1
|
Drabinska J, Steczkiewicz K, Kujawa M, Kraszewska E. Searching for Biological Function of the Mysterious PA2504 Protein from Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22189833. [PMID: 34575996 PMCID: PMC8466066 DOI: 10.3390/ijms22189833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
For nearly half of the proteome of an important pathogen, Pseudomonas aeruginosa, the function has not yet been recognised. Here, we characterise one such mysterious protein PA2504, originally isolated by us as a sole partner of the RppH RNA hydrolase involved in transcription regulation of multiple genes. This study aims at elucidating details of PA2504 function and discussing its implications for bacterial biology. We show that PA2504 forms homodimers and is evenly distributed in the cytoplasm of bacterial cells. Molecular modelling identified the presence of a Tudor-like domain in PA2504. Transcriptomic analysis of a ΔPA2504 mutant showed that 42 transcripts, mainly coding for proteins involved in sulphur metabolism, were affected by the lack of PA2504. In vivo crosslinking of cellular proteins in the exponential and stationary phase of growth revealed several polypeptides that bound to PA2504 exclusively in the stationary phase. Mass spectrometry analysis identified them as the 30S ribosomal protein S4, the translation elongation factor TufA, and the global response regulator GacA. These results indicate that PA2504 may function as a tether for several important cellular factors.
Collapse
|
2
|
Hoffer ED, Maehigashi T, Fredrick K, Dunham CM. Ribosomal ambiguity (ram) mutations promote the open (off) to closed (on) transition and thereby increase miscoding. Nucleic Acids Res 2019; 47:1557-1563. [PMID: 30476222 PMCID: PMC6379664 DOI: 10.1093/nar/gky1178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Decoding is thought to be governed by a conformational transition in the ribosome—open (off) to closed (on)—that occurs upon codon–anticodon pairing in the A site. Ribosomal ambiguity (ram) mutations increase miscoding and map to disparate regions, consistent with a role for ribosome dynamics in decoding, yet precisely how these mutations act has been unclear. Here, we solved crystal structures of 70S ribosomes harboring 16S ram mutations G299A and G347U in the absence A-site tRNA (A-tRNA) and in the presence of a near-cognate anticodon stem-loop (ASL). In the absence of an A-tRNA, each of the mutant ribosomes exhibits a partially closed (on) state. In the 70S-G347U structure, the 30S shoulder is rotated inward and intersubunit bridge B8 is disrupted. In the 70S-G299A structure, the 30S shoulder is rotated inward and decoding nucleotide G530 flips into the anti conformation. Both of these mutant ribosomes adopt the fully closed (on) conformation in the presence of near-cognate A-tRNA, just as they do with cognate A-tRNA. Thus, these ram mutations act by promoting the open (off) to closed (on) transition, albeit in somewhat distinct ways. This work reveals the functional importance of 30S shoulder rotation for productive aminoacylated-tRNA incorporation.
Collapse
Affiliation(s)
- Eric D Hoffer
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Correspondence may also be addressed to Kurt Fredrick. Tel: +1 614 292 6679; Fax: +1 614 292 8120;
| | - Christine M Dunham
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- To whom correspondence should be addressed. Tel: +1 404 712 1756; Fax: +1 404 727 2738; E-mail:
| |
Collapse
|
3
|
Kamath D, Allgeyer BB, Gregory ST, Bielski MC, Roelofsz DM, Sabapathypillai SL, Vaid N, O'Connor M. The C-terminus of ribosomal protein uS4 contributes to small ribosomal subunit biogenesis and the fidelity of translation. Biochimie 2017; 138:194-201. [PMID: 28483689 DOI: 10.1016/j.biochi.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 01/28/2023]
Abstract
Ribosomal protein uS4 is an essential ribosomal component involved in multiple functions, including mRNA decoding. Structural analyses indicate that during decoding, the interface between the C-terminus of uS4 and protein uS5 is disrupted and in agreement with this, C-terminal uS4 truncation mutants are readily isolated on the basis of their increased miscoding phenotypes. The same mutants can also display defects in small subunit assembly and 16S rRNA processing and some are temperature sensitive for growth. Starting with one such temperature sensitive Escherichia coli uS4 mutant, we have isolated temperature insensitive derivatives carrying additional, intragenic mutations that restore the C-terminus and ameliorate the ribosomal defects. At least one of these suppressors has no detectable ribosome biogenesis phenotype, yet still miscodes, suggesting that the C-terminal requirements for ribosome assembly are less rigid than for mRNA decoding. In contrast to the uS4 C-terminal mutants that increase miscoding, two Salmonella enterica uS4 mutants with altered C-termini have been reported as being error-restrictive. Here, reconstruction experiments demonstrate that contrary to the previous reports, these mutants have a distinct error-prone, increased misreading phenotype, consistent with the behavior of the equivalent E. coli mutants and their likely structural effects on uS4-uS5 interactions.
Collapse
Affiliation(s)
- Divya Kamath
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Benjamin B Allgeyer
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Margaret C Bielski
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - David M Roelofsz
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sharon L Sabapathypillai
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Nikhil Vaid
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
4
|
The Loop 2 Region of Ribosomal Protein uS5 Influences Spectinomycin Sensitivity, Translational Fidelity, and Ribosome Biogenesis. Antimicrob Agents Chemother 2017; 61:AAC.01186-16. [PMID: 27855073 DOI: 10.1128/aac.01186-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ribosomal protein uS5 is an essential component of the small ribosomal subunit that is involved in subunit assembly, maintenance of translational fidelity, and the ribosome's response to the antibiotic spectinomycin. While many of the characterized uS5 mutations that affect decoding map to its interface with uS4, more recent work has shown that residues distant from the uS4-uS5 interface can also affect the decoding process. We targeted one such interface-remote area, the loop 2 region (residues 20 to 31), for mutagenesis in Escherichia. coli and generated 21 unique mutants. A majority of the loop 2 alterations confer resistance to spectinomycin and affect the fidelity of translation. However, only a minority show altered rRNA processing or ribosome biogenesis defects.
Collapse
|
5
|
Nord S, Bhatt MJ, Tükenmez H, Farabaugh PJ, Wikström PM. Mutations of ribosomal protein S5 suppress a defect in late-30S ribosomal subunit biogenesis caused by lack of the RbfA biogenesis factor. RNA (NEW YORK, N.Y.) 2015; 21:1454-1468. [PMID: 26089326 PMCID: PMC4509935 DOI: 10.1261/rna.051383.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome's central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.
Collapse
Affiliation(s)
- Stefan Nord
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Monika J Bhatt
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA
| | - Hasan Tükenmez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA
| | - P Mikael Wikström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
6
|
O’Connor M. Interactions of release factor RF3 with the translation machinery. Mol Genet Genomics 2015; 290:1335-44. [DOI: 10.1007/s00438-015-0994-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
7
|
Another look at mutations in ribosomal protein S4 lends strong support to the domain closure model. J Bacteriol 2014; 197:1014-6. [PMID: 25548248 DOI: 10.1128/jb.02579-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosomes employ a "kinetic discrimination" mechanism, in which correct substrates are incorporated more rapidly than incorrect ones. The structural basis of this mechanism may involve 30S domain closure, a global conformational change that coincides with codon recognition. In a direct screen for fidelity-altering mutations, Agarwal and coworkers (D. Agarwal, D. Kamath, S. T. Gregory, and M. O'Connor, J Bacteriol 197:1017-1025, 2015, doi:10.1128/JB.02485-14) isolated mutations that progressively truncate the C terminus of S4. All of these promote miscoding and undoubtedly destabilize the S4-S5 interface, consistent with the domain closure model.
Collapse
|
8
|
Abstract
Ribosomal proteins S4 and S5 participate in the decoding and assembly processes on the ribosome and the interaction with specific antibiotic inhibitors of translation. Many of the characterized mutations affecting these proteins decrease the accuracy of translation, leading to a ribosomal-ambiguity phenotype. Structural analyses of ribosomal complexes indicate that the tRNA selection pathway involves a transition between the closed and open conformations of the 30S ribosomal subunit and requires disruption of the interface between the S4 and S5 proteins. In agreement with this observation, several of the mutations that promote miscoding alter residues located at the S4-S5 interface. Here, the Escherichia coli rpsD and rpsE genes encoding the S4 and S5 proteins were targeted for mutagenesis and screened for accuracy-altering mutations. While a majority of the 38 mutant proteins recovered decrease the accuracy of translation, error-restrictive mutations were also recovered; only a minority of the mutant proteins affected rRNA processing, ribosome assembly, or interactions with antibiotics. Several of the mutations affect residues at the S4-S5 interface. These include five nonsense mutations that generate C-terminal truncations of S4. These truncations are predicted to destabilize the S4-S5 interface and, consistent with the domain closure model, all have ribosomal-ambiguity phenotypes. A substantial number of the mutations alter distant locations and conceivably affect tRNA selection through indirect effects on the S4-S5 interface or by altering interactions with adjacent ribosomal proteins and 16S rRNA.
Collapse
|
9
|
McClory SP, Devaraj A, Fredrick K. Distinct functional classes of ram mutations in 16S rRNA. RNA (NEW YORK, N.Y.) 2014; 20:496-504. [PMID: 24572811 PMCID: PMC3964911 DOI: 10.1261/rna.043331.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
During decoding, the ribosome selects the correct (cognate) aminoacyl-tRNA (aa-tRNA) from a large pool of incorrect aa-tRNAs through a two-stage mechanism. In the initial selection stage, aa-tRNA is delivered to the ribosome as part of a ternary complex with elongation factor EF-Tu and GTP. Interactions between codon and anticodon lead to activation of the GTPase domain of EF-Tu and GTP hydrolysis. Then, in the proofreading stage, aa-tRNA is released from EF-Tu and either moves fully into the A/A site (a step termed "accommodation") or dissociates from the ribosome. Cognate codon-anticodon pairing not only stabilizes aa-tRNA at both stages of decoding but also stimulates GTP hydrolysis and accommodation, allowing the process to be both accurate and fast. In previous work, we isolated a number of ribosomal ambiguity (ram) mutations in 16S rRNA, implicating particular regions of the ribosome in the mechanism of decoding. Here, we analyze a representative subset of these mutations with respect to initial selection, proofreading, RF2-dependent termination, and overall miscoding in various contexts. We find that mutations that disrupt inter-subunit bridge B8 increase miscoding in a general way, causing defects in both initial selection and proofreading. Mutations in or near the A site behave differently, increasing miscoding in a codon-anticodon-dependent manner. These latter mutations may create spurious favorable interactions in the A site for certain near-cognate aa-tRNAs, providing an explanation for their context-dependent phenotypes in the cell.
Collapse
MESH Headings
- Anticodon/genetics
- Codon/genetics
- Guanosine Triphosphate/metabolism
- Kinetics
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- Peptide Termination Factors/chemistry
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Sean P. McClory
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Aishwarya Devaraj
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
10
|
Manickam N, Nag N, Abbasi A, Patel K, Farabaugh PJ. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. RNA (NEW YORK, N.Y.) 2014; 20:9-15. [PMID: 24249223 PMCID: PMC3866648 DOI: 10.1261/rna.039792.113] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Protein synthesis must rapidly and repeatedly discriminate between a single correct and many incorrect aminoacyl-tRNAs. We have attempted to measure the frequencies of all possible missense errors by tRNA , tRNA and tRNA . The most frequent errors involve three types of mismatched nucleotide pairs, U•U, U•C, or U•G, all of which can form a noncanonical base pair with geometry similar to that of the canonical U•A or C•G Watson-Crick pairs. Our system is sensitive enough to measure errors at other potential mismatches that occur at frequencies as low as 1 in 500,000 codons. The ribosome appears to discriminate this efficiently against any pair with non-Watson-Crick geometry. This extreme accuracy may be necessary to allow discrimination against the errors involving near Watson-Crick pairing.
Collapse
Affiliation(s)
- Nandini Manickam
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Nabanita Nag
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Aleeza Abbasi
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Kishan Patel
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Philip J. Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
- Corresponding authorE-mail
| |
Collapse
|
11
|
Reorganization of an intersubunit bridge induced by disparate 16S ribosomal ambiguity mutations mimics an EF-Tu-bound state. Proc Natl Acad Sci U S A 2013; 110:9716-21. [PMID: 23630274 DOI: 10.1073/pnas.1301585110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After four decades of research aimed at understanding tRNA selection on the ribosome, the mechanism by which ribosomal ambiguity (ram) mutations promote miscoding remains unclear. Here, we present two X-ray crystal structures of the Thermus thermophilus 70S ribosome containing 16S rRNA ram mutations, G347U and G299A. Each of these mutations causes miscoding in vivo and stimulates elongation factor thermo unstable (EF-Tu)-dependent GTP hydrolysis in vitro. Mutation G299A is located near the interface of ribosomal proteins S4 and S5 on the solvent side of the subunit, whereas G347U is located 77 Å distant, at intersubunit bridge B8, close to where EF-Tu engages the ribosome. Despite these disparate locations, both mutations induce almost identical structural rearrangements that disrupt the B8 bridge--namely, the interaction of h8/h14 with L14 and L19. This conformation most closely resembles that seen upon EF-Tu-GTP-aminoacyl-tRNA binding to the 70S ribosome. These data provide evidence that disruption and/or distortion of B8 is an important aspect of GTPase activation. We propose that, by destabilizing B8, G299A and G347U reduce the energetic cost of attaining the GTPase-activated state and thereby decrease the stringency of decoding. This previously unappreciated role for B8 in controlling the decoding process may hold relevance for many other ribosomal mutations known to influence translational fidelity.
Collapse
|
12
|
Mayerle M, Woodson SA. Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly. RNA (NEW YORK, N.Y.) 2013; 19:574-85. [PMID: 23431409 PMCID: PMC3677267 DOI: 10.1261/rna.037028.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Assembly of bacterial 30S ribosomal subunits requires structural rearrangements to both its 16S rRNA and ribosomal protein components. Ribosomal protein S4 nucleates 30S assembly and associates rapidly with the 5' domain of the 16S rRNA. In vitro, transformation of initial S4-rRNA complexes to long-lived, mature complexes involves refolding of 16S helix 18, which forms part of the decoding center. Here we use targeted mutagenesis of Geobacillus stearothermophilus S4 to show that remodeling of S4-rRNA complexes is perturbed by ram alleles associated with reduced translational accuracy. Gel mobility shift assays, SHAPE chemical probing, and in vivo complementation show that the S4 N-terminal extension is required for RNA binding and viability. Alanine substitutions in Y47 and L51 that interact with 16S helix 18 decrease S4 affinity and destabilize the helix 18 pseudoknot. These changes to the protein-RNA interface correlate with no growth (L51A) or cold-sensitive growth, 30S assembly defects, and accumulation of 17S pre-rRNA (Y47A). A third mutation, R200A, over-stabilizes the helix 18 pseudoknot yet results in temperature-sensitive growth, indicating that complex stability is finely tuned by natural selection. Our results show that early S4-RNA interactions guide rRNA folding and impact late steps of 30S assembly.
Collapse
Affiliation(s)
- Megan Mayerle
- Program in Cell, Molecular, Developmental Biology and Biophysics, Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sarah A. Woodson
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Corresponding authorE-mail
| |
Collapse
|
13
|
Johnson DBF, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L. Release factor one is nonessential in Escherichia coli. ACS Chem Biol 2012; 7:1337-44. [PMID: 22662873 PMCID: PMC3423824 DOI: 10.1021/cb300229q] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize stop codons to terminate translation. Here we discovered that RF1 could be unconditionally knocked out from various Escherichia coli stains, demonstrating that the reportedly essential RF1 is generally dispensable for the E. coli species. The apparent essentiality of RF1 was found to be caused by the inefficiency of a mutant RF2 in terminating all UAA stop codons; a wild type RF2 was sufficient for RF1 knockout. The RF1-knockout strains were autonomous and unambiguously reassigned UAG to encode natural or unnatural amino acids (Uaas) at multiple sites, affording a previously unavailable model for studying code evolution and a unique host for exploiting Uaas to evolve new biological functions.
Collapse
Affiliation(s)
| | | | | | - Matthew D. Schultz
- Bioinformatics
Program, University of California at San Diego, La Jolla, California
92093, United States
| | | | - Joseph R. Ecker
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland
20815, United States
| | | |
Collapse
|
14
|
Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 2011; 7:779-86. [PMID: 21926996 PMCID: PMC3201715 DOI: 10.1038/nchembio.657] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 07/18/2011] [Indexed: 11/09/2022]
Abstract
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but the efficiency is low possibly due to competition from release factors, limiting the power and scope of this technology. Here we show that the reportedly essential release factor 1 can be knocked out from Escherichia coli by fixing release factor 2. The resultant strain JX33 is stable and independent, and reassigns UAG from a stop signal to an amino acid when a UAG-decoding tRNA/synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving novel protein functions by enabling Uaa incorporation at multiple sites.
Collapse
Affiliation(s)
- David B F Johnson
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McClory SP, Leisring JM, Qin D, Fredrick K. Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection. RNA (NEW YORK, N.Y.) 2010; 16:1925-34. [PMID: 20699303 PMCID: PMC2941101 DOI: 10.1261/rna.2228510] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The molecular basis of the induced-fit mechanism that determines the fidelity of protein synthesis remains unclear. Here, we isolated mutations in 16S rRNA that increase the rate of miscoding and stop codon read-through. Many of the mutations clustered along interfaces between the 30S shoulder domain and other parts of the ribosome, strongly implicating shoulder movement in the induced-fit mechanism of decoding. The largest subset of mutations mapped to helices h8 and h14. These helices interact with each other and with the 50S subunit to form bridge B8. Previous cryo-EM studies revealed a contact between h14 and the switch 1 motif of EF-Tu, raising the possibility that h14 plays a direct role in GTPase activation. To investigate this possibility, we constructed both deletions and insertions in h14. While ribosomes harboring a 2-base-pair (bp) insertion in h14 were completely inactive in vivo, those containing a 2-bp deletion retained activity but were error prone. In vitro, the truncation of h14 accelerated GTP hydrolysis for EF-Tu bearing near-cognate aminoacyl-tRNA, an effect that can largely account for the observed miscoding in vivo. These data show that h14 does not help activate EF-Tu but instead negatively controls GTP hydrolysis by the factor. We propose that bridge B8 normally acts to counter inward rotation of the shoulder domain; hence, mutations in h8 and h14 that compromise this bridge decrease the stringency of aminoacyl-tRNA selection.
Collapse
MESH Headings
- Binding Sites/genetics
- Codon, Nonsense
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Kinetics
- Models, Molecular
- Mutation, Missense
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Suppression, Genetic
Collapse
Affiliation(s)
- Sean P McClory
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
16
|
Vallabhaneni H, Farabaugh PJ. Accuracy modulating mutations of the ribosomal protein S4-S5 interface do not necessarily destabilize the rps4-rps5 protein-protein interaction. RNA (NEW YORK, N.Y.) 2009; 15:1100-9. [PMID: 19386726 PMCID: PMC2685513 DOI: 10.1261/rna.1530509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/24/2009] [Indexed: 05/24/2023]
Abstract
During the process of translation, an aminoacyl tRNA is selected in the A site of the decoding center of the small subunit based on the correct codon-anticodon base pairing. Though selection is usually accurate, mutations in the ribosomal RNA and proteins and the presence of some antibiotics like streptomycin alter translational accuracy. Recent crystallographic structures of the ribosome suggest that cognate tRNAs induce a "closed conformation" of the small subunit that stabilizes the codon-anticodon interactions at the A site. During formation of the closed conformation, the protein interface between rpS4 and rpS5 is broken while new contacts form with rpS12. Mutations in rpS12 confer streptomycin resistance or dependence and show a hyperaccurate phenotype. Mutations reversing streptomycin dependence affect rpS4 and rpS5. The canonical rpS4 and rpS5 streptomycin independent mutations increase translational errors and were called ribosomal ambiguity mutations (ram). The mutations in these proteins are proposed to affect formation of the closed complex by breaking the rpS4-rpS5 interface, which reduces the cost of domain closure and thus increases translational errors. We used a yeast two-hybrid system to study the interactions between the small subunit ribosomal proteins rpS4 and rpS5 and to test the effect of ram mutations on the stability of the interface. We found no correlation between ram phenotype and disruption of the interface.
Collapse
Affiliation(s)
- Haritha Vallabhaneni
- Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
17
|
Devaraj A, Shoji S, Holbrook ED, Fredrick K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA (NEW YORK, N.Y.) 2009; 15:255-65. [PMID: 19095617 PMCID: PMC2648707 DOI: 10.1261/rna.1320109] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The exit (E) site has been implicated in several ribosomal activities, including translocation, decoding, and maintenance of the translational reading frame. Here, we target the 30S subunit E site by introducing a deletion in rpsG that truncates the beta-hairpin of ribosomal protein S7. This mutation (S7DeltaR77-Y84) increases both -1 and +1 frameshifting but does not increase miscoding, providing evidence that the 30S E site plays a specific role in frame maintenance. Mutation S7DeltaR77-Y84 also stimulates +1 programmed frameshifting during prfB'-lacZ translation in many synthetic contexts. However, no effect is seen when the E codon of the frameshift site corresponds to those found in nature, suggesting that E-tRNA release does not normally limit the rate of prfB frameshifting. Ribosomes containing S7DeltaR77-Y84 exhibit an elevated rate of spontaneous reverse translocation and an increased K (1/2) for E-tRNA. These effects are of similar magnitude, suggesting that both result from destabilization of E-tRNA. Finally, this mutation of the 30S E site does not inhibit EF-G-dependent translocation, consistent with a primary role for the 50S E site in the mechanism.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Ohio State Biochemistry Program, The Ohio State University, Columbus, 43210, USA
| | | | | | | |
Collapse
|
18
|
Hypomodification of the wobble base in tRNAGlu, tRNALys, and tRNAGln suppresses the temperature-sensitive phenotype caused by mutant release factor 1. J Bacteriol 2008; 191:1604-9. [PMID: 19103926 DOI: 10.1128/jb.01485-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, release factor 1 (RF1) is one of two RFs that mediate termination; it specifically recognizes UAA and UAG stop codons. A mutant allele, prfA1, coding for an RF1 that causes temperature-sensitive (Ts) growth at 42 degrees C, was used to select for temperature-resistant (Ts(+)) suppressors. This study describes one such suppressor that is the result of an IS10 insertion into the cysB gene, giving a Cys(-) phenotype. CysB is a transcription factor regulating the cys regulon, mainly as an activator, which explains the Cys(-) phenotype. We have found that suppression is a consequence of the lost ability to donate sulfur to enzymes involved in the synthesis of thiolated nucleosides. From genetic analyses we conclude that it is the lack of the 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) modification of the wobble base of tRNA(Glu), tRNA(Lys), and/or tRNA(Gln) that causes the suppressor phenotype.
Collapse
|
19
|
Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA (NEW YORK, N.Y.) 2007; 13:87-96. [PMID: 17095544 PMCID: PMC1705757 DOI: 10.1261/rna.294907] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.
Collapse
Affiliation(s)
- Emily B Kramer
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
20
|
Balashov S, Humayun MZ. Escherichia coli cells bearing a ribosomal ambiguity mutation in rpsD have a mutator phenotype that correlates with increased mistranslation. J Bacteriol 2003; 185:5015-8. [PMID: 12897024 PMCID: PMC166475 DOI: 10.1128/jb.185.16.5015-5018.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells bearing certain mutations in rpsD (coding for the 30S ribosomal protein S4) show a ribosomal ambiguity (Ram) phenotype characterized by increased translational error rates. Here we show that spontaneous mutagenesis increases in Ram cells bearing the rpsD14 allele, suggesting that the recently described translational stress-induced mutagenesis pathway is activated in Ram cells.
Collapse
Affiliation(s)
- Sergey Balashov
- University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | |
Collapse
|