1
|
Bulc M, Całka J, Palus K. Changes in the Phenotype of Intramural Inhibitory Neurons of the Porcine Descending Colon Resulting from Glyphosate Administration. Int J Mol Sci 2023; 24:16998. [PMID: 38069321 PMCID: PMC10707063 DOI: 10.3390/ijms242316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Environmental contamination and the resulting food contamination represent a serious problem and pose a major threat to animal and human health. The gastrointestinal tract is directly exposed to a variety of substances. One is glyphosate, whose presence in the soil is commonly observed. This study demonstrates the effects of low and high glyphosate doses on the populations of intramural neurons of the porcine descending colon. An analysis was performed on neurons ex-pressing the vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, a neuronal isoform of nitrogen oxide synthase, and galanin. Even a low dose of glyphosate increased the number of neurons immunoreactive against the studied substances. However, the changes depended on both the plexus analysed and the substance tested. Meanwhile, a high glyphosate dose resulted in quantitative changes (an increase in the number) within neurons immunoreactive against all the studied neuropeptides/enzymes in the myenteric plexus and both submucosal plexuses. The response of the enteric nervous system in the form of an increase in the number of neurons immunoreactive against neuroprotective substances may suggest that glyphosate has a toxic effect on enteric neurons which attempt to increase their survivability through the released neuroprotective substances.
Collapse
Affiliation(s)
- Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland; (J.C.); (K.P.)
| | | | | |
Collapse
|
2
|
Krasuska U, Wal A, Staszek P, Ciacka K, Gniazdowska A. Do Reactive Oxygen and Nitrogen Species Have a Similar Effect on Digestive Processes in Carnivorous Nepenthes Plants and Humans? BIOLOGY 2023; 12:1356. [PMID: 37887066 PMCID: PMC10604543 DOI: 10.3390/biology12101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Carnivorous plants attract animals, trap and kill them, and absorb nutrients from the digested bodies. This unusual (for autotrophs) type of nutrient acquisition evolved through the conversion of photosynthetically active leaves into specialised organs commonly called traps. The genus Nepenthes (pitcher plants) consists of approximately 169 species belonging to the group of carnivorous plants. Pitcher plants are characterised by specialised passive traps filled with a digestive fluid. The digestion that occurs inside the traps of carnivorous plants depends on the activities of many enzymes. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) also participate in the digestive process, but their action is poorly recognised. ROS and RNS, named together as RONS, exhibit concentration-dependent bimodal functions (toxic or signalling). They act as antimicrobial agents, participate in protein modification, and are components of signal transduction cascades. In the human stomach, ROS are considered as the cause of different diseases. RNS have multifaceted functions in the gastrointestinal tract, with both positive and negative impacts on digestion. This review describes the documented and potential impacts of RONS on the digestion in pitcher plant traps, which may be considered as an external stomach.
Collapse
Affiliation(s)
| | - Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (U.K.); (P.S.); (K.C.); (A.G.)
| | | | | | | |
Collapse
|
3
|
Makowska K, Całka J, Gonkowski S. Effects of the long-term influence of bisphenol A and bisphenol S on the population of nitrergic neurons in the enteric nervous system of the mouse stomach. Sci Rep 2023; 13:331. [PMID: 36609592 PMCID: PMC9822927 DOI: 10.1038/s41598-023-27511-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor commonly used in the production of plastics. Due to its relatively well-known harmful effects on living organisms, BPA is often replaced by its various analogues. One of them is bisphenol S (BPS), widely used in the plastics industry. Until recently, BPS was considered completely safe, but currently, it is known that it is not safe for various internal organs. However, knowledge about the influence of BPS on the nervous system is scarce. Therefore, the aim of this study was to investigate the influence of two doses of BPA and BPS on the enteric nitrergic neurons in the CD1 strain mouse stomach using the double-immunofluorescence technique. The study found that both substances studied increased the number of nitrergic neurons, although changes under the impact of BPS were less visible than those induced by BPA. Therefore, the obtained results, for the first time, clearly indicate that BPS is not safe for the innervation of the gastrointestinal tract.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland.
| | - Jarosław Całka
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Sławomir Gonkowski
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
4
|
Effect of Chemically-Induced Diabetes Mellitus on Phenotypic Variability of the Enteric Neurons in the Descending Colon in the Pig. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Gastrointestinal neuropathy in diabetes is one of numerous diseases resulting in abnormal functioning of the gastrointestinal tract (GIT), and it may affect any section of the GIT, including the descending colon. In the gastrointestinal system, the neurons are arranged in an interconnecting network defined as the enteric nervous system (ENS) which includes the myenteric plexus and the submucosal plexuses: inner and outer. Regular functioning of the ENS is determined by normal synthesis of the neurotransmitters and neuromodulators. This paper demonstrates the effect of hyperglycaemia on the number of enteric neurons which are immunoreactive to: neural isoform of nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), galanin (GAL), calcitonin generelated peptide (CGRP) and cocaine amphetamine-regulated transcript (CART) in the porcine descending colon. It was demonstrated that there was a statistically significant increase in the number of neurons within the myenteric plexus immunoreactive to all investigated substances. In the outer submucosal plexus, the CART-positive neurons were the only ones not to change, whereas no changes were recorded for nNOS or CART in the inner submucosal plexus. This study is the first study to discuss quantitative changes in the neurons immunoreactive to nNOS, VIP, GAL, CGRP and CART in the descending colon in diabetic pigs.
Collapse
|
5
|
Role of nitric oxide on zymosan-induced inhibition of crop emptying in chicks. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111057. [PMID: 34419574 DOI: 10.1016/j.cbpa.2021.111057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023]
Abstract
Zymosan, a component of yeast cell walls, reduces feed passage through the digestive tract in chicks (Gallus gallus), although the mechanism mediating this effect is poorly understood. Nitric oxide (NO) is associated with a variety of biological actions including effects on the immune system. In addition, it has been suggested that NO is involved in relaxation of the digestive tract and affects feed passage in mammals. It is therefore possible that NO might be related to zymosan-induced reduction of feed passage in chicks. However, the role of NO on the effect of zymosan feed passage has not been clarified yet. Thus, the purpose of the present study was to investigate whether NO is associated with zymosan-induced alteration of feed passage in chicks. Intraperitoneal (IP) injection of zymosan significantly increased plasma nitrate and nitrite (NOx) concentrations at 6 h after injection. Zymosan-induced elevation of plasma NOx concentration was abolished by co-injection of S-methylisothiourea (SMT), a selective inhibitor for inducible NO synthase (iNOS), indicating that zymosan facilitated the induction of iNOS. Furthermore, because zymosan increased iNOS mRNA expression in the digestive tract, NO is likely associated with the effect of zymosan on the digestive tract. IP injection of NO donors significantly decreased crop emptying rate, suggesting that NO functions as an inhibitor of crop emptying. This result implied that zymosan stimulates NO production by the induction of iNOS in the digestive tract and thereby inhibits crop emptying rate. However, the co-injection of SMT did not attenuate the inhibitory effect of zymosan on crop emptying. The present study provides evidence that some changes in the digestive tract caused by zymosan are mediated by iNOS-induced NO in chicks, but NO does not mediate the effect of zymosan on feed passage through the crop.
Collapse
|
6
|
Rychlik A, Gonkowski S, Kaczmar E, Obremski K, Calka J, Makowska K. The T2 Toxin Produced by Fusarium spp. Impacts Porcine Duodenal Nitric Oxide Synthase (nNOS)-Positive Nervous Structures-The Preliminary Study. Int J Mol Sci 2020; 21:ijms21145118. [PMID: 32698434 PMCID: PMC7404315 DOI: 10.3390/ijms21145118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023] Open
Abstract
T2 toxin synthetized by Fusarium spp. negatively affects various internal organs and systems, including the digestive tract and the immune, endocrine, and nervous systems. However, knowledge about the effects of T2 on the enteric nervous system (ENS) is still incomplete. Therefore, during the present experiment, the influence of T2 toxin with a dose of 12 µg/kg body weight (b.w.)/per day on the number of enteric nervous structures immunoreactive to neuronal isoform nitric oxide synthase (nNOS—used here as a marker of nitrergic neurons) in the porcine duodenum was studied using the double immunofluorescence method. Under physiological conditions, nNOS-positive neurons amounted to 38.28 ± 1.147%, 38.39 ± 1.244%, and 35.34 ± 1.151 of all enteric neurons in the myenteric (MP), outer submucous (OSP), and inner submucous (ISP) plexuses, respectively. After administration of T2 toxin, an increase in the number of these neurons was observed in all types of the enteric plexuses and nNOS-positive cells reached 46.20 ± 1.453% in the MP, 45.39 ± 0.488% in the OSP, and 44.07 ± 0.308% in the ISP. However, in the present study, the influence of T2 toxin on the intramucosal and intramuscular nNOS-positive nerves was not observed. The results obtained in the present study indicate that even low doses of T2 toxin are not neutral for living organisms because they may change the neurochemical characterization of the enteric neurons.
Collapse
Affiliation(s)
- Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland; (A.R.); (E.K.)
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland; (S.G.); (J.C.)
| | - Ewa Kaczmar
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland; (A.R.); (E.K.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Jaroslaw Calka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland; (S.G.); (J.C.)
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland; (A.R.); (E.K.)
- Correspondence: ; Fax: +48-95234460
| |
Collapse
|
7
|
Agrawal L, Korkutata M, Vimal SK, Yadav MK, Bhattacharyya S, Shiga T. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut. Neuropharmacology 2020; 166:107969. [PMID: 31982703 DOI: 10.1016/j.neuropharm.2020.107969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The latest estimates from world health organization suggest that more than 450 million people are suffering from depression and other psychiatric conditions. Of these, 50-60% have been reported to have progression of gut diseases. In the last two decades, researchers introduced incipient physiological roles for serotonin (5-HT) receptors (5-HTRs), suggesting their importance as a potential pharmacological target in various psychiatric and gut diseases. A growing body of evidence suggests that 5-HT systems affect the brain-gut axis in depressive patients, which leads to gut comorbidity. Recently, preclinical trials of 5-HT4R agonists and antagonists were promising as antipsychotic and prokinetic agents. In the current review, we address the possible pharmacological role and contribution of 5-HT4R in the pathophysiology of chronic depression and associated gut abnormalities. Physiologically, during depression episodes, centers of the sympathetic and parasympathetic nervous system couple together with neuroendocrine systems to alter the function of hypothalamic-pituitary-adrenal (HPA) axis and enteric nervous system (ENS), which in turn leads to onset of gastrointestinal tract (GIT) disorders. Consecutively, the ENS governs a broad spectrum of physiological activities of gut, such as visceral pain and motility. During the stages of emotional stress, hyperactivity of the HPA axis alters the ENS response to physiological and noxious stimuli. Consecutively, stress-induced flare, swelling, hyperalgesia and altered reflexes in gut eventually lead to GIT disorders. In summary, the current review provides prospective information about the role and mechanism of 5-HT4R-based therapeutics for the treatment of depressive disorder and possible consequences for the gut via brain-gut axis interactions. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan.
| | - Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Manoj Kumar Yadav
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba,1-1-1, Tennodai, Tsukuba, 305-8577, Ibaraki, Japan.
| |
Collapse
|
8
|
Bulc M, Palus K, Dąbrowski M, Całka J. Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig. Int J Mol Sci 2019; 20:ijms20071681. [PMID: 30987291 PMCID: PMC6480956 DOI: 10.3390/ijms20071681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic autonomic peripheral neuropathy (PN) involves a broad spectrum of organs. One of them is the gastrointestinal (GI) tract. The molecular mechanisms underlying the pathogenesis of digestive complications are not yet fully understood. Digestion is controlled by the central nervous system (CNS) and the enteric nervous system (ENS) within the wall of the GI tract. Enteric neurons exert regulatory effects due to the many biologically active substances secreted and released by enteric nervous system (ENS) structures. These include nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS). It is a very important inhibitory factor, necessary for smooth muscle relaxation. Moreover, it was noted that nitrergic innervation can undergo adaptive changes during pathological processes. Additionally, nitrergic neurons function may be regulated through the synthesis of other active neuropeptides. Therefore, in the present study, using the immunofluorescence technique, we first examined the influence of hyperglycemia on the NOS- containing neurons in the porcine small intestine and secondly the co-localization of nNOS with vasoactive intestinal polypeptide (VIP), galanin (GAL) and substance P (SP) in all plexuses studied. Following chronic hyperglycaemia, we observed a reduction in the number of the NOS-positive neurons in all intestinal segments studied, as well as an increased in investigated substances in nNOS positive neurons. This observation confirmed that diabetic hyperglycaemia can cause changes in the neurochemical characteristics of enteric neurons, which can lead to numerous disturbances in gastrointestinal tract functions. Moreover, can be the basis of an elaboration of these peptides analogues utilized as therapeutic agents in the treatment of GI complications.
Collapse
Affiliation(s)
- Michał Bulc
- Department of Clinical Physiology Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| | - Katarzyna Palus
- Department of Clinical Physiology Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| | - Jarosław Całka
- Department of Clinical Physiology Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| |
Collapse
|
9
|
Szymanska K, Calka J, Gonkowski S. Nitric oxide as an active substance in the enteric neurons of the porcine digestive tract in physiological conditions and under intoxication with bisphenol A (BPA). Nitric Oxide 2018; 80:1-11. [PMID: 30086357 DOI: 10.1016/j.niox.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023]
Abstract
Bisphenol A (BPA) is an organic substance, which is commonly used in the production of plastic. It is known that BPA has the negative impact on the living organism, affecting among others the reproductive organs, nervous, endocrine and immune systems. Nevertheless the knowledge about the influence of BPA on the enteric nervous system (ENS) is extremely scanty. On the other hand, nitric oxide is considered to be one of the most important neuronal factors in the ENS. The aim of the study was to investigate the influence of low and high doses of BPA on neuronal isoform nitric oxide synthase - like immunoreactive (nNOS-LI) nervous structures in the various parts of the porcine gastrointestinal (GI) tract using double immunofluorescence technique. The obtained results show that BPA affects nNOS-LI enteric neurons and nerve fibers, and the character and severity of observed changes depend on the fragment of the gastrointestinal tract, part of the ENS and dose of the toxin. It should be pointed out that even relatively low doses of BPA (0.05 mg/kg body weight/day) are not neutral for the organism and may change the number of nitrergic nervous structures in the stomach and intestine. Observed changes are probably connected with neurotoxic activity of BPA, but the exact mechanisms of them still remain unclear.
Collapse
Affiliation(s)
- Kamila Szymanska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-718, Olsztyn, Poland.
| | - Jaroslaw Calka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-718, Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-718, Olsztyn, Poland
| |
Collapse
|
10
|
The Influence of Low Doses of Zearalenone and T-2 Toxin on Calcitonin Gene Related Peptide-Like Immunoreactive (CGRP-LI) Neurons in the ENS of the Porcine Descending Colon. Toxins (Basel) 2017; 9:toxins9030098. [PMID: 28287437 PMCID: PMC5371853 DOI: 10.3390/toxins9030098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
The enteric nervous system (ENS) can undergo adaptive and reparative changes in response to physiological and pathological stimuli. These manifest primarily as alterations in the levels of active substances expressed by the enteric neuron. While it is known that mycotoxins can affect the function of the central and peripheral nervous systems, knowledge about their influence on the ENS is limited. Therefore, the aim of the present study was to investigate the influence of low doses of zearalenone (ZEN) and T-2 toxin on calcitonin gene related peptide-like immunoreactive (CGRP-LI) neurons in the ENS of the porcine descending colon using a double immunofluorescence technique. Both mycotoxins led to an increase in the percentage of CGRP-LI neurons in all types of enteric plexuses and changed the degree of co-localization of CGRP with other neuronal active substances, such as substance P, galanin, nitric oxide synthase, and cocaine- and amphetamine-regulated transcript peptide. The obtained results demonstrate that even low doses of ZEN and T-2 can affect living organisms and cause changes in the neurochemical profile of enteric neurons.
Collapse
|
11
|
Gonkowski S, Rowniak M, Wojtkiewicz J. Zinc Transporter 3 (ZnT3) in the Enteric Nervous System of the Porcine Ileum in Physiological Conditions and during Experimental Inflammation. Int J Mol Sci 2017; 18:ijms18020338. [PMID: 28178198 PMCID: PMC5343873 DOI: 10.3390/ijms18020338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/28/2017] [Accepted: 02/03/2017] [Indexed: 01/19/2023] Open
Abstract
Zinc transporter 3 (ZnT3) is a member of the solute-linked carrier 30 (SLC 30) zinc transporter family. It is closely linked to the nervous system, where it takes part in the transport of zinc ions from the cytoplasm to the synaptic vesicles. ZnT3 has also been observed in the enteric nervous system (ENS), but its reactions in response to pathological factors remain unknown. This study, based on the triple immunofluorescence technique, describes changes in ZnT3-like immunoreactive (ZnT3-LI) enteric neurons in the porcine ileum, caused by chemically-induced inflammation. The inflammatory process led to a clear increase in the percentage of neurons immunoreactive to ZnT3 in all "kinds" of intramural enteric plexuses, i.e., myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses. Moreover, a wide range of other active substances was noted in ZnT3-LI neurons under physiological and pathological conditions, and changes in neurochemical characterisation of ZnT3⁺ cells in response to inflammation depended on the "kind" of enteric plexus. The obtained results show that ZnT3 is present in the ENS in a relatively numerous and diversified neuronal population, not only in physiological conditions, but also during inflammation. The reasons for the observed changes are not clear; they may be connected with the functions of zinc ions and their homeostasis disturbances in pathological processes. On the other hand, they may be due to adaptive and/or neuroprotective processes within the pathologically altered gastrointestinal tract.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, Oczapowskiego 13, University of Warmia and Mazury, 10-718 Olsztyn, Poland.
| | - Maciej Rowniak
- Department of Comparative Anatomy, Faculty of Biology, Plac Łódzki 3, University of Warmia and Mazury, 10-727 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medical Sciences, Warszawska 30, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, 10-082 Olsztyn, Poland.
- Foundation for Nerve Cells Regeneration, Warszawska 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
12
|
Gonkowski S, Obremski K, Calka J. The Influence of Low Doses of Zearalenone on Distribution of Selected Active Substances in Nerve Fibers Within the Circular Muscle Layer of Porcine Ileum. J Mol Neurosci 2015; 56:878-886. [PMID: 25772391 PMCID: PMC4529468 DOI: 10.1007/s12031-015-0537-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate, whether low doses (25 % of no observable adverse effect levels values) of zearalenone (ZEN) can affect the expression of active substances in nerve fibers in the muscular layer of porcine ileum. The study was performed on ten immature pigs divided into two groups: experimental group (n = 5), where zearalenone (10 μg/kg body weight) was given for 42 days, and control animals (n = 5), where placebo was administered. Fragments of ileum of all animals were processed for single-labelling immunofluorescence technique using the antibodies against vasoactive intestinal peptide, neuronal form of nitric oxide synthase, cocaine and amphetamine regulatory peptide, galanin, pituitary adenylate cyclase-activating peptide-27 and substance P. The number of nerve fibers immunoreactive to particular substances was evaluated by the counting of nerves per observation field (0.1 mm2). Low doses of zearalenone caused the clear changes in the expression of substances studied. The number of nerve fibers immunoreactive to the majority of substances increased in experimental animals. The exception was only galanin, the expression of which was less after administration of zearalenone. The obtained results for the first time show that even low doses of zearalenone can affect the nerve fibers in the digestive tract.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowski Str. 13, Olsztyn, 10-718 Poland
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland
| | - Jaroslaw Calka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowski Str. 13, Olsztyn, 10-718 Poland
| |
Collapse
|
13
|
Bulbul A, Bulbul T, Sevimli A, Yilmaz O. The effect of dietary supplementation of nitric oxide donor and inhibitor on nNOS expression in and motility of the small intestine of broilers. Biotech Histochem 2013; 88:258-66. [PMID: 23477594 DOI: 10.3109/10520295.2013.769631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of dietary supplementation of sodium nitroprusside (SNP), a nitric oxide (NO) donor, and N-nitro-L-arginine methyl ester (L-NAME), a NO inhibitor, on neuronal nitric oxide synthase (nNOS) expression in and motility of small intestinum in broilers. A total of 560, one-day-old Ross 308 hybrid mixed sex broiler chicks were divided randomly into one control and seven treatment groups for a 42 day feeding trial including starter phase (0-21 days) and grower phase (22-42 days). The control group was fed a basal diet and the experimental groups were the fed basal diet supplemented with 25, 50, 100 and 200 mg/kg SNP and 25, 50 or 100 mg/kg L-NAME. Ten chickens from each group were sacrificed to collect samples on days 21 and 42. The expression patterns of nNOS immunoreactivity in nerve fibers were determined by immunohistochemistry. In the contractility studies, longitudinal isolated strips of duodenum, jejunum and ileum were treated with 10(-5) M L-arginine and 10(-4) M SNP. Immunohistochemistry revealed that nNOS expression was not detectable in the duodenum or ileum of either the control or experimental groups. On the other hand, nNOS immunoreactivity in the jejunum control group showed a strong reaction on day 21, but the reaction was weak on day 42. nNOS expression clearly was suppressed on day 21 by the diet supplemented with L-NAME, while the diet supplemented with SNP stimulated nNOS expression on day 21. Contractility experiments revealed that spontaneous contractility of isolated strips of duodenum, jejunum and ileum showed no significant difference among groups. Spontaneous contractions of all strips were inhibited by L-arginine and SNP in all groups. The percentage inhibition rate of spontaneous contractions of jejunum application on days 21 and 42 after L-arginine decreased in the group supplemented with 100 mg/kg L-NAME. The percentage inhibition rate on day 21 after SNP application decreased in both groups that received 50 and 100 mg/kg L-NAME. We demonstrated the expression pattern of nNOS in nerve fibers in jejunum of broiler chickens. Contractility studies revealed that the NOS-NO pathway may play a role in smooth muscle contraction of small intestine of chickens. Feeding strategies that supplement NO donor and NO inhibitor can be of physiological importance to small intestine motility owing to alteration of nNOS expression in the jejunum.
Collapse
Affiliation(s)
- A Bulbul
- Department of Physiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey.
| | | | | | | |
Collapse
|
14
|
Zaitseva OV, Kuznetsova TV, Markosova TG. NADPH-diaphorase activity in the digestive system of gastropod molluscs Achatina fulica and Littorina littorea. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s002209300901013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Pimenova EP, Varaksin AA. Nitroxidergic elements in the digestive system of Mactra chinensis and Spisula sachalinensis (Mollusca: Bivalvia: Mactridae). J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006040132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pimenova EA, Varaksin AA. PUTATIVE NITROXIDERGIC CELLS IN THE DIGESTIVE SYSTEM OF SOME MYTILIDS (MOLLUSCA: BIVALVIA: MYTILIDAE) REVEALED BY NADPH-DIAPHORASE HISTOCHEMISTRY. MALACOLOGIA 2006. [DOI: 10.4002/1543-8120-49.1.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Applications for regulatory region of nitric oxide synthase isoforms. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.11.1525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Schleiffer R, Duranton B, Gossé F, Bergmann C, Raul F. Nitric oxide synthase inhibition promotes carcinogen-induced preneoplastic changes in the colon of rats. Nitric Oxide 2000; 4:583-9. [PMID: 11139366 DOI: 10.1006/niox.2000.0310] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
l-Arginine is metabolized either to polyamines through arginase and ornithine decarboxylase (ODC) activities or to citrulline and nitric oxide (NO, nitrogen monoxide) through the NO synthase (NOS) pathway. Polyamine levels and ODC activity are high in tumor cells. The aim of this study was to test whether N(G)-nitro-l-arginine methyl ester (l-NAME), an inhibitor of NOS, modulates colon carcinogenesis. Adult male Wistar rats were treated with azoxymethane (AOM, 15 mg/kg ip), a chemical carcinogen, once a week for 2 weeks. One week after the second injection the rats were randomly divided into two groups. One group (n = 8) received l-NAME (10 mg/kg body wt/day) in drinking water. The control group (n = 8) received tap water. After 5 weeks, the rats receiving l-NAME showed enhanced mean basal arterial blood pressure, decreased heart rate, and a significant decrease of the cGMP content in the colonic mucosa. In both groups, AOM induced the formation of colonic aberrant crypt foci (ACF). In l-NAME-treated rats, the number of ACF was higher than in controls by 47%. ODC activity was enhanced by 11-fold. S-Adenosyl-methionine-decarboxylase activity and putrescine concentration were significantly increased in the colonic mucosa of l-NAME-treated rats. The data suggest that l-NAME promotes carcinogen-induced preneoplastic changes in the colon by inhibiting NOS activity and by stimulating polyamine biosynthesis.
Collapse
Affiliation(s)
- R Schleiffer
- ULP/CJF INSERM 95-09, Laboratoire du Contrôle Métabolique et Nutritionnel en Oncologie Digestive, IRCAD, 1, Place de l'Hôpital, 67091 Strasbourg-Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Sidorov AV, Kazakevich VB, Moroz LL. Nitric oxide selectively enhances cAMP levels and electrical coupling between identified RPaD2NDl neurons in the CNS of Lymnaea stagnalis (L.). ACTA BIOLOGICA HUNGARICA 1999. [DOI: 10.1007/bf03543044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Nitric oxide and the gastrointestinal tract. Curr Opin Crit Care 1999. [DOI: 10.1097/00075198-199904000-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Comparative Physiology of the l-Arginine-Nitric Oxide Pathway: An Overview of a Symposium at the 4th International Congress of Comparative Physiology and Biochemistry, 1995. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0300-9629(97)00021-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|