1
|
Fish Cytolysins in All Their Complexity. Toxins (Basel) 2021; 13:toxins13120877. [PMID: 34941715 PMCID: PMC8704401 DOI: 10.3390/toxins13120877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023] Open
Abstract
The majority of the effects observed upon envenomation by scorpaenoid fish species can be reproduced by the cytolysins present in their venoms. Fish cytolysins are multifunctional proteins that elicit lethal, cytolytic, cardiovascular, inflammatory, nociceptive, and neuromuscular activities, representing a novel class of protein toxins. These large proteins (MW 150–320 kDa) are composed by two different subunits, termed α and β, with about 700 amino acid residues each, being usually active in oligomeric form. There is a high degree of similarity between the primary sequences of cytolysins from different fish species. This suggests these molecules share similar mechanisms of action, which, at least regarding the cytolytic activity, has been proved to involve pore formation. Although the remaining components of fish venoms have interesting biological activities, fish cytolysins stand out because of their multifunctional nature and their ability to reproduce the main events of envenomation on their own. Considerable knowledge about fish cytolysins has been accumulated over the years, although there remains much to be unveiled. In this review, we compiled and compared the current information on the biochemical aspects and pharmacological activities of fish cytolysins, going over their structures, activities, mechanisms of action, and perspectives for the future.
Collapse
|
2
|
Saggiomo SL, Firth C, Wilson DT, Seymour J, Miles JJ, Wong Y. The Geographic Distribution, Venom Components, Pathology and Treatments of Stonefish ( Synanceia spp.) Venom. Mar Drugs 2021; 19:md19060302. [PMID: 34073964 PMCID: PMC8225006 DOI: 10.3390/md19060302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.
Collapse
Affiliation(s)
- Silvia L. Saggiomo
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Correspondence:
| | - Cadhla Firth
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| |
Collapse
|
3
|
Leung TCN, Qu Z, Nong W, Hui JHL, Ngai SM. Proteomic Analysis of the Venom of Jellyfishes Rhopilema esculentum and Sanderia malayensis. Mar Drugs 2020; 18:md18120655. [PMID: 33371176 PMCID: PMC7766711 DOI: 10.3390/md18120655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). The present study demonstrates the first proteomes of nematocysts from two jellyfish species with economic and environmental importance, and expands the foundation and understanding of cnidarian toxins.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhe Qu
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Z.Q.); (W.N.)
| | - Wenyan Nong
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Z.Q.); (W.N.)
| | - Jerome H. L. Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Z.Q.); (W.N.)
- Correspondence: (J.H.L.H.); (S.M.N.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Correspondence: (J.H.L.H.); (S.M.N.)
| |
Collapse
|
4
|
Costa FLS, De Lima ME, Figueiredo SG, Ferreira RS, Prates NS, Sakamoto T, Salas CE. Sequence analysis of the cDNA encoding for SpCTx: a lethal factor from scorpionfish venom ( Scorpaena plumieri). J Venom Anim Toxins Incl Trop Dis 2018; 24:24. [PMID: 30181739 PMCID: PMC6114736 DOI: 10.1186/s40409-018-0158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/03/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lethal factors are multifunctional oligomeric proteins found in the venomous apparatus of Scorpaeniformes fish. These toxins elicit not only an array of biological responses in vitro but also cardiovascular disorders and strong hemolytic, nociceptive and edematogenic activities in vivo. This work describes the cloning and molecular identification of two toxin subunits, denominated Sp-CTx-α and Sp-CTx-β, from scorpionfish venom (Scorpaena plumieri). Methods The primary structures were deduced after cDNA amplification by PCR with primers from conserved sequences described in Scorpaeniformes toxins. Following DNA sequencing and bioinformatic analysis, the tridimensional structures of both subunits were modeled. Results The translated sequences (702 amino acids, each subunit) show homology with other lethal factors, while alignment between Sp-CTx-α and Sp-CTx-β shows 54% identity. The subunits lack N-terminal signal sequences and display masses of approximately 80 kDa each. Both Sp-CTx subunits display a B30.2/SPRY domain at the C-terminal region with typically conserved motifs as described in these toxins. Secondary structure prediction identified six α-helices 18 residues long in both α and β subunits, some of them amphiphilic with their N-terminal flanked by many basic residues, creating a cationic site associated with the cytolytic activity of these toxins. Antimicrobial potential sites were identified in Sp-CTx and share some features with other peptides presenting variable and broad-spectrum activity. A phylogenetic tree built to represent these toxins supports the proximity between scorpionfish, lionfish and stonefish. Conclusion The study identified a putative toxin protein whose primary structure is similar to other fish toxins and with potential for production of antivenom against scorpionfish envenomation in Brazil. As a prelude to structure-function studies, we propose that the toxin is structurally related to pore-forming marine toxins. Electronic supplementary material The online version of this article (10.1186/s40409-018-0158-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fábio L S Costa
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Maria Elena De Lima
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Suely G Figueiredo
- 2Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES Brazil
| | - Rafaela S Ferreira
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Núbia S Prates
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Tetsu Sakamoto
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Carlos E Salas
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|
5
|
Chuang PS, Shiao JC. Toxin gene determination and evolution in scorpaenoid fish. Toxicon 2014; 88:21-33. [DOI: 10.1016/j.toxicon.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/22/2023]
|
6
|
Ueda A, Suzuki M, Honma T, Nagai H, Nagashima Y, Shiomi K. Purification, properties and cDNA cloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. Biochim Biophys Acta Gen Subj 2006; 1760:1713-22. [PMID: 17023116 DOI: 10.1016/j.bbagen.2006.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/09/2006] [Accepted: 08/22/2006] [Indexed: 01/22/2023]
Abstract
A proteinaceous toxin with hemolytic and lethal activities, named neoverrucotoxin (neoVTX), was purified from the venom fluid of stonefish Synanceia verrucosa and its primary structure was elucidated by a cDNA cloning technique. NeoVTX is a dimeric 166 kDa protein composed of alpha-subunit (702 amino acid residues) and beta-subunit (699 amino acid residues) and lacks carbohydrate moieties. Its hemolytic activity is inhibited by anionic lipids, especially potently by cardiolipin. These properties are comparable to those of stonustoxin (SNTX) previously purified from S. horrida. Alignment of the amino acid sequences also reveals that the neoVTX alpha- and beta-subunits share as high as 87 and 95% sequence identity with the SNTX alpha- and beta-subunits, respectively. The distinct differences between neoVTX and SNTX are recognized only in the numbers of Cys residues (18 for neoVTX and 15 for SNTX) and free thiol groups (10 for neoVTX and 5 for SNTX). In contrast, neoVTX considerably differs from verrucotoxin (VTX), a tetrameric 322 kDa glycoprotein, previously purified from S. verrucosa. In addition, the sequence identity of the neoVTX beta-subunit with the reported VTX beta-subunit is 90%, being lower than that with the SNTX beta-subunit.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Tokyo 108-8477, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Sobko AA, Vigasina MA, Rokitskaya TI, Kotova EA, Zakharov SD, Cramer WA, Antonenko YN. Chemical and Photochemical Modification of Colicin E1 and Gramicidin A in Bilayer Lipid Membranes. J Membr Biol 2004; 199:51-62. [PMID: 15366423 DOI: 10.1007/s00232-004-0674-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.
Collapse
Affiliation(s)
- A A Sobko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
Xu XL, Liu QL, Wu B, Xie YS. Effects of terbium and pH on structure of anticoagulation factor II from Agkistrodon acutus venom probed by fluorescent spectroscopy and equilibrium dialysis. Biopolymers 2002; 67:387-93. [PMID: 12209446 DOI: 10.1002/bip.10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein with marked anticoagulant activity. Present studies show that the pH has a marked effect on the fluorescence intensity of holo-ACF II; however, no appreciable shift of the emission maximum of holo-ACF II was observed in the pH range of 3-10. It was deduced from a relatively weak fluorescence emission of holo-ACF II at a neutral pH (6-7) that native holo-ACF II assumes a compactly folded structure in which the most interior Trp residues and quenchers are adjacent. Terbium ions can completely replace both Ca2+ ions in holo-ACF II as determined by equilibrium dialysis. Two Tb3+-binding sites with different apparent Tb3+ association constant values, (2.1 +/- 0.2) and (1.0 +/- 0.1) x 10(7) M(-1), were identified through Tb3+ fluorescence titration. In addition, it was confirmed from the titration of holo-ACF II and Tb3+-ACF II with N-bromosuccinimide (NBS) that only interior Trp residues are involved in the energy transfer to Tb3+ ions and all accessible Trp residues located in the surface of holo-ACF II have a similar affinity to NBS while those located in the surface of Tb3+-ACF II have two different kinds of affinity to NBS, which suggests a conformational change of holo-ACF II on the substitution of Tb3+ for Ca2+.
Collapse
Affiliation(s)
- Xiao Long Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | | | | | | |
Collapse
|
9
|
Konozy EHE, Mulay R, Faca V, Ward RJ, Greene LJ, Roque-Barriera MC, Sabharwal S, Bhide SV. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin. Biochimie 2002; 84:1035-43. [PMID: 12504284 DOI: 10.1016/s0300-9084(02)00003-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS.
Collapse
Affiliation(s)
- Emadeldin H E Konozy
- Departamento de Biologia Celular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
1. Of all the venomous fish known, the stonefish is one of the most commonly encountered by man. Studies on its venom started in the 1950s, but little work was performed after that until several groups revived interest in the venom in the 1980s after easier accessibility to the fish. 2. Stonefish venom is a mixture of proteins, containing several enzymes, including hyaluronidase of high specific activity. A purified stonefish hyaluronidase has been characterized. 3. Several of the effects of the crude venom have been isolated to a protein lethal factor that has cytolytic, neurotoxic and hypotensive activity. This protein is stonustoxin from Synanceja horrida, trachynilysin from Synanceja trachynis and verrucotoxin from Synanceja verrucosa. 4. The biochemical properties and activities of these protein lethal factors are reviewed.
Collapse
Affiliation(s)
- Hoon Eng Khoo
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 10 Medical Drive, Singapore.
| |
Collapse
|
11
|
Xu X, Liu Q, Liu Y, Xie Y. Terbium(III) fluorescence probe studies on metal ion-binding sites in anticoagulation factor I from Agkistrodon acutus venom. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:123-9. [PMID: 11934276 DOI: 10.1023/a:1014580312743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein with marked anticoagulant activity. Present studies show that holo-ACF I assumes a compactly folded structure in the range of pH 5-6, in which the most interior Trp residues and quenchers are adjacent. Tb3+ ions can completely replace both Ca2+ ions in holo-ACF I, as determined by equilibrium dialysis. Although the two Tb3+ ions in Tb3+-ACF I have slightly different luminescence efficiencies, both have similar quenching effects on the intrinsic fluorescence, suggesting that probably there are same numbers of Trp residues close to both Tb3+-binding sites. Two Tb3+-binding sites with similar apparent Tb3+ association constant values, (1.69 +/- 0.02) x 10(7) M(-1) and (1.42 +/- 0.01) x 10(7) M(-1), respectively, were further identified through Tb3+ fluorescence titration. In addition, it has been confirmed from the titration of holo-ACF I and Tb3+-ACF I with NBS that only interior Trp residues are involved in the energy transfer to Tb3+ ions and that all accessible Trp residues located in the surface of holo-ACF I have similar affinity to NBS, while those located in the surface of Tb3+-ACF I have two different kinds of affinity to NBS, which strongly suggests a conformational change of holo-ACF I upon substitution of Tb3+ for Ca2+. The results show that although the Tb3+-altered conformation of ACF I cannot support the binding of Tb3+-ACF I with FXa, determined by nondenaturing PAGE, Tb3+ ions are effective and useful fluorescence probes to analyze the structures and properties of Ca2+-binding sites in ACF I.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei Anhui
| | | | | | | |
Collapse
|