1
|
Systemic Cytokines in Retinopathy of Prematurity. J Pers Med 2023; 13:jpm13020291. [PMID: 36836525 PMCID: PMC9966226 DOI: 10.3390/jpm13020291] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Retinopathy of prematurity (ROP), a vasoproliferative vitreoretinal disorder, is the leading cause of childhood blindness worldwide. Although angiogenic pathways have been the main focus, cytokine-mediated inflammation is also involved in ROP etiology. Herein, we illustrate the characteristics and actions of all cytokines involved in ROP pathogenesis. The two-phase (vaso-obliteration followed by vasoproliferation) theory outlines the evaluation of cytokines in a time-dependent manner. Levels of cytokines may even differ between the blood and the vitreous. Data from animal models of oxygen-induced retinopathy are also valuable. Although conventional cryotherapy and laser photocoagulation are well established and anti-vascular endothelial growth factor agents are available, less destructive novel therapeutics that can precisely target the signaling pathways are required. Linking the cytokines involved in ROP to other maternal and neonatal diseases and conditions provides insights into the management of ROP. Suppressing disordered retinal angiogenesis via the modulation of hypoxia-inducible factor, supplementation of insulin-like growth factor (IGF)-1/IGF-binding protein 3 complex, erythropoietin, and its derivatives, polyunsaturated fatty acids, and inhibition of secretogranin III have attracted the attention of researchers. Recently, gut microbiota modulation, non-coding RNAs, and gene therapies have shown promise in regulating ROP. These emerging therapeutics can be used to treat preterm infants with ROP.
Collapse
|
2
|
Wang M, Luo C, Shi Z, Cheng X, Lei M, Cao W, Zhang J, Ge J, Song M, Ding W, Zhang Y, Zhao M, Zhang Q. The Relationship Between Cord Blood Cytokine Levels and Perinatal Characteristics and Bronchopulmonary Dysplasia: A Case-Control Study. Front Pediatr 2022; 10:807932. [PMID: 35463904 PMCID: PMC9021742 DOI: 10.3389/fped.2022.807932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To establish the association between serial levels of inflammatory cytokines in cord blood and perinatal characteristics and bronchopulmonary dysplasia (BPD) in preterm infants. Methods 147 premature infants with gestational age ≤32 weeks who were born and hospitalized in the First Affiliated Hospital of Zhengzhou University between July 2019 and August 2021 were enrolled in this retrospective case-control study. Multiple microsphere flow immunofluorescence was used to detect seven cytokines in cord blood collected within 24 h of birth. Demographics, delivery characteristics, maternal factors, neonatal characteristics, and clinical outcomes were collected for the two groups. An unconditional logistic regression model was used in this study to assess the clinical variables. Results IL-6 cord blood levels at birth were significantly higher in the BPD group than in the non-BPD group, but the odds ratio (OR) was very small (OR = 1). No differences in other cytokine concentrations were observed between the two groups. Multivariable logistic regression analysis demonstrated that increased maternal white blood cell (WBC) count on admission and lower birth weight increased the risk of BPD progression. Conclusions Increased IL-6 cord blood levels at birth in preterm infants may have trivial significance for predicting BPD. Furthermore, higher maternal WBC count on admission and lower birth weight increased the risk of BPD.
Collapse
Affiliation(s)
- Mengmeng Wang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Chenghan Luo
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zanyang Shi
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Xinru Cheng
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Mengyuan Lei
- Health Care Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjun Cao
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Jingdi Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Jian Ge
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Min Song
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Wenqian Ding
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Yixia Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Min Zhao
- Medical Record Management Section, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| |
Collapse
|
3
|
Ehrhart J, Sanberg PR, Garbuzova-Davis S. Plasma derived from human umbilical cord blood: Potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases. J Cell Mol Med 2018; 22:6157-6166. [PMID: 30334335 PMCID: PMC6237605 DOI: 10.1111/jcmm.13898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Limited efficacy of current therapeutic approaches for neurodegenerative disease has led to increased interest in alternative therapies. Cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may be a potential therapeutic. Benefits of CBP injection into rodent models of aging or ischaemic stroke have been demonstrated, though how benefits are elicited is still unclear. The present study evaluated various factors within the same samples of CBP and human adult blood plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were determined. Results showed significantly low concentrations of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) and elevated chemokine IL-8 in CBP. Significantly higher levels of VEGF, G-CSF, EGF and FGF-basic growth factors were determined in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC hUCB viability and decreased apoptotic cell activity. We are first to demonstrate the unique CBP composition of cytokines and growth factors within the same CBP samples derived from hUCB. Also, our novel finding that autologous CBP promoted MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP's potential as a sole therapeutic or cell-additive agent in developing therapies for various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
4
|
Association between Interleukin-10-1082 G/A and Tumor Necrosis Factor- α 308 G/A Gene Polymorphisms and Respiratory Distress Syndrome in Iranian Preterm Infants. Mediators Inflamm 2017; 2017:6386453. [PMID: 28298812 PMCID: PMC5337395 DOI: 10.1155/2017/6386453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Cytokine polymorphisms may contribute to the prevalence of respiratory distress syndrome. The present study was done to investigate the frequency of interleukin- (IL-) 10 and tumor necrosis factor- (TNF-) α gene polymorphisms and their association with the risk of RDS in preterm infants. One-hundred and nineteen patients with RDS and 119 healthy preterm infants were enrolled. PCR restriction fragment length polymorphism was used to determine the frequency of IL-10 and TNF-α genotypes at -1082 A and -308 A, respectively. One-hundred and nineteen out of 238 infants had RDS (50%). The age of the mothers and gestational age ranged 17–45 (mean: 28.6 ± 5.3) years and 24–34 (mean: 34.3 ± 2.38) weeks, respectively. Totally, 23 deaths were recorded in the RDS group. Incidence of TNF-α-308 A/A and TNF-α-308 G/A was 84% and 16%, respectively. TNF-a-308 G/G was not found in both groups. Prevalence of IL-10-1082 G/G and IL-10-1082 G/A variants was 65.5% and 34.5%, respectively. IL-10-1082 A/A was not found in both groups. The incidence of the allele G in the IL-10-1082 polymorphism was lower in RDS group (P < 0.05). We found that the risk of RDS was correlated to sex, gestational age, and IL-10-1082.
Collapse
|
5
|
Abstract
Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children.
Collapse
Affiliation(s)
- Benjamin E. Orwoll
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Critical Care, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Lee J, Romero R, Chaiworapongsa T, Dong Z, Tarca AL, Xu Y, Chiang PJ, Kusanovic JP, Hassan SS, Yeo L, Yoon BH, Than NG, Kim CJ. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol 2013; 70:265-84. [PMID: 23905683 DOI: 10.1111/aji.12142] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human fetus is able to mount a systemic inflammatory response when exposed to microorganisms. This stereotypic response has been termed the 'fetal inflammatory response syndrome' (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is frequently observed in patients whose preterm deliveries are associated with intra-amniotic infection, acute inflammatory lesions of the placenta, and a high rate of neonatal morbidity. Recently, a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma CXCL10, has been identified in patients with placental lesions consistent with 'maternal anti-fetal rejection'. These lesions include chronic chorioamnionitis, plasma cell deciduitis, and villitis of unknown etiology. In addition, positivity for human leukocyte antigen (HLA) panel-reactive antibodies (PRA) in maternal sera can also be used to increase the index of suspicion for maternal anti-fetal rejection. The purpose of this study was to determine (i) the frequency of pathologic lesions consistent with maternal anti-fetal rejection in term and spontaneous preterm births; (ii) the fetal serum concentration of CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and (iii) the fetal blood transcriptome and proteome in cases with a fetal inflammatory response associated with maternal anti-fetal rejection. METHOD OF STUDY Maternal and fetal sera were obtained from normal term (n = 150) and spontaneous preterm births (n = 150). A fetal inflammatory response associated with maternal anti-fetal rejection was diagnosed when the patients met two or more of the following criteria: (i) presence of chronic placental inflammation; (ii) ≥80% of maternal HLA class I PRA positivity; and (iii) fetal serum CXCL10 concentration >75th percentile. Maternal HLA PRA was analyzed by flow cytometry. The concentrations of fetal CXCL10 and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after the extraction of total RNA from white blood cells with a whole-genome DASL assay. Proteomic analysis of fetal serum was conducted by two-dimensional difference gel electrophoresis. Differential gene expression was considered significant when there was a P < 0.01 and a fold-change >1.5. RESULTS (i) The frequency of placental lesions consistent with maternal anti-fetal rejection was higher in patients with preterm deliveries than in those with term deliveries (56% versus 32%; P < 0.001); (ii) patients with spontaneous preterm births had a higher rate of maternal HLA PRA class I positivity than those who delivered at term (50% versus 32%; P = 0.002); (iii) fetuses born to mothers with positive maternal HLA PRA results had a higher median serum CXCL10 concentration than those with negative HLA PRA results (P < 0.001); (iv) the median serum CXCL10 concentration (but not IL-6) was higher in fetuses with placental lesions associated with maternal anti-fetal rejection than those without such lesions (P < 0.001); (v) a whole-genome DASL assay of fetal blood RNA demonstrated differential expression of 128 genes between fetuses with and without lesions associated with maternal anti-fetal rejection; and (vi) comparison of the fetal serum proteome demonstrated 20 proteins whose abundance differed between fetuses with and without lesions associated with maternal anti-fetal rejection. CONCLUSION We describe a systemic inflammatory response in human fetuses born to mothers with evidence of maternal anti-fetal rejection. The transcriptome and proteome of this novel type of fetal inflammatory response were different from that of FIRS type I (which is associated with acute infection/inflammation).
Collapse
Affiliation(s)
- Joonho Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lyon D, Cheng CY, Howland L, Rattican D, Jallo N, Pickler R, Brown L, McGrath J. Integrated review of cytokines in maternal, cord, and newborn blood: part I--associations with preterm birth. Biol Res Nurs 2009; 11:371-6. [PMID: 20034950 DOI: 10.1177/1099800409344620] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preterm birth (PTB; spontaneous delivery prior to 37 weeks gestation) affects one out of eight infants born in the United States and is the most common cause of neonatal morbidity and mortality. Although the pathogenesis of PTB is multifactorial, a growing body of literature supports the hypothesis that one cause of PTB is inflammation in pregnancy. Investigators have implicated mediators of inflammation, most notably proinflammatory cytokines, as being associated with and perhaps a playing a causal role in the pathogenesis of preterm labor and adverse early fetal outcomes. Though researchers have pursued the association of cytokines with preterm labor and subsequent early adverse fetal outcomes as a line of research, there has been little integration of diverse findings across studies. This systematic review appraises the empirical evidence from human studies for the association of levels of cytokines in blood with preterm labor and adverse early fetal outcome to examine the current state of the science in this important area of biobehavioral research. The most consistent finding is that increased levels of proinflammatory cytokines, particularly interleukin (IL) 6, IL-beta1, and tumor necrosis factor alpha (TNF-alpha), are associated with PTB as compared to levels found at term birth. However, there have been relatively few studies and results have not been consistent. Therefore, further research is needed to elucidate the association of these inflammatory mediators with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Debra Lyon
- Department of Family and Community Health Nursing, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Park JY, Kim JY, Cho SJ, Kim YJ, Park HS, Ha EH, Park EA. Cord blood IL-10, IL-12 in preterm newborns as predictors of respiratory distress syndrome and bronchopulmonary dysplasia. KOREAN JOURNAL OF PEDIATRICS 2007. [DOI: 10.3345/kjp.2007.50.3.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jee Yoon Park
- Department of Pediatrics, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Pediatrics, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Soo Jin Cho
- Department of Pediatrics, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Hye sook Park
- Department of Preventive Medicine, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Eun Hee Ha
- Department of Preventive Medicine, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Eun Ae Park
- Department of Pediatrics, Ewha Womans University, College of Medicine, Seoul, Korea
| |
Collapse
|