1
|
Dale TP, Forsyth NR. Ectopic Telomerase Expression Fails to Maintain Chondrogenic Capacity in Three-Dimensional Cultures of Clinically Relevant Cell Types. Biores Open Access 2018; 7:10-24. [PMID: 29588876 PMCID: PMC5865620 DOI: 10.1089/biores.2018.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The poor healing capacity of cartilage and lack of effective treatment for associated disease and trauma makes it a strong candidate for a regenerative medicine approach. Potential therapies tested to date, although effective, have met with a number of intrinsic difficulties possibly related to limited autologous chondrocyte cell yield and quality of cartilage produced. A potential mechanism to bypass limited cell yields and improve quality of differentiation is to immortalize relevant cell types through the ectopic expression of telomerase. Pellet cultures of human chondrocytes (OK3), bone marrow mesenchymal stem cells (BMA13), and embryonic stem cell (H1 line)-derived cells (1C6) and their human telomerase reverse transcriptase (hTERT) transduced counterparts were maintained for 20 days in standard maintenance medium (MM) or transforming growth factor-β3-supplemented prochondrogenic medium (PChM). Pellets were assessed for volume and density by microcomputed tomography. Quantitative gene expression (COL1A2, COL2A1, COL3A1, COL6A3, COL10A1, ACAN, COMP, SOX9); sulfated glycosaminoglycans (sGAGs), and DNA quantification were performed. Histology and immunohistochemistry were used to determine matrix constituent distribution. Pellet culture in PChM resulted in significantly larger pellets with an overall increased density when compared with MM culture. Gene expression analysis revealed similarities in expression patterns between telomerase-transduced and parental cells in both MM and PChM. Of the three parental cell types examined OK3 and BMA13 produced similar amounts of pellet-associated sGAG in PChM (4.62 ± 1.20 and 4.91 ± 1.37 μg, respectively) with lower amounts in 1C6 (2.89 ± 0.52 μg), corresponding to 3.1, 2.3, and 1.6-fold increases from day 0. In comparison, telomerase-transduced cells all had much lower sGAG with OK3H at 2.74 ± 0.11 μg, BMA13H 1.29 ± 0.34 μg, and 1C6H 0.52 ± 0.01 μg corresponding to 1.2, 0.87, and 0.34-fold changes compared with day 0. Histology of day 20 pellets displayed reduced staining overall for collagens and sGAG in telomerase-transduced cells, most notably with alterations in aggrecan and collagen VI; all cells stained positively for collagen II. We conclude that while telomerase transduction may be an effective technique to extend cellular proliferative capacity, it is not sufficient in isolation to sustain a naive chondrogenic phenotype across multiple cell types.
Collapse
Affiliation(s)
- Tina P Dale
- Faculty of Medicine and Health Sciences, Guy Hilton Research Center, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Nicholas R Forsyth
- Faculty of Medicine and Health Sciences, Guy Hilton Research Center, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
2
|
Davies B, Elwood NJ, Li S, Cullinane F, Edwards GA, Newgreen DF, Brizard CP. Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training. Ann Thorac Surg 2010; 89:585-93, 593.e1-4. [PMID: 20103347 DOI: 10.1016/j.athoracsur.2009.10.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nonischemic right ventricular dysfunction and cardiac failure is a source of considerable morbidity in children with congenital heart disease. Cell transplantation has not previously been studied in the pediatric setting in which enhancing ventricular function in response to supraphysiologic workloads might be beneficial. METHODS Engraftment and differentiation of human cord blood stem cells were studied in an immunosuppressed neonatal ovine model of right ventricular training. Week-old sheep underwent pulmonary artery banding and epicardial injection of cord blood stem cells (n=8) or pulmonary artery banding and placebo injection (n=8). Control groups received cord blood stem cells (n=6) or placebo (n=6) injection without pulmonary artery banding. Right ventricular function was measured at baseline and 1 month later using conductance catheter. RESULTS Cord blood stem cells were detected in the myocardium, spleen, kidney, and bone marrow up to 6 weeks after transplantation and expressed the hematopoietic markers CD45 and CD23. We identified neither differentiation nor fusion of transplanted human cells. In the groups undergoing pulmonary artery banding, cord blood stem cell transplantation was accompanied by functional benefits compared with placebo injection: end-systolic elastance increased by a mean of 1.4 +/- 0.2 mm Hg/mL compared with 0.9 +/- 0.1 mm Hg/mL, and the slope of preload recruitable stroke work increased by 21.1 +/- 2.9 mm Hg compared with 15.8 +/- 2.5 mm Hg. Cord blood stem cell transplantation had no significant effect on right ventricular function in the absence of pulmonary artery banding. CONCLUSIONS Our data demonstrate that in the presence of increased workload, cord blood stem cells engraft and augment right ventricular function. Transplanted cells adopt hematopoietic fates in the myocardium, bone marrow, and spleen.
Collapse
Affiliation(s)
- Ben Davies
- Australia and New Zealand Children's Heart Research Centre, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
3
|
Li S, Ferguson MJ, Hawkins CJ, Smith C, Elwood NJ. Human telomerase reverse transcriptase protects hematopoietic progenitor TF-1 cells from death and quiescence induced by cytokine withdrawal. Leukemia 2006; 20:1270-8. [PMID: 16673017 DOI: 10.1038/sj.leu.2404251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Telomerase is a complex ribonucleoprotein enzyme that exhibits elevated activity in the majority of cases of human leukemia. We have previously shown that retroviral expression of the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), in human cord blood CD34+ cells leads to an enhanced survival of mature hematopoietic cells. The mechanism for this pro-survival effect is not known. Here, we show that telomerase may play a role in leukemogenesis as a survival factor, independent of its role in maintaining telomere length. Retroviral expression of hTERT in the cytokine-dependent, human hematopoietic progenitor cell line, TF-1, resulted in the survival of cells following the withdrawal of cytokine, with protection from apoptosis, but did not promote unlimited replicative potential. This hTERT-mediated effect on cell survival does not involve Bcl-2 family members, results in accumulation of cells in G1 and appears to operate via autocrine expression of IL-3 and activation of the p53/p21 pathway. Survival in the absence of cytokine stimulation was also observed following retroviral expression of hTERT in normal cord blood CD34+ cells. This study demonstrates a novel pro-survival role for hTERT and may have important implications for the role of hTERT in the pathogenesis of leukemia and drug resistance.
Collapse
Affiliation(s)
- S Li
- Children's Cancer Centre, Murdoch Children's Research Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
4
|
Mahmood K, Prichard MN, Duke GM, Kemble GW, Spaete RR. Human cytomegalovirus plasmid-based amplicon vector system for gene therapy. GENETIC VACCINES AND THERAPY 2005; 3:1. [PMID: 15673469 PMCID: PMC548291 DOI: 10.1186/1479-0556-3-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Accepted: 01/26/2005] [Indexed: 11/30/2022]
Abstract
We have constructed and evaluated the utility of a helper-dependent virus vector system that is derived from Human Cytomegalovirus (HCMV). This vector is based on the herpes simplex virus (HSV) amplicon system and contains the HCMV orthologs of the two cis-acting functions required for replication and packaging of HSV genomes, the complex HCMV viral DNA replication origin (oriLyt), and the cleavage packaging signal (the a sequence). The HCMV amplicon vector replicated independently and was packaged into infectious virions in the presence of helper virus. This vector is capable of delivering and expressing foreign genes in infected cells including progenitor cells such as human CD34+ cells. Packaged defective viral genomes were passaged serially in fibroblasts and could be detected at passage 3; however, the copy number appeared to diminish upon serial passage. The HCMV amplicon offers an alternative vector strategy useful for gene(s) delivery to cells of the hematopoietic lineage.
Collapse
Affiliation(s)
- Kutubuddin Mahmood
- MedImmune Vaccines Inc., 297 North Bernardo Avenue, Mountain View, CA 94043 USA
| | - Mark N Prichard
- MedImmune Vaccines Inc., 297 North Bernardo Avenue, Mountain View, CA 94043 USA
| | - Gregory M Duke
- MedImmune Vaccines Inc., 297 North Bernardo Avenue, Mountain View, CA 94043 USA
| | - George W Kemble
- MedImmune Vaccines Inc., 297 North Bernardo Avenue, Mountain View, CA 94043 USA
| | - Richard R Spaete
- MedImmune Vaccines Inc., 297 North Bernardo Avenue, Mountain View, CA 94043 USA
| |
Collapse
|
5
|
Björgvinsdóttir H, Bryder D, Sitnicka E, Ramsfjell V, De Jong I, Olsson K, Rusterholz C, Karlsson S, Jacobsen SEW. Efficient oncoretroviral transduction of extended long-term culture-initiating cells and NOD/SCID repopulating cells: enhanced reconstitution with gene-marked cells through an ex vivo expansion approach. Hum Gene Ther 2002; 13:1061-73. [PMID: 12067439 DOI: 10.1089/104303402753812467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent developments of surrogate assays for human hematopoietic stem cells (HSC) have facilitated efforts at improving HSC gene transfer efficiency. Through the use of xenograft transplantation models, such as nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, successful oncoretroviral gene transfer to transplantable hematopoietic cells has been achieved. However, because of the low frequency and/or homing efficiency of SCID repopulating cells (SRC) in bone marrow (BM), studies have primarily focused on cord blood (CB). The recently developed extended (> 60 days) long-term culture-initiating cell (ELTC-IC) assay detects an infrequent and highly quiescent candidate stem cell population in BM as well as CB of the CD34(+)CD38(-) phenotype. Although these characteristics suggest that ELTC-IC and SRC might be closely related, attempts to oncoretrovirally transduce ELTC-IC have been unsuccessful. Here, recently developed conditions (high concentrations of SCF + FL + Tpo in serum-free medium) supporting expansion of BM CD34(+)CD38(-) 12 week ELTC-IC promoted efficient oncoretroviral transduction of BM and CB ELTC-IC. Although SRC can be transduced with oncoretroviral vectors, this is frequently associated with loss of reconstituting activity, posing a problem for development of clinical HSC gene therapy. However, previous attempts at expanding transduced HSC posttransduction resulted in compromised rather than improved gene marking. Utilizing conditions promoting cell divisions and transduction of ELTC-IC we show that although 5 days of ex vivo culture is sufficient to obtain maximum gene transfer efficiency to SRC, extension of the expansion period to 12 days significantly enhances multilineage reconstitution activity of transduced SRC, supporting the feasibility of improving gene marking through ex vivo expansion.
Collapse
Affiliation(s)
- Helga Björgvinsdóttir
- Department of Stem Cell Biology, Institute of Laboratory Medicine, Klinikgatan 26, University Hospital of Lund, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Elwood NJ, Smith CA. Current status of retroviral vector mediated gene transfer into human hematopoietic stem cells. Leuk Lymphoma 2001; 41:465-82. [PMID: 11378565 DOI: 10.3109/10428190109060338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic modification of hematopoietic stem cells (HSCs) has been proposed as a treatment strategy for a variety of hematologic diseases, tracking marked cells or conferring resistance to chemotherapeutic agents. Despite early enthusiasm, the results of clinical studies involving gene transfer into HSCs has not resulted in therapeutic benefits for the vast majority of treated patients. This review describes the limitations and advances that have been made in the areas of gene transfer vectors, identification of the appropriate HSCs to target for genetic modifications and the methods used to perform gene transfer.
Collapse
Affiliation(s)
- N J Elwood
- Center for Genetic and Cellular Therapies, Department of Medicine, Box 2601, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
7
|
Elwood NJ, Smith CA. Current status of retroviral vector mediated gene transfer into human hematopoietic stem cells. Leuk Lymphoma 2001; 41:1-18. [PMID: 11342353 DOI: 10.3109/10428190109057950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic modification of hematopoietic stem cells (HSCs) has been proposed as a treatment strategy for a variety of hematologic diseases, tracking marked cells or conferring resistance to chemotherapeutic agents. Despite early enthusiasm, the results of clinical studies involving gene transfer into HSCs have not resulted in therapeutic benefits for the vast majority of treated patients. This review describes the limitations and advances that have been made in the areas of gene transfer vectors, identification of the appropriate HSCs to target for genetic modifications and the methods used to perform gene transfer.
Collapse
Affiliation(s)
- N J Elwood
- Center for Genetic and Cellular Therapies, Department of Medicine, Box 2601, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
8
|
Chute JP, Saini A, Wells M, Clark W, Wu A, St Louis D, Blair P, Harlan D, Kaushal S. Preincubation with endothelial cell monolayers increases gene transfer efficiency into human bone marrow CD34(+)CD38(-) progenitor cells. Hum Gene Ther 2000; 11:2515-28. [PMID: 11119422 DOI: 10.1089/10430340050207993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviral gene transfer studies targeting bone marrow CD34(+)CD38(-) stem cells have been disappointing because of the rarity of these cells, their G(0) cell cycle status, and their low or absent expression of surface retroviral receptors. In this study, we examined whether preincubation of bone marrow CD34(+)CD38(-) stem cells with a hematopoietically supportive porcine microvascular endothelial cell line (PMVECs) could impact the cell cycle status and expression of retroviral receptors in pluripotent CD34+CD38- cells and the efficiency of gene transfer into these primitive target cells. PMVEC coculture supplemented with GM-CSF + IL-3 + IL-6 + SCF + Flt-3 ligand induced >93% of the CD34(+)CD38(-) population to enter the G(1) or G(2)/S/M phase while increasing this population from 1.4% on day 0 to 6.5% of the total population by day 5. Liquid cultures supplemented with the identical cytokines induced 73% of the CD34(+)CD38(-) population into cell cycle but did not maintain cells with the CD34(+)CD38(-) phenotype over time. We found no significant increase in the levels of AmphoR or GaLVR mRNA in PMVEC-expanded CD34(+)CD38(-) cells after coculture. Despite this, the efficiency of gene transfer using either amphotropic vector (PA317) or GaLV vector (PG13) was significantly greater in PMVEC-expanded CD34(+)CD38(-) cells (11.4 +/- 5.6 and 10.9 +/- 5.2%, respectively) than in either steady state bone marrow CD34(+)CD38(-) cells (0.6 +/- 1.7 and 0.2 +/- 0.6%, respectively; p < 0.01 and p < 0.01) or liquid culture-expanded CD34(+)CD38(-) cells (1.4 +/- 3.5 and 0.0%, respectively; p < 0.01 and p < 0.01). Since PMVEC coculture induces a high level of cell cycling in human bone marrow CD34(+)CD38(-) cells and expands hematopoietic cells capable of in vivo repopulation, this system offers potential advantages for application in clinical gene therapy protocols.
Collapse
Affiliation(s)
- J P Chute
- NIDDK-Navy Transplantation and Autoimmunity Branch, Stem Cell Biology Laboratory, Naval Medical Research Institute, Bethesda, MD 20889, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|