guodong Wang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | | | - Junhua Zhang
- Evidence-based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xiuyang Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Nevin Zhang
- Department of Computer Science, University of Science & Technology, Hong Kong, P. R. China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Baoyan Liu
- China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xuezhong Zhou
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, P. R. China
| | - Xiaodong Li
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied, Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, P. R. China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| |
Collapse
|
7
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
8
|
Zhang XR, Li TN, Ren YY, Zeng YJ, Lv HY, Wang J, Huang QW. The Important Role of Volatile Components From a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic. Front Pharmacol 2020; 11:583651. [PMID: 33101037 PMCID: PMC7546797 DOI: 10.3389/fphar.2020.583651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Microwave Hydrodistillation Based on Deep Eutectic Solvent for Extraction and Analysis of Essential Oil from Three Amomum Species Using Gas Chromatography–Mass Spectrometry. Chromatographia 2018. [DOI: 10.1007/s10337-018-3482-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|