1
|
Houeix B, Cairns MT. Engineering of CHO cells for the production of vertebrate recombinant sialyltransferases. PeerJ 2019; 7:e5788. [PMID: 30775162 PMCID: PMC6375257 DOI: 10.7717/peerj.5788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Sialyltransferases (SIATs) are a family of enzymes that transfer sialic acid (Sia) to glycan chains on glycoproteins, glycolipids, and oligosaccharides. They play key roles in determining cell–cell and cell-matrix interactions and are important in neuronal development, immune regulation, protein stability and clearance. Most fully characterized SIATs are of mammalian origin and these have been used for in vitro and in vivo modification of glycans. Additional versatility could be achieved by the use of animal SIATs from other species that live in much more variable environments. Our aim was to generate a panel of stable CHO cell lines expressing a range of vertebrate SIATs with different physicochemical and functional properties. Methods The soluble forms of various animal ST6Gal and ST3Gal enzymes were stably expressed from a Gateway-modified secretion vector in CHO cells. The secreted proteins were IMAC-purified from serum-free media. Functionality of the protein was initially assessed by lectin binding to the host CHO cells. Activity of purified proteins was determined by a number of approaches that included a phosphate-linked sialyltransferase assay, HILIC-HPLC identification of sialyllactose products and enzyme-linked lectin assay (ELLA). Results A range of sialyltransferase from mammals, birds and fish were stably expressed in CHO Flp-In cells. The stable cell lines expressing ST6Gal1 modify the glycans on the surface of the CHO cells as detected by fluorescently labelled lectin microscopy. The catalytic domains, as isolated by Ni Sepharose from culture media, have enzymatic activities comparable to commercial enzymes. Sialyllactoses were identified by HILIC-HPLC on incubation of the enzymes from lactose or whey permeate. The enzymes also increased SNA-I labelling of asialofetuin when incubated in a plate format. Conclusion Stable cell lines are available that may provide options for the in vivo sialylation of glycoproteins. Proteins are active and should display a variety of biological and physicochemical properties based on the animal source of the enzyme.
Collapse
Affiliation(s)
- Benoit Houeix
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | - Michael T Cairns
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
2
|
Luley-Goedl C, Schmoelzer K, Thomann M, Malik S, Greif M, Ribitsch D, Jung C, Sobek H, Engel A, Mueller R, Schwab H, Nidetzky B. Two N-terminally truncated variants of human β-galactoside α2,6 sialyltransferase I with distinct properties for in vitro protein glycosylation. Glycobiology 2016; 26:1097-1106. [PMID: 27102286 DOI: 10.1093/glycob/cww046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/10/2016] [Indexed: 01/01/2023] Open
Abstract
Sialic acid groups of protein N-glycans are important determinants of biological activity. Exposed at the end of the glycan chain, they are potential targets for glycan remodeling. Sialyltransferases (STs; EC 2.4.99) are the enzymes that catalyze the sialic acid transfer from a CMP-activated donor on to a carbohydrate acceptor in vivo. Recombinant expression of the full-length human β-galactoside α2,6 sialyltransferase I (ST6Gal-I) was hampered and therefore variants with truncated N-termini were investigated. We report on the distinct properties of two N-terminally truncated versions of ST6Gal-I, namely Δ89ST6Gal-I and Δ108ST6Gal-I, which were successfully expressed in human embryonic kidney cells. The different properties of these enzymes result most probably from the loss of interactions from helix α1 in the Δ108ST6Gal-I variant, which plays a role in acceptor substrate binding. The Km for N-acetyl-d-lactosamine was 10-fold increased for Δ108ST6Gal-I (84 mM) as compared to Δ89ST6Gal-I (8.3 mM). The two enzyme variants constitute a suitable tool box for the terminal modification of N-glycans. While the enzyme Δ89ST6Gal-I exhibited both ST (di-sialylation) and sialidase activity on a monoclonal antibody, the enzyme Δ108ST6Gal-I showed only ST activity with specificity for mono-sialylation.
Collapse
Affiliation(s)
| | | | | | | | - Michael Greif
- Pharma Technical Development Fermentation, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Christine Jung
- Pharma Technical Development Fermentation, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany
| | - Alfred Engel
- Costum Biotech, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Rainer Mueller
- Costum Biotech, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Helmut Schwab
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria .,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|
3
|
Luley-Goedl C, Czabany T, Longus K, Schmölzer K, Zitzenbacher S, Ribitsch D, Schwab H, Nidetzky B. Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. J Biotechnol 2016; 235:54-60. [PMID: 27018228 DOI: 10.1016/j.jbiotec.2016.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022]
Abstract
The human β-galactoside α2,6-sialyltransferase I, ST6Gal-I has drawn considerable interest for its use as biocatalyst for in-vitro glycoengineering of recombinantly produced therapeutic proteins. By attaching sialic acid onto the terminal galactoses of biantennary protein N-glycans, ST6Gal-I facilitates protein remodeling towards a humanized glycosylation and thus optimized efficacy in pharmacological use. Secreted expression of ST6Gal-I in Pichia pastoris is promising, but proteolysis restricts both the yield and the quality of the enzyme produced. Focusing on an N-terminally truncated (Δ108) variant of ST6Gal-I previously shown to represent a minimally sized, still active form of ST6Gal-I, we show here that protein expression engineering and optimization of bioreactor cultivation of P. pastoris KM71H (pPICZαB) synergized to enhance the maximum enzyme titer about 57-fold to 17units/L. N-Terminal fusion to the Flag-tag plus deletion of a potential proteolytic site (Lys(114)-Asn→Gln(114)-Asn) improved the intrinsic resistance of Δ108ST6Gal-I to degradation in P. pastoris culture. A mixed glycerol/methanol feeding protocol for P. pastoris growth and induction was key for enzyme production in high yield and quality. The sialyltransferase was recovered from the bioreactor culture in a yield of 70% using a single step of anion-exchange chromatography. Its specific activity was 0.05units/mg protein.
Collapse
Affiliation(s)
| | - Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Karin Longus
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Katharina Schmölzer
- Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Sabine Zitzenbacher
- Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Doris Ribitsch
- Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Helmut Schwab
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Bernd Nidetzky
- Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
4
|
Ribitsch D, Zitzenbacher S, Augustin P, Schmölzer K, Czabany T, Luley-Goedl C, Thomann M, Jung C, Sobek H, Müller R, Nidetzky B, Schwab H. High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities. Microb Cell Fact 2014; 13:138. [PMID: 25365915 PMCID: PMC4172862 DOI: 10.1186/s12934-014-0138-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND α-2,6-sialyltransferase catalyzes the terminal step of complex N-glycan biosynthesis on human glycoproteins, attaching sialic acid to outermost galactosyl residues on otherwise fully assembled branched glycans. This "capping" of N-glycans is critical for therapeutic efficacy of pharmaceutical glycoproteins, making the degree of sialylation an important parameter of glycoprotein quality control. Expression of recombinant glycoproteins in mammalian cells usually delivers heterogeneous N-glycans, with a minor degree of sialylation. In-vitro chemo-enzymatic glycoengineering of the N-glycans provides an elegant solution to increase the degree of sialylation for analytical purposes but also possibly for modification of therapeutic proteins. RESULTS Human α-2,6-sialyltransferase (ST6Gal-I) was secretory expressed in P.pastoris KM71H. ST6Gal-I featuring complete deletion of both the N-terminal cytoplasmic tail and the transmembrane domain, and also partial truncation of the stem region up to residue 108 were expressed N-terminally fused to a His or FLAG-Tag. FLAG-tagged proteins proved much more resistant to proteolysis during production than the corresponding His-tagged proteins. Because volumetric transferase activity measured on small-molecule and native glycoprotein acceptor substrates did not correlate to ST6Gal-I in the supernatant, enzymes were purified and characterized in their action on non-sialylated protein-linked and released N-glycans, and the respective N-terminal sequences were determined by automated Edman degradation. Irrespective of deletion construct used (Δ27, Δ48, Δ62, Δ89), isolated proteins showed N-terminal processing to a highly similar degree, with prominent truncations at residue 108 - 114, whereby only Δ108ST6Gal-I retained activity. FLAG-tagged Δ108ST6Gal-I was therefore produced and obtained with a yield of 4.5 mg protein/L medium. The protein was isolated and shown by MS to be intact. Purified enzyme exhibited useful activity (0.18 U/mg) for sialylation of different substrates. CONCLUSIONS Functional expression of human ST6Gal-I as secretory protein in P.pastoris necessitates that N-terminal truncations promoted by host-inherent proteases be tightly controlled. N-terminal FLAG-Tag contributes extra stability to the N-terminal region as compared to N-terminal His-Tag. Proteolytic degradation proceeds up to residues 108 - 114 and of the resulting short-form variants, only Δ108ST6Gal-I seems to be active. FLAG-Δ108ST6Gal-I transfers sialic acids to monoclonal antibody substrate with sufficient yields, and because it is stably produced in P.pastoris, it is identified here as an interesting glycoengineering catalyst.
Collapse
|
5
|
Rec. ST6Gal-I variants to control enzymatic activity in processes of in vitro glycoengineering. BMC Proc 2013. [PMCID: PMC3980377 DOI: 10.1186/1753-6561-7-s6-p110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
The evolution of galactose alpha2,3-sialyltransferase: Ciona intestinalis ST3GAL I/II and Takifugu rubripes ST3GAL II sialylate Galbeta1,3GalNAc structures on glycoproteins but not glycolipids. Glycoconj J 2007; 25:323-34. [PMID: 17973185 DOI: 10.1007/s10719-007-9078-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/11/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
Abstract
Sialyltransferases are a family of enzymes catalyzing the transfer of sialic acid residues to terminal non-reducing positions of oligosaccharide chains of glycoproteins and glycolipids. Although expression of sialic acid is well documented in animals of the deuterostomian lineage, sialyltransferases have been predominantly described for relatively recent vertebrate lineages such as birds and mammals. This study outlines the characterization of the only sialyltransferase gene found in the tunicate Ciona intestinalis, the first such report of a non-vertebrate deuterostomian sialyltransferase, which has been discussed as a possible orthologue of the common ancestor of galactose alpha2,3-sialyltransferases. We also report for the first time the characterization of a ST3Gal II gene from the bony fish Takifugu rubripes. We demonstrate that both genes encode functional alpha2,3-sialyltransferases that are structurally and functionally related to the ST3Gal family of mammalian sialyltransferases. However, characterization of the recombinant, purified forms of both enzymes reveal novel acceptor substrate specificities, with sialylation of the disaccharide Galbeta1-3GalNAc and asialofetuin, but not GM1 or GD1b observed. This is in contrast to the mammalian ST3Gal II that predominantly sialylates gangliosides. Taken together the ceramide binding/recognition site previously proposed for the mouse ST3Gal II might represent a unique feature of mammalian ST3Gal II that is missing in the evolutionary more distant fish and tunicate species reported here. This suggests that during the evolution of the ST3Gal II, probably following the separation of the teleosts, a significant shift in substrate specificity enabling the sialylation of gangliosides took place.
Collapse
|
7
|
Affiliation(s)
- W W Young
- Department of Molecular, Cellular, and Craniofacial Biology, School of Dentistry, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
8
|
Jeanneau C, Chazalet V, Augé C, Soumpasis DM, Harduin-Lepers A, Delannoy P, Imberty A, Breton C. Structure-Function Analysis of the Human Sialyltransferase ST3Gal I. J Biol Chem 2004; 279:13461-8. [PMID: 14722111 DOI: 10.1074/jbc.m311764200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All eukaryotic sialyltransferases have in common the presence in their catalytic domain of several conserved peptide regions (sialylmotifs L, S, and VS). Functional analysis of sialylmotifs L and S previously demonstrated their involvement in the binding of donor and acceptor substrates. The region comprised between the sialylmotifs S and VS contains a stretch of four highly conserved residues, with the following consensus sequence (H/y)Y(Y/F/W/h)(E/D/q/g). (Capital letters and lowercase letters indicate a strong or low occurrence of the amino acid, respectively.) The functional importance of these residues and of the conserved residues of motif VS (HX(4)E) was assessed using as a template the human ST3Gal I. Mutational analysis showed that residues His(299) and Tyr(300) of the new motif, and His(316) of the VS motif, are essential for activity since their substitution by alanine yielded inactive enzymes. Our results suggest that the invariant Tyr residue (Tyr(300)) plays an important conformational role mainly attributable to the aromatic ring. In contrast, the mutants W301F, E302Q, and E321Q retained significant enzyme activity (25-80% of the wild type). Kinetic analyses and CDP binding assays showed that none of the mutants tested had any significant effect in nucleotide donor binding. Instead the mutant proteins were affected in their binding to the acceptor and/or demonstrated lower catalytic efficiency. Although the human ST3Gal I has four N-glycan attachment sites in its catalytic domain that are potentially glycosylated, none of them was shown to be necessary for enzyme activity. However, N-glycosylation appears to contribute to the proper folding and trafficking of the enzyme.
Collapse
Affiliation(s)
- Charlotte Jeanneau
- Centre de Recherches sur les Macromolécules Végétales (affiliated to Joseph Fourier University), GDR CNRS n degrees 2590, F-38041 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|