1
|
Komarov K, Park W, Lee S, Huix-Rotllant M, Choi CH. Doubly Tuned Exchange-Correlation Functionals for Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory. J Chem Theory Comput 2023; 19:7671-7684. [PMID: 37844129 DOI: 10.1021/acs.jctc.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
It is demonstrated that significant accuracy improvements in MRSF-TDDFT can be achieved by introducing two different exchange-correlation (XC) functionals for the reference Kohn-Sham DFT and the response part of the calculations, respectively. Accordingly, two new XC functionals of doubly tuned Coulomb attenuated method-vertical excitation energy (DTCAM-VEE) and DTCAM-AEE were developed on the basis of the "adaptive exact exchange (AEE)" concept in the framework of the Coulomb-attenuating XC functionals. The values by DTCAM-VEE are in excellent agreement with those of Thiel's set [mean absolute errors (MAEs) and the interquartile range (IQR) values of 0.218 and 0.327 eV, respectively]. On the other hand, DTCAM-AEE faithfully reproduced the qualitative aspects of conical intersections (CIs) of trans-butadiene and thymine and the nonadiabatic molecular dynamics (NAMD) simulations on thymine. The latter functional also remarkably exhibited the exact 1/R asymptotic behavior of the charge-transfer state of an ethylene-tetrafluoroethylene dimer and the accurate potential energy surfaces (PESs) along the two torsional angles of retinal protonated Schiff base model with six double bonds (rPSB6). Overall, DTCAM-AEE generally performs well, as its MAE (0.237) and IQR (0.41 eV) are much improved as compared to BH&HLYP. The current idea can also be applied to other XC functionals as well as other variants of linear response theories, opening a new way of developing XC functionals.
Collapse
Affiliation(s)
- Konstantin Komarov
- Center for Quantum Dynamics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Seunghoon Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, South Korea
| | | | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
2
|
Park W, Komarov K, Lee S, Choi CH. Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory: Multireference Advantages with the Practicality of Linear Response Theory. J Phys Chem Lett 2023; 14:8896-8908. [PMID: 37767969 PMCID: PMC10561896 DOI: 10.1021/acs.jpclett.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The density functional theory (DFT) and linear response (LR) time-dependent (TD)-DFT are of the utmost importance for routine computations. However, the single reference formulation of DFT suffers in the description of open-shell singlet systems such as diradicals and bond-breaking. LR-TDDFT, on the other hand, finds difficulties in the modeling of conical intersections, doubly excited states, and core-level excitations. In this Perspective, we demonstrate that many of these limitations can be overcome by recently developed mixed-reference (MR) spin-flip (SF)-TDDFT, providing an alternative yet accurate route for such challenging situations. Empowered by the practicality of the LR formalism, it is anticipated that MRSF-TDDFT can become one of the major workhorses for general routine tasks.
Collapse
Affiliation(s)
- Woojin Park
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Konstantin Komarov
- Center
for Quantum Dynamics, Pohang University
of Science and Technology, Pohang 37673, South Korea
| | - Seunghoon Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Cheol Ho Choi
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
3
|
Polak D, Hannon ADP, Marczak Giorio GA, Hawkins OA, Oliver TAA. The Solvent-Dependent Photophysics of Diphenyloctatetraene. J Phys Chem B 2023; 127:8199-8207. [PMID: 37708380 PMCID: PMC10544004 DOI: 10.1021/acs.jpcb.3c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Despite many decades of study, the excited state photophysics of polyenes remains controversial. In diphenylpolyenes with conjugated backbones that contain between 2 and 4 double carbon-carbon bonds, the first two excited electronic states are nearly degenerate but of entirely different character, and their energy splitting is strongly dependent on solvent polarizability. To examine the interplay between these different states, steady-state and time-resolved fluorescence spectroscopies were used to undertake a comprehensive investigation of diphenylocatetraene's (DPO) excited state dynamics in 10 solvents of different polarizabilities and polarities, ranging from weakly interacting alkanes to polar hydrogen-bonding alcohols. These data revealed that photopreparation of the optically bright 1Bu state resulted in fast (<170 ps) internal conversion to the lower-lying optically dark 2Ag state. The 2Ag state is responsible for almost all the observed DPO fluorescence and gains oscillator strength via vibronic intensity stealing with the near-degenerate 1Bu state. The fluorescence lifetime associated with the 2Ag state decayed monoexponentially (4.2-7.2 ns) in contrast to prior biexponential decay kinetics reported for similar polyenes, diphenylbutadiene and diphenylhexatriene. An analysis combining the measured fluorescence lifetimes and fluorescence quantum yields (the latter varying between 7 and 21%) allowed for a 190 cm-1 Herzberg-Teller vibronic coupling constant between the 1Bu and 2Ag states to be determined. The analysis also revealed that the ordering of electronic states remains constant in all the solvents studied, with the 2Ag state minimum always lower in energy than that of the 1Bu state, thus making it a relatively simple polyene compared to structurally similar diphenylhexatriene.
Collapse
Affiliation(s)
| | | | | | - Olivia A. Hawkins
- School of Chemistry, Cantock’s
Close, University of Bristol, Bristol, BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School of Chemistry, Cantock’s
Close, University of Bristol, Bristol, BS8 1TS, U.K.
| |
Collapse
|
4
|
do Casal MT, Toldo JM, Barbatti M, Plasser F. Classification of doubly excited molecular electronic states. Chem Sci 2023; 14:4012-4026. [PMID: 37063798 PMCID: PMC10094316 DOI: 10.1039/d2sc06990c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Electronic states with partial or complete doubly excited character play a crucial role in many areas, such as singlet fission and non-linear optical spectroscopy. Although doubly excited states have been studied in polyenes and related systems for many years, the assignment as singly vs. doubly excited, even in the simplest case of butadiene, has sparked controversies. So far, no well-defined framework for classifying doubly excited states has been developed, and even more, there is not even a well-accepted definition of doubly excited character as such. Here, we present a solution: a physically motivated definition of doubly excited character based on operator expectation values and density matrices, which works independently of the underlying orbital representation, avoiding ambiguities that have plagued earlier studies. Furthermore, we propose a classification scheme to differentiate three cases: (i) two single excitations occurring within two independent pairs of orbitals leaving four open shells (DOS), (ii) the promotion of both electrons to the same orbital, producing a closed-shell determinant (DCS), and (iii) a mixture of singly and doubly excited configurations not aligning with either one of the previous cases (Dmix). We highlight their differences in underlying energy terms and explain their signatures in practical computations. The three cases are illustrated through various high-level computational methods using dimers for DOS, polyenes for Dmix, and cyclobutane and tetrazine for DCS. The conversion between DOS and DCS is investigated using a well-known photochemical reaction, the photodimerization of ethylene. This work provides a deeper understanding of doubly excited states and may guide more rigorous discussions toward improving their computational description while also giving insight into their fundamental photophysics.
Collapse
Affiliation(s)
| | | | - Mario Barbatti
- Aix-Marseille University, CNRS Marseille France
- Institut Universitaire de France 75231 Paris France
| | - Felix Plasser
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| |
Collapse
|
5
|
Millington O, Montanaro S, Leventis A, Sharma A, Dowland SA, Sawhney N, Fallon KJ, Zeng W, Congrave DG, Musser AJ, Rao A, Bronstein H. Soluble Diphenylhexatriene Dimers for Intramolecular Singlet Fission with High Triplet Energy. J Am Chem Soc 2023; 145:2499-2510. [PMID: 36683341 PMCID: PMC9896565 DOI: 10.1021/jacs.2c12060] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 01/24/2023]
Abstract
Intramolecular singlet fission (iSF) facilitates single-molecule exciton multiplication, converting an excited singlet state to a pair of triplet states within a single molecule. A critical parameter in determining the feasibility of SF-enhanced photovoltaic designs is the triplet energy; many existing iSF materials have triplet energies too low for efficient transfer to silicon via a photon multiplier scheme. In this work, a series of six novel dimers based upon the high-triplet-energy, SF-active chromophore, 1,6-diphenyl-1,3,5-hexatriene (DPH) [E(T1) ∼ 1.5 eV], were designed, synthesized, and characterized. Transient absorption spectroscopy and fluorescence lifetime studies reveal that five of the dimers display iSF activity, with time constants for singlet fission varying between 7 ± 2 ps and 2.2 ± 0.2 ns and a high triplet yield of 163 ± 63% in the best-performing dimer. A strong dependence of the rate of fission on the coupling geometry is demonstrated. For optimized iSF behavior, close spatial proximity and minimal through-bond communication are found to be crucial for balancing the rate of SF against the reverse recombination process.
Collapse
Affiliation(s)
- Oliver Millington
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | | | - Anastasia Leventis
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Ashish Sharma
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Simon A. Dowland
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Nipun Sawhney
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Kealan J. Fallon
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Weixuan Zeng
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Daniel G. Congrave
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Andrew J. Musser
- Department
of Chemistry and Chemical Biology, Cornell
University, Baker Laboratory, Ithaca, New York14853, United States
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| |
Collapse
|
6
|
Shostak S, Park W, Oh J, Kim J, Lee S, Nam H, Filatov M, Kim D, Choi CH. Ultrafast Excited State Aromatization in Dihydroazulene. J Am Chem Soc 2023; 145:1638-1648. [PMID: 36633597 DOI: 10.1021/jacs.2c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Excited-state aromatization dynamics in the photochemical ring opening of dihydroazulene (DHA) is investigated by nonadiabatic molecular dynamics simulations in connection with the mixed-reference spin-flip (MRSF)-TDDFT method. It is found that, in the main reaction channel, the ring opening occurs in the excited state in a sequence of steps with increasing aromaticity. The first stage lasting ca. 200 fs produces an 8π semiaromatic S1 minimum (S1, min) through an ultrafast damped bond length alternation (BLA) movement synchronized with a partial planarization of the cycloheptatriene ring. An additional ca. 200 fs are required to gain the vibrational energy needed to overcome a ring-opening transition state characterized by an enhanced Baird aromaticity. Unlike other BLA motions of ππ* state, it was shown that their damping is a characteristic feature of aromatic bond-equalization process. In addition, some minor channels of the reaction have also been discovered, where noticeably higher barriers of the S1 non/antiaromatic transition structures must be surmounted. These anti-Baird channels led to reformation of DHA or other closed-ring products. The observed competition between the Baird and anti-Baird channels suggests that the quantum yield of photochemical products can be controllable by tipping their balance. Hence, here we suggest including the concept of anti-Baird, which would expand the applicability of Baird rule to much broader situations.
Collapse
Affiliation(s)
- Svetlana Shostak
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Juwon Oh
- Department of ICT Environmental Health System (Graduate school) and Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
7
|
do Casal MT, Toldo JM, Plasser F, Barbatti M. Using diketopyrrolopyrroles to stabilize double excitation and control internal conversion. Phys Chem Chem Phys 2022; 24:23279-23288. [PMID: 36164816 DOI: 10.1039/d2cp03533b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diketopyrrolopyrrole (DPP) is a pivotal functional group to tune the physicochemical properties of novel organic photoelectronic materials. Among multiple uses, DPP-thiophene derivatives forming a dimer through a vinyl linker were recently shown to quench the fluorescence observed in their isolated monomers. Here, we explain this fluorescence quenching using computational chemistry. The DPP-thiophene dimer has a low-lying doubly excited state that is not energetically accessible for the monomer. This state delays the fluorescence allowing internal conversion to occur first. We characterize the doubly excited state wavefunction by systematically changing the derivatives to tune the π-scaffold size and the acceptor and donor characters. The origin of this state's stabilization is related to the increase in the π-system and not to the charge-transfer features. This analysis delivers core conceptual information on the electronic properties of organic chromophores arranged symmetrically around a vinyl linker, opening new ways to control the balance between luminescence and internal conversion.
Collapse
Affiliation(s)
| | | | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France. .,Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
8
|
Park W, Shen J, Lee S, Piecuch P, Filatov M, Choi CH. Internal Conversion between Bright (1 1Bu+) and Dark (2 1Ag-) States in s- trans-Butadiene and s- trans-Hexatriene. J Phys Chem Lett 2021; 12:9720-9729. [PMID: 34590847 DOI: 10.1021/acs.jpclett.1c02707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Internal conversion (IC) between the two lowest singlet excited states, 11Bu+ and 21Ag-, of s-trans-butadiene and s-trans-hexatriene is investigated using a series of single- and multi- reference wave function and density functional theory (DFT) methodologies. Three independent types of the equation-of-motion coupled-cluster (EOMCC) theory capable of providing an accurate and balanced description of one- as well as two-electron transitions, abbreviated as δ-CR-EOMCC(2,3), DIP-EOMCC(4h2p){No}, and DEA-EOMCC(4p2h){Nu} or DEA-EOMCC(3p1h,4p2h){Nu}, consistently predict that the 11Bu+/21Ag- crossing in both molecules occurs along the bond length alternation coordinate. However, the analogous 11Bu+ and 21Ag- potentials obtained with some multireference approaches, such as CASSCF and MRCIS(D), as well as with the linear-response formulation of time-dependent DFT (TDDFT), do not cross. Hence, caution needs to be exercised when studying the low-lying singlet excited states of polyenes with conventional multiconfigurational methods and TDDFT. The multistate many-body perturbation theory methods, such as XMCQDPT2, do correctly reproduce the curve crossing. Among the simplest and least expensive computational methodologies, the DFT approaches that incorporate the contributions of doubly excited configurations, abbreviated as MRSF (mixed reference spin-flip) TDDFT and SSR(4,4), accurately reproduce our best EOMCC results. This is highly promising for nonadiabatic molecular dynamics simulations in larger systems.
Collapse
Affiliation(s)
- Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
9
|
Kochman MA, Palczewski K, Kubas A. Theoretical Study of the Photoisomerization Mechanism of All- Trans-Retinyl Acetate. J Phys Chem A 2021; 125:8358-8372. [PMID: 34546761 PMCID: PMC8488936 DOI: 10.1021/acs.jpca.1c05533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The compound 9-cis-retinyl acetate (9-cis-RAc) is a precursor
to 9-cis-retinal,
which has potential application in the treatment of some hereditary
diseases of the retina. An attractive synthetic route to 9-cis-RAc is based on the photoisomerization reaction of the
readily available all-trans-RAc. In the present study,
we examine the mechanism of the photoisomerization reaction with the
use of state-of-the-art electronic structure calculations for two
polyenic model compounds: tEtEt-octatetraene and tEtEtEc-2,6-dimethyl-1,3,5,7,9-decapentaene. The occurrence
of photoisomerization is attributed to a chain-kinking mechanism,
whereby a series of S1/S0 conical intersections
associated with kinking deformations at different positions along
the polyenic chain mediate internal conversion to the S0 state, and subsequent isomerization around one of the double bonds.
Two other possible photoisomerization mechanisms are taken into account,
but they are rejected as incompatible with simulation results and/or
the available spectroscopic data.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute of Physical Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States.,Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
10
|
Mohan T M N, Leslie CH, Sil S, Rose JB, Tilluck RW, Beck WF. Broadband 2DES detection of vibrational coherence in the S x state of canthaxanthin. J Chem Phys 2021; 155:035103. [PMID: 34293883 DOI: 10.1063/5.0055598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonadiabatic mechanism that mediates nonradiative decay of the bright S2 state to the dark S1 state of carotenoids involves population of a bridging intermediate state, Sx, in several examples. The nature of Sx remains to be determined definitively, but it has been recently suggested that Sx corresponds to conformationally distorted molecules evolving along out-of-plane coordinates of the isoprenoid backbone near a low barrier between planar and distorted conformations on the S2 potential surface. In this study, the electronic and vibrational dynamics accompanying the formation of Sx in toluene solutions of the ketocarotenoid canthaxanthin (CAN) are characterized with broadband two-dimensional electronic spectroscopy (2DES) with 7.8 fs excitation pulses and detection of the linear polarization components of the third-order nonlinear optical signal. A stimulated-emission cross peak in the 2DES spectrum accompanies the formation of Sx in <20 fs following excitation of the main absorption band. Sx is prepared instantaneously, however, with excitation of hot-band transitions associated with distorted conformations of CAN's isoprenoid backbone in the low frequency onset of the main absorption band. Vibrational coherence oscillation maps and modulated anisotropy transients show that Sx undergoes displacements from the Franck-Condon S2 state along out-of-plane coordinates as it passes to the S1 state. The results are consistent with the conclusion that CAN's carbonyl-substituted β-ionone rings impart an intramolecular charge-transfer character that frictionally slows the passage from Sx to S1 compared to carotenoids lacking carbonyl substitution. Despite the longer lifetime, the S1 state of CAN is formed with retention of vibrational coherence after passing through a conical intersection seam with the Sx state.
Collapse
Affiliation(s)
- Nila Mohan T M
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Chase H Leslie
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Sourav Sil
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Justin B Rose
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Warren F Beck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| |
Collapse
|
11
|
Gurchiek JK, Rose JB, Guberman-Pfeffer MJ, Tilluck RW, Ghosh S, Gascón JA, Beck WF. Fluorescence Anisotropy Detection of Barrier Crossing and Ultrafast Conformational Dynamics in the S 2 State of β-Carotene. J Phys Chem B 2020; 124:9029-9046. [PMID: 32955881 DOI: 10.1021/acs.jpcb.0c06961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenoids are usually only weakly fluorescent despite being very strong absorbers in the mid-visible region because their first two excited singlet states, S1 and S2, have very short lifetimes. To probe the structural mechanisms that promote the nonradiative decay of the S2 state to the S1 state, we have carried out a series of fluorescence lineshape and anisotropy measurements with a prototype carotenoid, β-carotene, in four aprotic solvents. The anisotropy values observed in the fluorescence emission bands originating from the S2 and S1 states reveal that the large internal rotations of the emission transition dipole moment, as much as 50° relative to that of the absorption transition dipole moment, are initiated during ultrafast evolution on the S2 state potential energy surface and persist upon nonradiative decay to the S1 state. Electronic structure calculations of the orientation of the transition dipole moment account for the anisotropy results in terms of torsional and pyramidal distortions near the center of the isoprenoid backbone. The excitation wavelength dependence of the fluorescence anisotropy indicates that these out-of-plane conformational motions are initiated by passage over a low-activation energy barrier from the Franck-Condon S2 structure. This conclusion is consistent with detection over the 80-200 K range of a broad, red-shifted fluorescence band from a dynamic intermediate evolving on a steep gradient of the S2 state potential energy surface after crossing the activation barrier. The temperature dependence of the oscillator strength and anisotropy indicate that nonadiabatic passage from S2 through a conical intersection seam to S1 is promoted by the out-of-plane motions of the isoprenoid backbone with strong hindrance by solvent friction.
Collapse
Affiliation(s)
- J K Gurchiek
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Justin B Rose
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Matthew J Guberman-Pfeffer
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Soumen Ghosh
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Lombardy 20133, Italy
| | - José A Gascón
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Symmetry-breaking transitions in the early steps of protein self-assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:175-191. [PMID: 32123956 DOI: 10.1007/s00249-020-01424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
Protein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a heterogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer's disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating distribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1-40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations.
Collapse
|
13
|
MacDonell RJ, Corrales ME, Boguslavskiy AE, Bañares L, Stolow A, Schuurman MS. Substituent effects on nonadiabatic excited state dynamics: Inertial, steric, and electronic effects in methylated butadienes. J Chem Phys 2020; 152:084308. [DOI: 10.1063/1.5139446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ryan J. MacDonell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - María E. Corrales
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Luis Bañares
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Albert Stolow
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael S. Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
14
|
Šebelík V, Kloz M, Rebarz M, Přeček M, Kang EH, Choi TL, Christensen RL, Polívka T. Spectroscopy and excited state dynamics of nearly infinite polyenes. Phys Chem Chem Phys 2020; 22:17867-17879. [PMID: 32766621 DOI: 10.1039/d0cp02465a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steady-state and transient absorption spectra with <50 fs time resolution were obtained for two conjugated polymers, both with ≈200 conjugated double bonds (N), constrained in planar, stable, polyene frameworks. Solutions of the polymers exhibit the same S2 → S1 → S* → S0 decay pathway observed for the N = 11-19 polyene oligomers and for zeaxanthin homologues with N = 11-23. Comparisons with the excited state dynamics of polydiactylene and a much longer, more disordered polyene polymer (poly(DEDPM)) show that the S2, S1, and S* lifetimes of the four polymers are almost identical. The S* signals in the polymers are assigned to absorption from vibrationally excited ground states. In spite of significant heterogeneities and variations in conjugation lengths in these long polyenes, their S0 → S2 absorptions are vibronically-resolved in room temperature solutions with electronic origins at ≈600 nm. The limiting wavelength for the S0 → S2 transitions is consistent with the persistence of bond length alternation in the electronic ground states and a HOMO-LUMO band gap in polyenes with N ≈ 200. The coincidence of the well-resolved S0 → S2 electronic origins and the convergence of the excited state lifetimes in the four polymers point to a common, "nearly infinite" polyene limit.
Collapse
Affiliation(s)
- Václav Šebelík
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budjovice, Czech Republic.
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Mateusz Rebarz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Martin Přeček
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Eun-Hye Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | | | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budjovice, Czech Republic.
| |
Collapse
|
15
|
Taffet EJ, Lee BG, Toa ZSD, Pace N, Rumbles G, Southall J, Cogdell RJ, Scholes GD. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J Phys Chem B 2019; 123:8628-8643. [PMID: 31553605 DOI: 10.1021/acs.jpcb.9b04027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S2) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S2) and lowest-energy dark (S1) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowest-lying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S2 to S1, in the sense that these two states attain energetic degeneracy along this pathway.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Benjamin G Lee
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Natalie Pace
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
16
|
Fuß W. Previtamin D: Z-E photoisomerization via a Hula-twist conical intersection. Phys Chem Chem Phys 2019; 21:6776-6789. [PMID: 30887977 DOI: 10.1039/c9cp00500e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On photoisomerization of previtamin D - a steroid Z-triene - produced in situ by ring opening of 7-dehydrocholesterol in a cold matrix, it was found in A. M. Müller et al. [Angew. Chem., Int. Ed., 1998, 37, 505-507] that the product (tachysterol) had rotated not only its central double bond but also an adjacent single bond. This is called a Hula twist (HT) due to the alternative description, in which it is just one central CH group that rotates. It was pointed out that the results directly support the calculated molecular structure at a conical intersection, which mediates the Z-E isomerization of polyenes. With a more sophisticated technique, Saltiel et al. (J. Phys. Chem. Lett., 2013, 4, 716-721) confirmed this tachysterol rotamer as the main product but found two additional conformers. They believed to have seen also three previtamin D conformers, suggested to be a result of hot-ground-state reactions from the primary rotamer, and interpreted all tachysterol products to be a result of a double-bond twist (DBT), not a HT. On the basis of published circular dichroism data and consideration of other reactions, it is here shown that under these conditions hot-ground-state reactions are unimportant or even negligible and that there is practically only a single conformer of previtamin D after ring opening. All products can be easily understood on the basis of an HT-type conical intersection, which is thus further supported. Invoking a published pretwist model even rationalizes product ratios. The two twists in HT are concerted. Furthermore HT is fully consistent with the NEER principle (nonequilibration of excited rotamers) and even offers additional possibilities for conformer control.
Collapse
|
17
|
Saltiel J, Redwood CE, Laohhasurayotin K, Samudrala R. Photochemistry of the 1,6-Dideuterio-1,3,5-hexatrienes in Solution: Efficient Terminal Bond Photoisomerization in One-Bond-Twist and Bicycle Pedal Ways. J Phys Chem A 2018; 122:8477-8489. [PMID: 30277763 DOI: 10.1021/acs.jpca.8b08288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The report that the central bond photoisomerization of the 1,3,5-hexatrienes (Hts) is highly inefficient has encouraged theoreticians to seek conical intersections (CIs) at geometries that can explain rapid nonradiative return to the initially excited isomer. Because they are photochemically silent, torsional relaxations about the terminal double bonds of the Hts have not been evaluated as significant radiationless decay pathways. Study of the photoisomerization of trans,trans,trans- and trans,cis,trans-1,6-dideuterio-1,3,5-hexatrienes ( ttt- and tct-Htd2) addresses this issue. Degassed cyclohexane- d12 (C6D12) and CD3CN solutions were irradiated at 254 nm in quartz NMR tubes, and the progress of the reactions was followed by 1H NMR. Photoisomerization rates based on the integration of terminal hydrogen NMR peaks are in reasonable agreement with rates obtained by fitting pure isomer NMR spectra to the phase shift and baseline corrected experimental NMR spectra. The results show that terminal bond isomerization is highly efficient, especially when one considers that central bond isomerization is much more efficient than previously reported and is mainly observed together with terminal bond isomerization. A mechanism involving terminal one-bond-twist (OBT) in competition with a bicycle pedal (BP) process accounts for all terminal and most central bond photoisomerization. OBT central bond isomerization is a minor reaction that is observed primarily in the tct to ttt direction. Most surprising is the prominent role of the BP process in central bond photoisomerization. Proposed initially to account for photoisomerization in free volume constraining media, it is observed here in the absence of medium constraints.
Collapse
Affiliation(s)
- Jack Saltiel
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Christopher E Redwood
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Kritapas Laohhasurayotin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Ramakrishna Samudrala
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| |
Collapse
|
18
|
West RG, Bína D, Fuciman M, Kuznetsova V, Litvín R, Polívka T. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:357-365. [DOI: 10.1016/j.bbabio.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/16/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022]
|
19
|
Boguslavskiy AE, Schalk O, Gador N, Glover WJ, Mori T, Schultz T, Schuurman MS, Martínez TJ, Stolow A. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy. J Chem Phys 2018; 148:164302. [DOI: 10.1063/1.5016452] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andrey E. Boguslavskiy
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Oliver Schalk
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Niklas Gador
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - William J. Glover
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Toshifumi Mori
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Thomas Schultz
- Ulsan National Institute of Science and Technology, Ulju-gun, Ulsan 44919, South Korea
| | - Michael S. Schuurman
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Todd J. Martínez
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Albert Stolow
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
20
|
Hudson BS. Polyacetylene: Myth and Reality. MATERIALS 2018; 11:ma11020242. [PMID: 29415419 PMCID: PMC5848939 DOI: 10.3390/ma11020242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
Abstract
Polyacetylene, the simplest and oldest of potentially conducting polymers, has never been made in a form that permits rigorous determination of its structure. Trans polyacetylene in its fully extended form will have a potential energy surface with two equivalent minima. It has been assumed that this results in bond length alternation. It is, rather, very likely that the zero-point energy is above the Peierls barrier. The experimental studies that purport to show bond alternation are reviewed and shown to be compromised by serious experimental inconsistencies or by the presence, for which there is considerable evidence, of finite chain polyenes. In this view, addition of dopants results in conductivity by facilitation of charge transport between finite polyenes. The double minimum potential that necessarily occurs for polyacetylene, if viewed as the result of elongation of finite chains, originates from admixture of the 11Ag ground electronic state with the 21Ag excited electronic singlet state. This excitation is diradical (two electron) in character. The polyacetylene limit is an equal admixture of these two 1Ag states making theory intractable for long chains. A method is outlined for preparation of high molecular weight polyacetylene with fully extended chains that are prevented from reacting with neighboring chains.
Collapse
Affiliation(s)
- Bruce S Hudson
- Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA.
| |
Collapse
|
21
|
Gurchiek JK, Bao H, Domínguez-Martín MA, McGovern SE, Marquardt CE, Roscioli JD, Ghosh S, Kerfeld CA, Beck WF. Fluorescence and Excited-State Conformational Dynamics of the Orange Carotenoid Protein. J Phys Chem B 2018; 122:1792-1800. [DOI: 10.1021/acs.jpcb.7b09435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Cheryl A. Kerfeld
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
22
|
Dokukina I, Marian CM, Weingart O. New Perspectives on an Old Issue: A Comparative MS-CASPT2 and OM2-MRCI Study of Polyenes and Protonated Schiff Bases. Photochem Photobiol 2017; 93:1345-1355. [PMID: 28833170 DOI: 10.1111/php.12833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/13/2017] [Indexed: 11/29/2022]
Abstract
Polyenic systems are involved in light perception of numerous living organisms. Although a π-conjugated backbone is a common feature of all polyenes, their photophysics may vary. We provide a comparative quantum mechanical study of low-lying S1 and S2 excited states in short (3-5 double bonds) symmetric all-trans linear polyenes and corresponding protonated Schiff bases. In our investigation, we use the well-established ab initio multireference CASPT2 approach and benchmark the efficient semiempirical OM2-MRCI approach against it. For all protonated Schiff bases, MS-CASPT2 results in two distinct S1 minima with inverted and noninverted bond length pattern, respectively. We find that OM2-MRCI is a computationally affordable and reliable alternative to MS-CASPT2 for investigations of polyenic systems, particularly when highly demanding calculations (e.g. excited-state dynamics) need to be performed.
Collapse
Affiliation(s)
- Irina Dokukina
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Christel M Marian
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Kuznetsova V, Southall J, Cogdell RJ, Fuciman M, Polívka T. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Gu J, Wu W, Danovich D, Hoffmann R, Tsuji Y, Shaik S. Valence Bond Theory Reveals Hidden Delocalized Diradical Character of Polyenes. J Am Chem Soc 2017; 139:9302-9316. [DOI: 10.1021/jacs.7b04410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junjing Gu
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - David Danovich
- Department
of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational
Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Roald Hoffmann
- Baker Laboratory, Department of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuta Tsuji
- Education
Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sason Shaik
- Department
of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational
Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
25
|
Komainda A, Lefrancois D, Dreuw A, Köppel H. Theoretical study of the initial non-radiative 1 B → 2 A transition in the fluorescence quenching of s-trans-butadiene: Electronic structure methods and quantum dynamics. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Komainda A, Lyskov I, Marian CM, Köppel H. Ab Initio Benchmark Study of Nonadiabatic S1–S2 Photodynamics of cis- and trans-Hexatriene. J Phys Chem A 2016; 120:6541-56. [DOI: 10.1021/acs.jpca.6b04971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Komainda
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - I. Lyskov
- Institut
für Theoretische Chemie und Computerchemie, Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - C. M. Marian
- Institut
für Theoretische Chemie und Computerchemie, Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - H. Köppel
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
27
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient Grating Studies of Nonradiative Deactivation of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Intermediate in the Decay Pathway. J Phys Chem B 2016; 120:3601-14. [DOI: 10.1021/acs.jpcb.5b12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| |
Collapse
|
28
|
Miki T, Buckup T, Krause MS, Southall J, Cogdell RJ, Motzkus M. Vibronic coupling in the excited-states of carotenoids. Phys Chem Chem Phys 2016; 18:11443-53. [DOI: 10.1039/c5cp07542d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.
Collapse
Affiliation(s)
- Takeshi Miki
- Physikalisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- D-69120 Heidelberg
- Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- D-69120 Heidelberg
- Germany
| | - Marie S. Krause
- Physikalisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- D-69120 Heidelberg
- Germany
| | - June Southall
- College of Medical
- Veterinary, and Life Science
- University of Glasgow
- G12 8QQ Glasgow
- UK
| | - Richard J. Cogdell
- College of Medical
- Veterinary, and Life Science
- University of Glasgow
- G12 8QQ Glasgow
- UK
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- D-69120 Heidelberg
- Germany
| |
Collapse
|
29
|
Staleva H, Zeeshan M, Chábera P, Partali V, Sliwka HR, Polívka T. Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. J Phys Chem A 2015; 119:11304-12. [PMID: 26502350 DOI: 10.1021/acs.jpca.5b08460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three zeaxanthin homologues with conjugation lengths N of 15, 19, and 23 denoted as Z15, Z19, and Z23 were studied by femtosecond transient absorption spectroscopy, and the results were compared to those obtained for zeaxanthin (Z11). The energies of S2 decrease from 20 450 cm(-1) (Z11) to 18 280 cm(-1) (Z15), 17 095 cm(-1) (Z19), and 16 560 cm(-1) (Z23). Fitting the N dependence of the S2 energies allowed the estimation of [Formula: see text], the S2 energy of a hypothetical infinite zeaxanthin, to be ∼14 000 cm(-1). Exciting the 0-0 band of the S2 state produces characteristic S1-Sn spectral profiles in transient absorption spectra with maxima at 556 nm (Z11), 630 nm (Z15), 690 nm (Z19), and 740 nm (Z23). The red shift of the S1-Sn transition with increasing conjugation length is caused by a decrease in the S1 state energy, resulting in S1 lifetimes of 9 ps (Z11), 0.9 ps (Z15), 0.35 ps (Z19), and 0.19 ps (Z23). Essentially the same lifetimes were obtained after excess energy excitation at 400 nm, but S1-Sn becomes broader, indicating a larger conformation disorder in the S1 state after 400 nm excitation compared to excitation into the 0-0 band of the S2 state. An S* signal was observed in all samples, but only for Z15, Z19, and Z23 does the S* signal decay with a lifetime different from that of the S1 state. The S* lifetimes are 2.9 and 1.6 ps for Z15 and Z19, respectively. In Z23 the S* signal needs two decay components yielding lifetimes of 0.24 and 2.3 ps. The S* signal is more pronounced after 400 nm excitation.
Collapse
Affiliation(s)
- Hristina Staleva
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Muhammad Zeeshan
- Department of Chemistry, Norwegian University of Science and Technology , 7491 Trondheim, Norway
| | - Pavel Chábera
- Department of Chemical Physics, Lund University , SE-221 00 Lund, Sweden
| | - Vassilia Partali
- Department of Chemistry, Norwegian University of Science and Technology , 7491 Trondheim, Norway
| | - Hans-Richard Sliwka
- Department of Chemistry, Norwegian University of Science and Technology , 7491 Trondheim, Norway
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| |
Collapse
|
30
|
Ghosh S, Bishop MM, Roscioli JD, Mueller JJ, Shepherd NC, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient-Grating Studies of Nonradiative Decay of the S2 (11Bu+) State of β-Carotene: Contributions from Dark Intermediates and Double-Quantum Coherences. J Phys Chem B 2015; 119:14905-24. [DOI: 10.1021/acs.jpcb.5b09405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
31
|
Oliver TAA, Fleming GR. Following Coupled Electronic-Nuclear Motion through Conical Intersections in the Ultrafast Relaxation of β-Apo-8′-carotenal. J Phys Chem B 2015; 119:11428-41. [DOI: 10.1021/acs.jpcb.5b04893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas A. A. Oliver
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Graham R. Fleming
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Beck WF, Bishop MM, Roscioli JD, Ghosh S, Frank HA. Excited state conformational dynamics in carotenoids: Dark intermediates and excitation energy transfer. Arch Biochem Biophys 2015; 572:175-183. [DOI: 10.1016/j.abb.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
|
33
|
|
34
|
Olsen S. Locally-Excited (LE) versus Charge-Transfer (CT) Excited State Competition in a Series of Para-Substituted Neutral Green Fluorescent Protein (GFP) Chromophore Models. J Phys Chem B 2014; 119:2566-75. [DOI: 10.1021/jp508723d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seth Olsen
- School of Mathematics and
Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
35
|
Johnson PJM, Halpin A, Morizumi T, Brown LS, Prokhorenko VI, Ernst OP, Dwayne Miller RJ. The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs. Phys Chem Chem Phys 2014; 16:21310-20. [PMID: 25178090 DOI: 10.1039/c4cp01826e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocycle and vibrational dynamics of bacteriorhodopsin in a lipid nanodisc microenvironment have been studied by steady-state and time-resolved spectroscopies. Linear absorption and circular dichroism indicate that the nanodiscs do not perturb the structure of the retinal binding pocket, while transient absorption and flash photolysis measurements show that the photocycle which underlies proton pumping is unchanged from that in the native purple membranes. Vibrational dynamics during the initial photointermediate formation are subsequently studied by ultrafast broadband transient absorption spectroscopy, where the low scattering afforded by the lipid nanodisc microenvironment allows for unambiguous assignment of ground and excited state nuclear dynamics through Fourier filtering of frequency regions of interest and subsequent time domain analysis of the retrieved vibrational dynamics. Canonical ground state oscillations corresponding to high frequency ethylenic and C-C stretches, methyl rocks, and hydrogen out-of-plane wags are retrieved, while large amplitude, short dephasing time vibrations are recovered predominantly in the frequency region associated with out-of-plane dynamics and low frequency torsional modes implicated in isomerization.
Collapse
Affiliation(s)
- Philip J M Johnson
- Institute for Optical Sciences & Departments of Chemistry & Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
De Re E, Schlau-Cohen GS, Leverenz RL, Huxter VM, Oliver TAA, Mathies RA, Fleming GR. Insights into the structural changes occurring upon photoconversion in the orange carotenoid protein from broadband two-dimensional electronic spectroscopy. J Phys Chem B 2014; 118:5382-9. [PMID: 24779893 DOI: 10.1021/jp502120h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a metastable photoproduct (OCPR). OCPR can bind to the phycobilisome antenna and induce fluorescence quenching. The photoswitching is accompanied by structural and functional changes at the level of the protein and of the bound carotenoid. Here, we use broadband two-dimensional electronic spectroscopy to study the differences in excited state dynamics of the carotenoid in the two forms of OCP. Our results provide insight into the origin of the pronounced vibrational lineshape and oscillatory dynamics observed in linear absorption and 2D electronic spectroscopy of OCPO and the large inhomogeneous broadening in OCPR, with consequences for the chemical function of the two forms.
Collapse
Affiliation(s)
- Eleonora De Re
- Applied Science and Technology Graduate Group, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | | | |
Collapse
|
37
|
Buckup T, Motzkus M. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes. Annu Rev Phys Chem 2014; 65:39-57. [DOI: 10.1146/annurev-physchem-040513-103619] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tiago Buckup
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany; ,
| | - Marcus Motzkus
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany; ,
| |
Collapse
|
38
|
Lee I, Lee S, Pang Y. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.3.851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Renth F, Siewertsen R, Strübe F, Mattay J, Temps F. Ultrafast Z → E photoisomerisation of structurally modified furylfulgides. Phys Chem Chem Phys 2014; 16:19556-63. [DOI: 10.1039/c4cp01739k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond transient absorption spectroscopy of Z-fulgides with selected structural motifs revealed fast and direct excited-state dynamics independent of chemical modifications.
Collapse
Affiliation(s)
- Falk Renth
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel, Germany
| | - Ron Siewertsen
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel, Germany
| | - Frank Strübe
- Organische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33501 Bielefeld, Germany
| | - Jochen Mattay
- Organische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33501 Bielefeld, Germany
| | - Friedrich Temps
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel, Germany
| |
Collapse
|
41
|
Marek MS, Buckup T, Southall J, Cogdell RJ, Motzkus M. Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing. J Chem Phys 2013; 139:074202. [PMID: 23968082 DOI: 10.1063/1.4818164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marie S Marek
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Ostroumov EE, Mulvaney RM, Anna JM, Cogdell RJ, Scholes GD. Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra. J Phys Chem B 2013; 117:11349-62. [DOI: 10.1021/jp403028x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeny E. Ostroumov
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Rachel M. Mulvaney
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Jessica M. Anna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Richard J. Cogdell
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| |
Collapse
|
43
|
Christensson N, Žídek K, Magdaong NCM, LaFountain AM, Frank HA, Zigmantas D. Origin of the Bathochromic Shift of Astaxanthin in Lobster Protein: 2D Electronic Spectroscopy Investigation of β-Crustacyanin. J Phys Chem B 2013; 117:11209-19. [DOI: 10.1021/jp401873k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Niklas Christensson
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna,
Austria
| | - Karel Žídek
- Department of Chemical
Physics, Lund University, Box 124, 21000,
Lund, Sweden
| | - Nikki Cecil M. Magdaong
- Department of
Chemistry, University of Connecticut, Storrs,
Connecticut 06269-3060,
United States
| | - Amy M. LaFountain
- Department of
Chemistry, University of Connecticut, Storrs,
Connecticut 06269-3060,
United States
| | - Harry A. Frank
- Department of
Chemistry, University of Connecticut, Storrs,
Connecticut 06269-3060,
United States
| | - Donatas Zigmantas
- Department of Chemical
Physics, Lund University, Box 124, 21000,
Lund, Sweden
| |
Collapse
|
44
|
Renth F, Siewertsen R, Temps F. Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2012.729331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Kraack JP, Buckup T, Motzkus M. Coherent High-Frequency Vibrational Dynamics in the Excited Electronic State of All-Trans Retinal Derivatives. J Phys Chem Lett 2013; 4:383-387. [PMID: 26281728 DOI: 10.1021/jz302001m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coherent vibrational dynamics of retinal in excited electronic states are of primary importance in the understanding of photobiology. Using pump-DFWM, we demonstrate for the first time the existence of coherent double-bond high-frequency modulations (>1300 cm(-1)) in the excited electronic state of different retinal derivatives. All-trans retinal as well as retinal Schiff bases exhibit a partial frequency downshift of the C═C double-bond mode from ∼1580 cm(-1) in the ground state to 1510 cm(-1) in the excited state. In addition, a new vibrational band at ∼1700 cm(-1) assigned to the C═N stretching mode in retinal Schiff bases in the excited state is detected. The newly reported bands are observed only in specific spectral regions of excited-state absorption. Implications regarding the observation of vibrational coherences in naturally occurring retinal protonated Schiff bases in rhodopsins are discussed.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210 Heidelberg, Germany
| |
Collapse
|
46
|
Christensen RL, Enriquez MM, Wagner NL, Peacock-Villada AY, Scriban C, Schrock RR, Polívka T, Frank HA, Birge RR. Energetics and dynamics of the low-lying electronic states of constrained polyenes: implications for infinite polyenes. J Phys Chem A 2013; 117:1449-65. [PMID: 23330819 DOI: 10.1021/jp310592s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally constrained, isomerically pure polyenes with 5-23 conjugated double bonds (N). These data and fluorescence spectra of the shorter polyenes reveal the N dependence of the energies of six (1)B(u)(+) and two (1)A(g)(-) excited states. The (1)B(u)(+) states converge to a common infinite polyene limit of 15,900 ± 100 cm(-1). The two excited (1)A(g)(-) states, however, exhibit a large (~9000 cm(-1)) energy difference in the infinite polyene limit, in contrast to the common value previously predicted by theory. EOM-CCSD ab initio and MNDO-PSDCI semiempirical MO theories account for the experimental transition energies and intensities. The complex, multistep dynamics of the 1(1)B(u)(+) → 2(1)A(g)(-) → 1(1)A(g)(-) excited state decay pathways as a function of N are compared with kinetic data from several natural and synthetic carotenoids. Distinctive transient absorption signals in the visible region, previously identified with S* states in carotenoids, also are observed for the longer polyenes. Analysis of the lifetimes of the 2(1)A(g)(-) states, using the energy gap law for nonradiative decay, reveals remarkable similarities in the N dependence of the 2(1)A(g)(-) decay kinetics of the carotenoid and polyene systems. These findings are important for understanding the mechanisms by which carotenoids carry out their roles as light-harvesting molecules and photoprotective agents in biological systems.
Collapse
|
47
|
Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys Chem Chem Phys 2013; 15:14487-501. [DOI: 10.1039/c3cp50871d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
McCamant DW, Kukura P, Mathies RA. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in beta-Carotene. J Phys Chem A 2012; 107:8208-14. [PMID: 16710440 PMCID: PMC1463250 DOI: 10.1021/jp030147n] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which allows the rapid collection of high-resolution vibrational spectra on the femtosecond time scale. FSRS combines a sub-50 fs actinic pump pulse with a two-pulse stimulated Raman probe to obtain vibrational spectra whose frequency resolution limits are uncoupled from the time resolution. This allows the acquisition of spectra with <100 fs time resolution and <30 cm(-1) frequency resolution. Additionally, FSRS is unaffected by background fluorescence, provides rapid (100 ms) acquisition times, and exhibits traditional spontaneous Raman line shapes. FSRS is used here to study the relaxation dynamics of beta-carotene. Following optical excitation to S(2) (1B(u) (+)) the molecule relaxes in 160 fs to S(1) (2A(g) (-)) and then undergoes two distinct stages of intramolecular vibrational energy redistribution (IVR) with 200 and 450 fs time constants. These processes are attributed to rapid (200 fs) distribution of the internal conversion energy from the S(1) C=C modes into a restricted bath of anharmonically coupled modes followed by complete IVR in 450 fs. FSRS is a valuable new technique for studying the vibrational structure of chemical reaction intermediates and transition states.
Collapse
Affiliation(s)
- David W McCamant
- Department of Chemistry, University of California, Berkeley, California 94720
| | | | | |
Collapse
|
49
|
Fuß W. Hula-twist cis–trans isomerization: The role of internal forces and the origin of regioselectivity. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
The separation of overlapping transitions in β-carotene with broadband 2D electronic spectroscopy. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.10.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|