1
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
2
|
Verhelst PJ, Van der Cruyssen F, De Laat A, Jacobs R, Politis C. The Biomechanical Effect of the Sagittal Split Ramus Osteotomy on the Temporomandibular Joint: Current Perspectives on the Remodeling Spectrum. Front Physiol 2019; 10:1021. [PMID: 31447704 PMCID: PMC6692453 DOI: 10.3389/fphys.2019.01021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
The sagittal split ramus osteotomy is a key approach for treating dentofacial deformities. Although it delivers excellent results, the sagittal split ramus osteotomy is believed to induce stress to the temporomandibular joint. Potential stress inducers could be classified as intra- and postoperative factors resulting in an inflammatory response and molecular cascades, which initiate physiological remodeling. Occasionally, this process exceeds its capacity and causes pathological remodeling, through either degenerative joint disease or condylar resorption. Hard evidence on how orthognathic surgery causes inflammation and how this inflammation is linked to the spectrum of remodeling remains scarce. Current concepts on this matter are mainly based on clinical observations and molecular mechanisms are extrapolated from fundamental research in other body parts or joints. This perspective study provides an overview of current knowledge on molecular pathways and biomechanical effects in temporomandibular joint remodeling. It provides research directions that could lead to acquiring fundamental evidence of the relation of orthognathic surgery and inflammation and its role in remodeling. Performing osteotomies in animal models and identifying inflammatory mediators as well as their effect on the joint seem promising. Patients affected by pathological remodeling can also provide samples for histological as well as molecular analysis. Individual susceptibility analysis by linking certain suspect phenotypes to genetic variation could identify the cause and molecular pathway responsible for degenerative joint disease and condylar resorption, ultimately leading to clinically applicable treatment and prevention strategies.
Collapse
Affiliation(s)
- Pieter-Jan Verhelst
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Fréderic Van der Cruyssen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Antoon De Laat
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium.,Department of Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Constantinus Politis
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Ghassemi Nejad S, Kobezda T, Tar I, Szekanecz Z. Development of temporomandibular joint arthritis: The use of animal models. Joint Bone Spine 2017; 84:145-151. [DOI: 10.1016/j.jbspin.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022]
|
4
|
Merrill RL. Temporomandibular disorder pain and dental treatment of obstructive sleep apnea. Dent Clin North Am 2012; 56:415-31. [PMID: 22480811 DOI: 10.1016/j.cden.2012.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment of sleep apnea with mandibular advancement devices (MADs) may be associated with the development of symptoms of temporomandibular disorder (TMD). This article discusses the different types of TMD and orofacial pain problems that may occur during treatment of obstructive sleep apnea (OSA) with a MAD. It is critical that the general dentist who is providing dental devices for OSA perform a thorough physical and neurologic assessment of the temporomandibular joint and associated structures before providing such a device so that preexisting problems are identified and discussed with the patient.
Collapse
|
5
|
Djekic UV, Gaggar A, Weathington NM. Attacking the multi-tiered proteolytic pathology of COPD: new insights from basic and translational studies. Pharmacol Ther 2009; 121:132-46. [PMID: 19026684 PMCID: PMC4465592 DOI: 10.1016/j.pharmthera.2008.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 02/06/2023]
Abstract
Protease activity in inflammation is complex. Proteases released by cells in response to infection, cytokines, or environmental triggers like cigarette smoking cause breakdown of the extracellular matrix (ECM). In chronic inflammatory diseases like chronic obstructive pulmonary disease (COPD), current findings indicate that pathology and morbidity are driven by dysregulation of protease activity, either through hyperactivity of proteases or deficiency or dysfunction their antiprotease regulators. Animal studies demonstrate the accuracy of this hypothesis through genetic and pharmacologic tools. New work shows that ECM destruction generates peptide fragments active on leukocytes via neutrophil or macrophage chemotaxis towards collagen and elastin derived peptides respectively. Such fragments now have been isolated and characterized in vivo in each case. Collectively, this describes a biochemical circuit in which protease activity leads to activation of local immunocytes, which in turn release cytokines and more proteases, leading to further leukocyte infiltration and cyclical disease progression that is chronic. This circuit concept is well known, and is intrinsic to the protease-antiprotease hypothesis; recently analytic techniques have become sensitive enough to establish fundamental mechanisms of this hypothesis, and basic and clinical data now implicate protease activity and peptide signaling as pathologically significant pharmacologic targets. This review discusses targeting protease activity for chronic inflammatory disease with special attention to COPD, covering important basic and clinical findings in the field; novel therapeutic strategies in animal or human studies; and a perspective on the successes and failures of agents with a focus on clinical potential in human disease.
Collapse
Affiliation(s)
- Uros V Djekic
- University of Alabama at Birmingham, Department of Physiology and Biophysics
| | - Amit Gaggar
- University of Alabama at Birmingham, Department of Physiology and Biophysics
- University of Alabama at Birmingham, Department of Medicine, Division of Pulmonary and Critical Care
| | - Nathaniel M Weathington
- University of Alabama at Birmingham, Department of Physiology and Biophysics
- University of Alabama at Birmingham, Department of Medicine, Internal Medicine Residency Program
| |
Collapse
|
6
|
Methotrexate and cyclosporine treatments modify the activities of dipeptidyl peptidase IV and prolyl oligopeptidase in murine macrophages. Clin Dev Immunol 2008; 2008:794050. [PMID: 18354729 PMCID: PMC2266974 DOI: 10.1155/2008/794050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/24/2007] [Accepted: 12/05/2007] [Indexed: 11/18/2022]
Abstract
Analysis of the effects of cyclosporine A (25–28 mgkg−1) and/or methotrexate (0.1 mgkg−1) treatments on dipeptidyl peptidase IV (DPPIV) and prolyl oligopeptidase (POP) activities and on algesic response in two distinct status of murine macrophages (Mφs) was undertaken. In resident Mφs, DPPIV and POP were affected by neither individual nor combined treatments. In thioglycolate-elicited Mφs, methotrexate increased DPPIV (99–110%) and POP (60%), while cyclosporine inhibited POP (21%). Combined treatment with both drugs promoted a rise (51–84%) of both enzyme activities. Only cyclosporine decreased (42%) the tolerance to algesic stimulus. Methotrexate was revealed to exert prevalent action over that of cyclosporine on proinflammatory Mφ POP. The opposite effects of methotrexate and cyclosporine on POP activity might influence the availability of the nociceptive mediators bradykinin and substance P in proinflammatory Mφs. The exacerbated response to thermally induced algesia observed in cyclosporine-treated animals could be related to upregulation of those mediators.
Collapse
|
7
|
Abstract
Proline is unique among the 20 amino acids due to its cyclic structure. This specific conformation imposes many restrictions on the structural aspects of peptides and proteins and confers particular biological properties upon a wide range of physiologically important biomolecules. In order to adequately deal with such peptides, nature has developed a group of enzymes that recognise this residue specifically. These peptidases cover practically all situations where a proline residue might occur in a potential substrate. In this paper we endeavour to discuss these enzymes, particularly those responsible for peptide or protein hydrolysis at proline sites. We have detailed their discovery, biochemical attributes and substrate specificities and have provided information as to the methodology used to detect and manipulate their activities. We have also described the roles, or potential roles that these enzymes may play physiologically and the consequences of their dysfunction in varied disease states.
Collapse
Affiliation(s)
- D F Cunningham
- School of Biological Sciences, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
8
|
Haskin CL, Milam SB, Cameron IL. Pathogenesis of degenerative joint disease in the human temporomandibular joint. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:248-77. [PMID: 8785264 DOI: 10.1177/10454411950060030601] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The wide range of disease prevalences reported in epidemiological studies of temporomandibular degenerative joint disease reflects the fact that diagnoses are frequently guided by the presence or absence of non-specific signs and symptoms. Treatment is aimed at alleviating the disease symptoms rather than being guided by an understanding of the underlying disease processes. Much of our current understanding of disease processes in the temporomandibular joint is based on the study of other articular joints. Although it is likely that the molecular basis of pathogenesis is similar to that of other joints, additional study of the temporomandibular joint is required due to its unique structure and function. This review summarizes the unique structural and molecular features of the temporomandibular joint and the epidemiology of degenerative temporomandibular joint disease. As is discussed in this review, recent research has provided a better understanding of the molecular basis of degenerative joint disease processes, including insights into: the regulation of cytokine expression and activation, arachidonic acid metabolism, neural contributions to inflammation, mechanisms of extracellular matrix degradation, modulation of cell adhesion in inflammatory states, and the roles of free radicals and heat shock proteins in degenerative joint disease. Finally, the multiple cellular and molecular mechanisms involved in disease initiation and progression, along with factors that may modify the adaptive capacity of the joint, are presented as the basis for the rational design of new and more effective therapy.
Collapse
Affiliation(s)
- C L Haskin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | |
Collapse
|
9
|
Ali AM, Sharawy M. An immunohistochemical study of the effects of surgical induction of anterior disc displacement in the rabbit craniomandibular joint on type I and type II collagens. Arch Oral Biol 1995; 40:473-80. [PMID: 7677594 DOI: 10.1016/0003-9969(95)00005-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The right craniomandibular joint (CMJ) was exposed surgically and all the discal attachments severed except for the posterior one. The disc was then repositioned anteriorly and sutured to the zygomatic arch. The left joint served as a sham-operated control; 10 other joints were used as non-operated controls. Deeply anaesthetized rabbits were perfused with 2% buffered formalin 2 weeks (10 rabbits) or 6 weeks (10 rabbits) after the induction of the anterior disc displacement (ADD). The articular disc, bilaminar zone, mandibular condyle and articular eminence were excised. The condyles and the articular eminences were demineralized in EDTA. All tissues were then sectioned at 10 microns in a cryostat. Sections were incubated with polyclonal antibodies directed against type I or type II collagens. Following incubation in the appropriate fluorescein isothiocyanate-labelled secondary antibodies, these specimens were studied under the fluorescence microscope. At 2 weeks there was a reduction in type II collagen immunostaining; some areas of the experimental condylar cartilage showed a switch from type II to type I collagen. However, at 6 weeks there was an increase in type II collagen immunostaining and a decrease in type I compared to the 2-week group. It is concluded that surgical induction of ADD in the rabbit CMJ leads to alteration in the condylar cartilage collagen phenotype similar to that reported for osteoarthritic cartilage of other synovial joints.
Collapse
Affiliation(s)
- A M Ali
- Department of Oral Biology and Cellular Biology, Medical College of Georgia, Augusta 30912-1122, USA
| | | |
Collapse
|