1
|
Jastroch M, Polymeropoulos ET, Gaudry MJ. Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials. J Comp Physiol B 2021; 191:1085-1095. [PMID: 33860348 PMCID: PMC8572181 DOI: 10.1007/s00360-021-01362-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
The thermogenic mechanisms supporting endothermy are still not fully understood in all major mammalian subgroups. In placental mammals, brown adipose tissue currently represents the most accepted source of adaptive non-shivering thermogenesis. Its mitochondrial protein UCP1 (uncoupling protein 1) catalyzes heat production, but the conservation of this mechanism is unclear in non-placental mammals and lost in some placentals. Here, we review the evidence for and against adaptive non-shivering thermogenesis in marsupials, which diverged from placentals about 120-160 million years ago. We critically discuss potential mechanisms that may be involved in the heat-generating process among marsupials.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, 7001, Australia
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
2
|
Cortes PA, Bozinovic F, Blier PU. Mitochondrial phenotype during torpor: Modulation of mitochondrial electron transport system in the Chilean mouse-opossum Thylamys elegans. Comp Biochem Physiol A Mol Integr Physiol 2018; 221:7-14. [PMID: 29551753 DOI: 10.1016/j.cbpa.2017.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
Mammalian torpor is a phenotype characterized by a controlled decline of metabolic rate, generally followed by a reduction in body temperature. During arousal from torpor, both metabolic rate and body temperature rapidly returns to resting levels. Metabolic rate reduction experienced by torpid animals is triggered by active suppression of mitochondrial respiration, which is rapidly reversed during rewarming process. In this study, we analyzed the changes in the maximal activity of key enzymes related to electron transport system (complexes I, III and IV) in six tissues of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). We observed higher maximal activities of complexes I and IV during torpor in brain, heart and liver, the most metabolically active organs in mammals. On the contrary, higher enzymatic activities of complexes III were observed during torpor in kidneys and lungs. Moreover, skeletal muscle was the only tissue without significant differences among stages in all complexes evaluated, suggesting no modulation of oxidative capacities of electron transport system components in this thermogenic tissue. In overall, our data suggest that complexes I and IV activity plays a major role in initiation and maintenance of metabolic suppression during torpor in Chilean mouse-opossum, whereas improvement of oxidative capacities in complex III might be critical to sustain metabolic machinery in organs that remains metabolically active during torpor.
Collapse
Affiliation(s)
- Pablo A Cortes
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile; Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile.
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile
| | - Pierre U Blier
- Département de Biologie, Laboratoire de Physiologie Animale Intégrative, Université du Québec, Rimouski G5L 3A1, QC, Canada
| |
Collapse
|
3
|
Jastroch M, Oelkrug R, Keipert S. Insights into brown adipose tissue evolution and function from non-model organisms. ACTA ACUST UNITED AC 2018. [PMID: 29514888 DOI: 10.1242/jeb.169425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brown adipose tissue (BAT) enables adaptive thermoregulation through heat production that is catalyzed by mitochondrial uncoupling protein 1 (UCP1). BAT is frequently studied in rodent model organisms, and recently in adult humans to treat metabolic diseases. However, complementary studies of many non-model species, which have diversified to many more ecological niches, may significantly broaden our understanding of BAT regulation and its physiological roles. This Review highlights the research on non-model organisms, which was instrumental to the discovery of BAT function, and the unique evolutionary history of BAT/UCP1 in mammalian thermogenesis. The comparative biology of BAT provides a powerful integrative approach that could identify conserved and specialized functional changes in BAT and UCP1 by considering species diversity, ecology and evolution, and by fusing multiple scientific disciplines such as physiology and biochemistry. Thus, resolving the complete picture of BAT biology may fail if comparative studies of non-model organisms are neglected.
Collapse
Affiliation(s)
- Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany
| | - Rebecca Oelkrug
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23562 Lübeck, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
4
|
Nowack J, Giroud S, Arnold W, Ruf T. Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy. Front Physiol 2017; 8:889. [PMID: 29170642 PMCID: PMC5684175 DOI: 10.3389/fphys.2017.00889] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023] Open
Abstract
The development of sustained, long-term endothermy was one of the major transitions in the evolution of vertebrates. Thermogenesis in endotherms does not only occur via shivering or activity, but also via non-shivering thermogenesis (NST). Mammalian NST is mediated by the uncoupling protein 1 in the brown adipose tissue (BAT) and possibly involves an additional mechanism of NST in skeletal muscle. This alternative mechanism is based on Ca2+-slippage by a sarcoplasmatic reticulum Ca2+-ATPase (SERCA) and is controlled by the protein sarcolipin. The existence of muscle based NST has been discussed for a long time and is likely present in all mammals. However, its importance for thermoregulation was demonstrated only recently in mice. Interestingly, birds, which have evolved from a different reptilian lineage than mammals and lack UCP1-mediated NST, also exhibit muscle based NST under the involvement of SERCA, though likely without the participation of sarcolipin. In this review we summarize the current knowledge on muscle NST and discuss the efficiency of muscle NST and BAT in the context of the hypothesis that muscle NST could have been the earliest mechanism of heat generation during cold exposure in vertebrates that ultimately enabled the evolution of endothermy. We suggest that the evolution of BAT in addition to muscle NST was related to heterothermy being predominant among early endothermic mammals. Furthermore, we argue that, in contrast to small mammals, muscle NST is sufficient to maintain high body temperature in birds, which have enhanced capacities to fuel muscle NST by high rates of fatty acid import.
Collapse
Affiliation(s)
- Julia Nowack
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvain Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Walter Arnold
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
6
|
Cooper CE, Withers PC, Hardie A, Geiser F. Marsupials don't adjust their thermal energetics for life in an alpine environment. Temperature (Austin) 2017; 3:484-498. [PMID: 28349088 PMCID: PMC5079228 DOI: 10.1080/23328940.2016.1171280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 11/03/2022] Open
Abstract
Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover.
Collapse
Affiliation(s)
- Christine E Cooper
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia; Animal Biology M092, University of Western Australia, Crawley, Western Australia, Australia
| | - Philip C Withers
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia; Animal Biology M092, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew Hardie
- Department of Environment and Agriculture, Curtin University , Bentley, Western Australia, Australia
| | - Fritz Geiser
- Zoology, University of New England , Armidale, New South Wales, Australia
| |
Collapse
|
7
|
The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns. Sci Rep 2016; 6:24627. [PMID: 27090740 PMCID: PMC4835794 DOI: 10.1038/srep24627] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy.
Collapse
|
8
|
Phenotypic flexibility of energetics in acclimated Siberian hamsters has a narrower scope in winter than in summer. J Comp Physiol B 2016; 186:387-402. [PMID: 26803319 PMCID: PMC4791479 DOI: 10.1007/s00360-016-0959-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 01/05/2023]
Abstract
As photoperiod shortens with the approach of winter, small mammals should reduce their energy expenditure to survive periods of food limitation. However, within seasons, animals should balance their energy budgets as abiotic conditions change, sometimes unpredictably; cold spells should increase heat production, while warm spells should do the opposite. Therefore, we addressed specific questions about the possible interactions between seasonal acclimatization and the intra-seasonal phenotypic flexibility of metabolic rate. We hypothesized that phenotypic flexibility in small mammals differs seasonally and is greater in summer than in winter, and predicted that seasonal adjustments in energetics, which are driven by photoperiod, overwhelm the influence of variations in the thermal environment. We measured body mass, basal metabolic rate (BMR), facultative non-shivering thermogenesis (fNST), body temperature, and calculated minimum thermal conductance in Siberian hamsters Phodopus sungorus. Animals were acclimated to winter-like, and then to summer-like conditions and, within each season, were exposed twice, for 3 weeks to 10, 20 or 28 °C. We used differences between values measured after these short acclimation periods as a measure of the scope of phenotypic flexibility. After winter acclimation, hamsters were lighter, had lower whole animal BMR, higher fNST than in summer, and developed heterothermy. After these short acclimations to the above-mentioned temperatures, hamsters showed reversible changes in BMR and fNST; however, these traits were less flexible in winter than in summer. We conclude that seasonal acclimation affects hamster responses to intra-seasonal variations in the thermal environment. We argue that understanding seasonal changes in phenotypic flexibility is crucial for predicting the biological consequences of global climate changes.
Collapse
|
9
|
Cortés PA, Bacigalupe LD, Mondaca F, Desrosiers V, Blier PU. Mitochondrial phenotype of marsupial torpor: Fuel metabolic switch in the Chilean mouse-opossumThylamys elegans. ACTA ACUST UNITED AC 2015; 325:41-51. [DOI: 10.1002/jez.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Pablo Andres Cortés
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
- Departamento de Ecología; Center of Applied Ecology and Sustainability; Facultad de Ciencias Biológicas; Universidad Católica de Chile; Santiago Chile
| | - Leonardo Daniel Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
| | - Fredy Mondaca
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
| | - Véronique Desrosiers
- Département de Biologie; Laboratoire de Physiologie Animale Intégrative; Université du Québec; Rimouski QC Canada
| | - Pierre U. Blier
- Département de Biologie; Laboratoire de Physiologie Animale Intégrative; Université du Québec; Rimouski QC Canada
| |
Collapse
|
10
|
Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 2015; 185:587-606. [PMID: 25966796 DOI: 10.1007/s00360-015-0907-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/11/2023]
Abstract
In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.
Collapse
Affiliation(s)
- R Oelkrug
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Straße 8, 35043, Marburg, Germany,
| | | | | |
Collapse
|
11
|
Cortés PA, Franco M, Moreno-Gómez FN, Barrientos K, Nespolo RF. Thermoregulatory capacities and torpor in the South American marsupial, Dromiciops gliroides. J Therm Biol 2014; 45:1-8. [DOI: 10.1016/j.jtherbio.2014.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
12
|
Nowack J, Dausmann KH, Mzilikazi N. Nonshivering thermogenesis in the African lesser bushbaby, Galago moholi. ACTA ACUST UNITED AC 2014; 216:3811-7. [PMID: 24068349 DOI: 10.1242/jeb.089433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The capacity for nonshivering thermogenesis (NST) plays an important role during arousal from torpid states. Recent data on heterotherms inhabiting warmer regions, however, suggest that passive rewarming reduces the need of metabolic heat production during arousal significantly, leading to the question: to what extent do subtropical or tropical heterotherms depend on NST? The African lesser bushbaby, Galago moholi, enters torpid states as an emergency response only, but otherwise stays normothermic throughout the cold and dry winter season. In addition, this species shows unusual rewarming difficulties during arousal from torpor on cold days. We therefore examined the seasonal adjustments of the capacity for NST of naturally acclimatized G. moholi by stimulation with noradrenaline (NA) injection. Dissection of two adult female bushbabies revealed that G. moholi possesses brown adipose tissue, and NA treatment (0.5 mg kg(-1), s.c.) induced a significant elevation in oxygen consumption compared with control (saline) injection. However, the increase in oxygen consumption following injection of NA was not significantly different between winter and summer. Our results show that the ability to produce heat via NST seems to be available throughout the year and that G. moholi is able to change NST capacity within a very short time frame in response to cold spells. Together with results from studies on other (Afro-)tropical heterotherms, which also indicate low or even absent seasonal difference in NST capacity, this raises the question of whether the definition of NST needs to be refined for (Afro-)tropical mammals.
Collapse
Affiliation(s)
- Julia Nowack
- Department of Animal Ecology and Conservation, Biocentre Grindel, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | | | | |
Collapse
|
13
|
Affiliation(s)
- A. Riek
- Department of Animal Sciences; University of Göttingen; Göttingen Germany
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW Australia
| | - F. Geiser
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW Australia
| |
Collapse
|
14
|
Riek A, Geiser F. Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev Camb Philos Soc 2013; 88:564-72. [DOI: 10.1111/brv.12016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale; NSW; 2351; Australia
| |
Collapse
|
15
|
Turner JM, Warnecke L, Körtner G, Geiser F. Opportunistic hibernation by a free-ranging marsupial. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00877.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. M. Turner
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| | - L. Warnecke
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| | - G. Körtner
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| | - F. Geiser
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| |
Collapse
|
16
|
Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). J Comp Physiol B 2011; 182:393-401. [DOI: 10.1007/s00360-011-0623-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
|
17
|
Jastroch M, Withers KW, Stoehr S, Klingenspor M. Mitochondrial proton conductance in skeletal muscle of a cold-exposed marsupial, Antechinus flavipes, is unlikely to be involved in adaptive nonshivering thermogenesis but displays increased sensitivity toward carbon-centered radicals. Physiol Biochem Zool 2009; 82:447-54. [PMID: 19614545 DOI: 10.1086/603631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The organs and molecular mechanisms contributing to adaptive thermogenesis in marsupials are not known because some species apparently lack brown adipose tissue (BAT). The increased oxidative capacity and presence of uncoupling protein 3 (UCP3) in skeletal muscle led to speculations on whether uncoupled respiration sustains endothermy in the cold, as found for BAT. Here, we investigated the role of mitochondrial proton conductance in the small Australian marsupial Antechinus flavipes during cold exposure. Although there was a tendency toward higher oxidative capacity in skeletal muscle, indicating metabolic adjustments to the cold, we observed no change in basal proton conductance of isolated myotubular and liver mitochondria. In eutherians, 4-hydroxynonenal (HNE) is an activator of mitochondrial uncoupling mediated by UCP3 and ANT (adenine nucleotide translocase). In the marsupial A. flavipes, proton conductance in myotubular mitochondria could be induced by HNE selectively in the cold-acclimated group. Induced uncoupling activity could be attributed to the ANT as judged by inhibition with carboxyatractylate, while GDP, a putative inhibitor of rodent UCP3, had no detectable effects on marsupial UCP3. In contrast to previous expectations, basal proton conductance in the myotubular mitochondria of marsupials does not contribute to adaptive thermogenesis, as found for eutherian BAT. Increased sensitivity of proton conductance to HNE by the ANT suggests a greater requirement for mild uncoupling activity that may convey protection from lipid peroxidation and mitigate reactive oxygen species production during cold stress.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | | | | | |
Collapse
|
18
|
Gutman R, Hacmon-Keren R, Choshniak I, Kronfeld-Schor N. Effect of food availability and leptin on the physiology and hypothalamic gene expression of the golden spiny mouse: a desert rodent that does not hoard food. Am J Physiol Regul Integr Comp Physiol 2008; 295:R2015-23. [DOI: 10.1152/ajpregu.00105.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food availability and quality in desert habitats are spatially and temporally unpredictable, and animals face periods of food shortage. The golden spiny mouse ( Acomys russatus) is an omnivorous desert rodent that does not hoard food, requiring it to withstand such periods by physiological means alone. In response to food restriction, plasma leptin concentrations, core body temperature, and energy expenditure of the spiny mouse decrease significantly after 24 h, and most spiny mice are able to maintain their body mass to ∼85% of ad libitum for a prolonged period of time. Both 1-day food deprivation and long-term food restriction had a significant effect on body mass and plasma leptin concentrations, which decreased significantly with a high correlation, as well as on the orexigenic agouti-related protein, which increased significantly as a result of the 24-h food deprivation; and on neuropeptide Y (NPY), in which the increase was more pronounced under long-term food restriction. Food restriction and food deprivation had no effect, however, on the anorexigenic pro-opiomelanocortin and cocaine and amphetamine-related transcript. Leptin administration to food-restricted spiny mice did not affect food intake or the rate of decrease in body mass, indicating that it cannot overcome the drive to eat when food is scarce. However, it did result in a significant decrease in NPY levels, and the spiny mice spent less time at low body temperatures compared with PBS-treated golden spiny mice. These results show that in food-restricted golden spiny mice, leptin affects thermogenesis, but not food consumption, and suggest that the thermoregulatory effects of leptin are mediated by NPY.
Collapse
|
19
|
Jastroch M, Withers KW, Taudien S, Frappell PB, Helwig M, Fromme T, Hirschberg V, Heldmaier G, McAllan BM, Firth BT, Burmester T, Platzer M, Klingenspor M. Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis. Physiol Genomics 2007; 32:161-9. [PMID: 17971503 DOI: 10.1152/physiolgenomics.00183.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue expressing uncoupling protein 1 (UCP1) is responsible for adaptive nonshivering thermogenesis giving eutherian mammals crucial advantage to survive the cold. The emergence of this thermogenic organ during mammalian evolution remained unknown as the identification of UCP1 in marsupials failed so far. Here, we unequivocally identify the marsupial UCP1 ortholog in a genomic library of Monodelphis domestica. In South American and Australian marsupials, UCP1 is exclusively expressed in distinct adipose tissue sites and appears to be recruited by cold exposure in the smallest species under investigation (Sminthopsis crassicaudata). Our data suggest that an archetypal brown adipose tissue was present at least 150 million yr ago allowing early mammals to produce endogenous heat in the cold, without dependence on shivering and locomotor activity.
Collapse
Affiliation(s)
- M Jastroch
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kabat AP, Rose RW, West AK. Shivering, muscle tone, and uncoupling proteins in a developing marsupial, the Tasmanian bettong (Bettongia gaimardi). J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164-76. [PMID: 16730693 DOI: 10.1016/j.ydbio.2006.04.449] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/22/2022]
Abstract
Dorsal dermis and epaxial muscle have been shown to arise from the central dermomyotome in the chick. En1 is a homeobox transcription factor gene expressed in the central dermomyotome. We show by genetic fate mapping in the mouse that En1-expressing cells of the central dermomyotome give rise to dorsal dermis and epaxial muscle and, unexpectedly, to interscapular brown fat. Thus, the En1-expressing central dermomyotome normally gives rise to three distinct fates in mice. Wnt signals are important in early stages of dermomyotome development, but the signal that acts to specify the dermal fate has not been identified. Using a reporter transgene for Wnt signal transduction, we show that the En1-expressing cells directly underneath the surface ectoderm transduce Wnt signals. When the essential Wnt transducer beta-catenin is mutated in En1 cells, it results in the loss of Dermo1-expressing dorsal dermal progenitors and dermis. Conversely, when beta-catenin was activated in En1 cells, it induces Dermo1 expression in all cells of the En1 domain and disrupts muscle gene expression. Our results indicate that the mouse central dermomyotome gives rise to dermis, muscle, and brown fat, and that Wnt signalling normally instructs cells to select the dorsal dermal fate.
Collapse
Affiliation(s)
- Radhika Atit
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mzilikazi N, Lovegrove BG. Noradrenalin induces thermogenesis in a phylogenetically ancient eutherian mammal, the rock elephant shrew, Elephantulus myurus. J Comp Physiol B 2005; 176:75-84. [PMID: 16317548 DOI: 10.1007/s00360-005-0035-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 09/19/2005] [Accepted: 09/27/2005] [Indexed: 11/28/2022]
Abstract
The evolution of endothermy is thought to have been facilitated by the advent of endothermic energy sources such as brown adipose tissue (BAT), the principal site of non-shivering thermogenesis (NST). In marsupials, heat is primarily produced through shivering and NST in skeletal muscle because BAT is either absent or appears to be non-functional. The most basal group of the eutherian lineage are the Afrotheria. Rock elephant shrews, Elephantulus myurus are amongst the smallest members of the Afrotheria and are also known to use exogenous passive heating. The aim of this study was to determine whether the reliance on passive heating compromised the capacity for thermogenesis in E. myurus. We measured the thermogenic response to noradrenalin (NA) injection in E. myurus acclimated to short photoperiod. The thermogenic response at 25 degrees C was 1.58 ml O(2) g(-1) h(-1). We used phylogenetically independent analyses to establish how this thermogenic response compared to other eutherians that display classical NST. The thermogenic response of E. myurus was not significantly different from phylogenetically independent allometric predictions. However, it is unclear whether this thermogenic response is indicative of classical NST and molecular data are required to verify the presence of BAT and UCPs in elephant shrews.
Collapse
Affiliation(s)
- Nomakwezi Mzilikazi
- Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.
| | | |
Collapse
|
23
|
Geiser F, Westman W, McAllan BM, Brigham RM. Development of thermoregulation and torpor in a marsupial: energetic and evolutionary implications. J Comp Physiol B 2005; 176:107-16. [PMID: 16177893 DOI: 10.1007/s00360-005-0026-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Revised: 07/18/2005] [Accepted: 08/10/2005] [Indexed: 11/29/2022]
Abstract
Altricial mammals and birds become endothermic at about half the size of adults and presumably would benefit energetically from entering torpor at that time. Because little is known about torpor during development in endotherms, we investigated whether after the establishment of endothermic thermoregulation (i.e. the ability to maintain a high body temperature during cold exposure), Sminthopsis macroura, a small (approximately 25 g) insectivorous marsupial, is capable of entering torpor and whether torpor patterns change with growth. Endothermic thermoregulation was established when the nest young reached a body mass of approximately 10 g, and they were capable of entering torpor early during development at approximately 10-12 g, lending some support to the view that torpor is a phylogenetically old mammalian trait. Torpor bout length shortened significantly and the minimum metabolic rate during torpor increased as juveniles approached adult size, and consequently total daily energy expenditure increased steeply with age. Relationships between total daily energy expenditure and body mass during development of S. macroura (slope approximately 1.3) differed substantially from the relationship between basal metabolism and body mass in adult endotherms (slope approximately 0.75) suggesting that the energy expenditure-size relationship during the development differs substantially from that in adults under thermo-neutral conditions. Our study shows that while torpor can substantially reduce energy expenditure during development of endotherms and hence is likely important for survival during energy bottlenecks, it also may enhance somatic growth when food is limited. We therefore hypothesize that torpor during the development in endotherms is far more widespread than is currently appreciated.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.
| | | | | | | |
Collapse
|
24
|
Jastroch M, Wuertz S, Kloas W, Klingenspor M. Uncoupling protein 1 in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis. Physiol Genomics 2005; 22:150-6. [PMID: 15886331 DOI: 10.1152/physiolgenomics.00070.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Uncoupling proteins (UCPs) increase proton leakage across the inner mitochondrial membrane. Thereby, UCP1 in brown adipose tissue dissipates proton motive force as heat. This mechanism of nonshivering thermogenesis is considered as a monophyletic trait of endothermic placental mammals that emerged about 140 million years ago and provided a crucial advantage for life in the cold. The paralogues UCP2 and UCP3 are probably not thermogenic proteins but convey mild uncoupling, which may serve to reduce the rate of mitochondrial reactive oxygen species production. Both are present in endotherms (mammals and birds), but so far only UCP2 has been identified in ectothermic vertebrates (fish and amphibia). The evolution of UCPs is of general interest in the search for the origin of mammalian UCP1-mediated nonshivering thermogenesis. We here show the presence of UCP1 and UCP3 in ectothermic teleost fish species using comparative genomics, phylogenetic inference, and gene expression analysis. In the common carp ( Cyprinus carpio), UCP1 is predominantly expressed in the liver and strongly diminished in response to cold exposure, thus contrasting the cold-induced expression of mammalian UCP1 in brown adipose tissue. UCP3 mRNA is only found in carp skeletal muscle with expression levels increased fivefold in response to fasting. Our findings disprove the monophyletic nature of UCP1 in placental mammals and demonstrate that all three members of the core UCP family were already present before the divergence of ray-finned and lobe-finned vertebrate lineages about 420 million years ago.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Animal Physiology, Biology Faculty, Philipps-University Marburg, Germany
| | | | | | | |
Collapse
|
25
|
Kabat AP, Rose RW, West AK. Molecular identification of uncoupling proteins 2 and 3 in a carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii). Physiol Biochem Zool 2004; 77:109-15. [PMID: 15057721 DOI: 10.1086/383496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2003] [Indexed: 11/04/2022]
Abstract
This study investigated the expression of uncoupling proteins 2 and 3 (UCP2 and UCP3) in the carnivorous marsupial Sarcophilus harrisii. The current study used molecular techniques to ascertain whether this species expresses UCP2 and/or UCP3. This species increases nonshivering thermogenesis in response to cold exposure and norepinephrine, although our previous study was unable to demonstrate the presence of brown adipose tissue or uncoupling protein 1. Samples of skeletal muscle and white adipose tissues were taken from five S. harrisii pre- and post-cold acclimation (2 degrees -3 degrees C for 2 wk). The tissues were examined for UCP2 and UCP3 expression through Western blots and reverse transcriptase polymerase chain reaction, with subsequent sequencing to ensure identification of the desired gene. These data suggest that S. harrisii expresses UCP2 but not UCP3. The sequencing of the amplified S. harrisii UCP2 cDNA has revealed a 76% homology with human UCP2 cDNA and a 72% homology with rat UCP2 cDNA. The expression of UCP2 but not UCP3 suggests that UCP2 is conserved from a common ancestor to both the Marsupialia and the Eutheria taxa.
Collapse
Affiliation(s)
- Alexander P Kabat
- School of Zoology, University of Tasmania, GPO Box 252-05, Hobart, Tasmania 7005, Australia.
| | | | | |
Collapse
|
26
|
Abstract
Although it is well established that during periods of torpor heterothermic mammals and birds can reduce metabolic rates (MR) substantially, the mechanisms causing the reduction of MR remain a controversial subject. The comparative analysis provided here suggests that MR reduction depends on patterns of torpor used, the state of torpor, and body mass. Daily heterotherms, which are species that enter daily torpor exclusively, appear to rely mostly on the fall of body temperature (Tb) for MR reduction, perhaps with the exception of very small species and at high torpor Tb, where some metabolic inhibition may be used. In contrast, hibernators (species capable of prolonged torpor bouts) rely extensively on metabolic inhibition, in addition to Tb effects, to reduce MR to a fraction of that observed in daily heterotherms. In small hibernators, metabolic inhibition and the large fall of Tb are employed to maximize energy conservation, whereas in large hibernators, metabolic inhibition appears to be employed to facilitate MR and Tb reduction at torpor onset. Over the ambient temperature (Ta) range where torpid heterotherms are thermo-conforming, the Tb-Ta differential is more or less constant despite a decline of MR with Ta; however, in thermo-regulating torpid individuals, the Tb-Ta differential is maintained by a proportional increase of MR as during normothermia, albeit at a lower Tb. Thermal conductance in most torpid thermo-regulating individuals is similar to that in normothermic individuals despite the substantially lower MR in the former. However, conductance is low when deeply torpid animals are thermo-conforming probably because of peripheral vasoconstriction.
Collapse
Affiliation(s)
- Fritz Geiser
- Zoology, Center for Behavioural and Physiological Ecology, University of New England, Armidale, NSW Australia 2351.
| |
Collapse
|
27
|
Jastroch M, Withers K, Klingenspor M. Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes. Physiol Genomics 2004; 17:130-9. [PMID: 14970361 DOI: 10.1152/physiolgenomics.00165.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We searched for the presence of uncoupling protein genes so far unknown in marsupials and monotremes and identified uncoupling protein 2 (UCP2) and UCP3 full-length cDNAs in libraries constructed from the marsupials Antechinus flavipes and Sminthopsis macroura. Marsupial UCP2 is 89–90% identical to rodent UCP2, whereas UCP3 exhibits 80% identity to mouse UCP3. A phylogenetic tree including all known UCPs positions the novel marsupial UCP2 and UCP3 at the base of the mammalian orthologs. In the 5′-untranslated region of UCP2 a second open reading frame encoding for a 36-amino acid peptide was identified which is highly conserved in all vertebrate UCP2 transcripts. Analysis of tissue specificity in A. flavipes with homologous cDNA probes revealed ubiquitous presence of UCP2 mRNA and striated muscle specificity of UCP3 mRNA resembling the known expression pattern in rodents. Neither UCP2 nor UCP3 gene expression was stimulated in adipose tissue and skeletal muscle of cold exposed A. flavipes. However, UCP3 mRNA expression was upregulated 6-fold in heart and 2.5-fold in skeletal muscle as reported for rodents in response to fasting. Furthermore, UCP3 mRNA seems to be coregulated with PDK4 mRNA, indicating a relation to enhanced lipid metabolism. In contrast, UCP2 gene expression was not regulated in response to fasting in adipose tissue and skeletal muscle but was diminished in the lung and increased in adipose tissue. Taken together, the sequence analysis, tissue specificity and physiological regulation suggest a conserved function of UCP2 and UCP3 during 130 million years of mammalian evolution.
Collapse
Affiliation(s)
- Martin Jastroch
- Animal Physiology, Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
28
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
29
|
Geiser F, Drury RL, McAllan BM, Wang DH. Effects of temperature acclimation on maximum heat production, thermal tolerance, and torpor in a marsupial. J Comp Physiol B 2003; 173:437-42. [PMID: 12756485 DOI: 10.1007/s00360-003-0352-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2003] [Indexed: 12/01/2022]
Abstract
Marsupials, unlike placental mammals, are believed to be unable to increase heat production and thermal performance after cold-acclimation. It has been suggested that this may be because marsupials lack functional brown fat, a thermogenic tissue, which proliferates during cold-acclimation in many placentals. However, arid zone marsupials have to cope with unpredictable, short-term and occasionally extreme changes in environmental conditions, and thus they would benefit from an appropriate physiological response. We therefore investigated whether a sequential two to four week acclimation in Sminthopsis macroura (body mass approx. 25 g) to both cold (16 degrees C) and warm (26 degrees C) ambient temperatures affects the thermal physiology of the species. Cold-acclimated S. macroura were able to significantly increase maximum heat production (by 27%) and could maintain a constant body temperature at significantly lower effective ambient temperatures (about 9 degrees C lower) than when warm-acclimated. Moreover, metabolic rates during torpor were increased following cold-acclimation in comparison to warm-acclimation. Our study shows that, despite the lack of functional brown fat, short-term acclimation can have significant effects on thermoenergetics of marsupials. It is likely that the rapid response in S. macroura reflects an adaptation to the unpredictability of the climate in their habitat.
Collapse
Affiliation(s)
- F Geiser
- Zoology, BBMS, University of New England, 2351 Armidale, NSW, Australia.
| | | | | | | |
Collapse
|
30
|
Kabat AP, Rose RW, West AK. Non-shivering thermogenesis in a carnivorous marsupial, Sarcophilus harrisii, in the absence of UCP1. J Therm Biol 2003. [DOI: 10.1016/s0306-4565(03)00026-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Holloway JC, Geiser F. Development of thermoregulation in the sugar glider Petaurus breviceps (Marsupialia: Petauridae). J Zool (1987) 2000. [DOI: 10.1111/j.1469-7998.2000.tb00634.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Körtner G, Geiser F. The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 2000; 17:103-28. [PMID: 10757457 DOI: 10.1081/cbi-100101036] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0 degrees C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb.
Collapse
Affiliation(s)
- G Körtner
- Zoology, School of Biological Sciences, University of New England, Armidale NSW, Australia
| | | |
Collapse
|
33
|
Rose RW, West AK, Ye JM, McCormick GH, Colquhoun EQ. Nonshivering thermogenesis in a marsupial (the tasmanian bettong Bettongia gaimardi) is not attributable to brown adipose tissue. Physiol Biochem Zool 1999; 72:699-704. [PMID: 10603333 DOI: 10.1086/316709] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Tasmanian bettong (Bettongia gaimardi, a marsupial) is a rat-kangaroo that increases nonshivering thermogenesis (NST) in response to norepinephrine (NE). This study attempted to assess whether brown adipose tissue (BAT), a specialized thermogenic effector, is involved in NST in the bettong. Regulatory NST, indicated by resting oxygen consumption (Vo2) of the whole body, was measured under conscious conditions at 20 degrees C with various stimuli: cold (4 degrees -5 degrees C) or warm (25 degrees C) acclimation, NE injection, and the beta3-adrenoceptor agonist (BRL) 37344. In line with the functional studies in vivo, the presence of BAT was evaluated by examining the expression of the uncoupling protein 1 (UCP1) with both rat cDNA and oligonucleotide probes. Both NE and BRL 37344 significantly stimulated NST in the bettong. After cold acclimation of the animals (at 4 degrees -5 degrees C for 2 wk), the resting Vo2 was increased by 15% and the thermogenic effect of NE was enhanced; warm-acclimated animals showed a slightly depressed response. However, no expression of UCP1 was detected in bettongs either before or after cold exposure (2 wk). These data suggest that the observed NST in the marsupial bettong is not attributable to BAT.
Collapse
Affiliation(s)
- R W Rose
- School of Zoology, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | | | | | | | |
Collapse
|
34
|
Opazo JC, Nespolo RF, Bozinovic F. Arousal from torpor in the Chilean mouse-opposum (Thylamys elegans): does non-shivering thermogenesis play a role? Comp Biochem Physiol A Mol Integr Physiol 1999; 123:393-7. [PMID: 10581704 DOI: 10.1016/s1095-6433(99)00081-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.
Collapse
Affiliation(s)
- J C Opazo
- Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
35
|
Geiser F, Körtner G, Schmidt I. Leptin increases energy expenditure of a marsupial by inhibition of daily torpor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R1627-32. [PMID: 9791083 DOI: 10.1152/ajpregu.1998.275.5.r1627] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin plays an important role in regulating body fat stores of placental mammals, but the contribution of changes in energy expenditure to this adjustment remains controversial. We were interested in how recombinant murine leptin would affect metabolic rate (MR) and body temperature (Tb) of a marsupial mammal (Sminthopsis macroura, 25 g) known to display daily torpor but lacking thermogenetically active brown adipose tissue. In a group of eight animals deprived of food for 1 day at 18 degreesC, leptin treatment halved the duration of torpor bouts (time at Tb < 30 degreesC) and raised the average daily minimum Tb by 4.5 degreesC and minimum MR by 2.2-fold. Leptin treatment thus increased daily energy expenditure by 9%, although MR and Tb during the activity phase were not raised. Body mass was also not affected. These findings in a marsupial suggest that the adjustment of thermoregulatory energy expenditure during the rest phase in accordance with energy availability is a phylogenetically old function of leptin.
Collapse
Affiliation(s)
- F Geiser
- Zoology, School of Biological Sciences, University of New England, Armidale, New South Wales 2351, Australia
| | | | | |
Collapse
|