1
|
Wormser C, Mason LZ, Helm EM, Light DB. Regulatory volume response following hypotonic stress in Atlantic salmon erythrocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:745-759. [PMID: 21336592 DOI: 10.1007/s10695-011-9474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to examine regulatory volume decrease (RVD) in Atlantic salmon red blood cells (RBCs). Osmotic fragility was determined optically, mean cell volume was measured electronically, and changes in intracellular Ca(2+) concentration were visualized using fluorescence microscopy and fluo-4-AM. Cells displayed an increase in osmotic fragility and an inhibition of volume recovery following hypotonic shock when they were exposed to a high taurine Ringer or when placed in a high K(+) medium. Interestingly, RVD in cells from fish collected during the summer depended more on taurine efflux, whereas fall cells relied more on the loss of K(+). In addition, RVD in fall cells was prevented with the K(+) channel inhibitor quinine, whereas the ionophore gramicidin decreased osmotic fragility and potentiated volume recovery. Further, hypotonic shock (0.5X Ringer) for both summer and fall cells caused an increase in cytosolic Ca(2+), which resulted from influx of this ion because it was not observed when extracellular Ca(2+) was chelated with EGTA (10 nM free Ca(2+)). Cells exposed to a low Ca(2+) hypotonic Ringer also had a greater osmotic fragility and failed to recover from hypotonic swelling. Finally, inhibition of phospholipase A(2) with ONO-RS-082 blocked volume recovery. In conclusion, Atlantic salmon RBCs displayed volume decrease in response to hypotonic shock, which depended on a swelling-induced influx of Ca(2+) and an increase in the efflux of K(+) and taurine.
Collapse
Affiliation(s)
- Chloe Wormser
- Department of Biology, Lake Forest College, Lake Forest, IL 60045, USA
| | | | | | | |
Collapse
|
2
|
Chara O, Espelt MV, Krumschnabel G, Schwarzbaum PJ. Regulatory volume decrease and P receptor signaling in fish cells: mechanisms, physiology, and modeling approaches. ACTA ACUST UNITED AC 2011; 315:175-202. [PMID: 21290610 DOI: 10.1002/jez.662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/30/2010] [Indexed: 11/11/2022]
Abstract
For animal cell plasma membranes, the permeability of water is much higher than that of ions and other solutes, and exposure to hyposmotic conditions almost invariably causes rapid water influx and cell swelling. In this situation, cells deploy regulatory mechanisms to preserve membrane integrity and avoid lysis. The phenomenon of regulatory volume decrease, the partial or full restoration of cell volume following cell swelling, is well-studied in mammals, with uncountable investigations yielding details on the signaling network and the effector mechanisms involved in the process. In comparison, cells from other vertebrates and from invertebrates received little attention, despite of the fact that e.g. fish cells could present rewarding model systems given the diversity in ecology and lifestyle of this animal group that may be reflected by an equal diversity of physiological adaptive mechanisms, including those related to cell volume regulation. In this review, we therefore present an overview on the most relevant aspects known on hypotonic volume regulation presently known in fish, summarizing transporters and signaling pathways described so far, and then focus on an aspect we have particularly studied over the past years using fish cell models, i.e. the role of extracellular nucleotides in mediating cell volume recovery of swollen cells. We, furthermore, present diverse modeling approaches developed on the basis of data derived from studies with fish and other models and discuss their potential use for gaining insight into the theoretical framework of volume regulation.
Collapse
Affiliation(s)
- Osvaldo Chara
- IFLYSIB (CONICET, UNLP), La Plata, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
3
|
Lapaix F, Bouyer G, Thomas S, Egée S. Further characterization of cation channels present in the chicken red blood cell membrane. Bioelectrochemistry 2008; 73:129-36. [PMID: 18534923 DOI: 10.1016/j.bioelechem.2008.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 01/09/2023]
Abstract
In this paper, we provide an update on cation channels in nucleated chicken erythrocytes. Patch-clamp techniques were used to further characterize the two different types of cation channels present in the membrane of chicken red blood. In the whole-cell mode, with Ringer in the bath and internal K+ saline in the pipette solution, the membrane conductance was generated by cationic currents, since the reversal potential was shifted toward cations equilibrium when the impermeant cation NMDG was substituted to small cations. The membrane conductance could be increased by application of mechanical deformation or by the addition of agonists of the cAMP-dependent pathway. At the unitary level, two different types of cationic channels were revealed and could account for the cationic conductance observed in whole-cell configuration. One of them belongs to the family of stretch-activated cationic channel showing changes in activity under conditions of membrane deformation, whereas the second one belongs to the family of the cAMP activated cationic channels. These two channels could be distinguished according to their unitary conductances and drug sensitivities. The stretch-activated channel was sensitive to Gd(3+) and the cAMP-dependent channel was sensitive to flufenamic acid. Possible role of these channels in cell volume regulation process is discussed.
Collapse
Affiliation(s)
- Franck Lapaix
- UMR 7150, Université Pierre and Marie Curie, CNRS Mer et Santé, Station Biologique de Roscoff, Place G. Teissier, Roscoff, France
| | | | | | | |
Collapse
|
4
|
Decherf G, Bouyer G, Egée S, Thomas SLY. Chloride channels in normal and cystic fibrosis human erythrocyte membrane. Blood Cells Mol Dis 2007; 39:24-34. [PMID: 17434769 DOI: 10.1016/j.bcmd.2007.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Electrophysiological studies on human RBCs have been difficult due to fragility and small size of cells, and little is known of ionic conductive pathways present in the RBC membrane in health and disease. We report on anionic channels in cells of healthy donors (control) and cystic fibrosis (CF) patients. Anion channel activity (8-12 pS, linear) was induced in cell-attached configuration by forskolin (50 microM) and in excised inside-out configuration by PKA (100 nM) and ATP (1 mM) but control and CF RBCs differed by their respective kinetics and gating properties. These channels were permeable to ATP (100 mM, symmetrical Tris-ATP). These data suggest either the existence of two different anionic channel types or regulation of a single channel type either by the CFTR (cystic fibrosis transmembrane regulator) protein or by different cytosolic factors. Another anionic channel type displaying outward rectification (approximately 80 pS, outward conductance) was present in 30% of CF cell patches but was not observed in normal cell patches. The frequently recorded activity of this channel in CF patches suggests a down-regulation in normal RBCs.
Collapse
Affiliation(s)
- Gaëtan Decherf
- Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, UMR 7150, Station Biologique, BP 74, 29682 Roscoff cedex, France
| | | | | | | |
Collapse
|
5
|
Petrunkina AM, Jebe E, Töpfer-Petersen E. Regulatory and necrotic volume increase in boar spermatozoa. J Cell Physiol 2005; 204:508-21. [PMID: 15744775 DOI: 10.1002/jcp.20317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spermatozoa of many species initially respond to hypotonicity as perfect osmometers. Thereafter they undergo a regulatory process resulting in a decrease in cell volume, similar to that reported for somatic cells. Regulatory volume increase (RVI), a complementary process which is assumed to occur following initial shrinkage of sperm volume after exposure to a hypertonic medium, has not yet been described in detail for spermatozoa. In this study, we investigated whether spermatozoa are able to regulate their volume after hypertonic stress and whether this ability is maintained in preserved sperm. Cell volume changes were recorded using electronic cell sizing. Sperm response to the ion channels blockers quinidine, tamoxifen, and dydeoxyforskolin, and to protein kinase/phosphatase inhibitors lavendustin, staurosporine, and vanadate was studied to investigate possible mechanisms of RVI. Annexin V staining was used in combination with propidium iodide to determine whether hypertonic stress may induce apoptosis. Overall protein tyrosine phosphorylation under hypertonic conditions was measured via flow cytometry using antiphosphotyrosine antibody. Spermatozoa exposed to hypertonic stress initially responded with an abundant subpopulation according to the perfect osmometer model and recovered their volume from this shrinkage after 20 min. RVI was inhibited by quinidine and tamoxifen, which indicates the involvement of the important cellular ions sodium and chloride in this process. Volume regulatory ability was essentially maintained during storage of liquid semen. However, the response of the sperm population was heterogeneous. A second population raised, containing spermatozoa with larger volumes, which demonstrated irregularities in the volume response with respect to osmotic challenge, ion channel blockers, and storage. Under hypertonic conditions, both protein kinase inhibitors (PKI) led to increased isotonic volumes and to elevated initial relative volumes and subsequent volume decrease. RVI was inhibited by the vanadate. Hypertonic stress did not result in an increase in early apoptotic cells, but produced a shift toward late necrotic cells. Substitution of sodium and chloride by choline and sulfate resulted in decreased isotonic volume of sperm treated with lavendustin. Tyrosine phosphorylation levels were reduced after 20 min under hypertonic conditions. It was concluded that RVI is regulated via a protein tyrosine kinase-dependent pathway, and that dephosphorylation occurs when volume regulation is required. The necrotic volume increase (NVI) is associated with the accumulation of sodium and chloride following uncontrolled opening of the channels. The ability to regulate volume after exposure to hypertonic conditions is important for sperm functionality and can have practical applications in spermatological diagnostics and cryopreservation.
Collapse
Affiliation(s)
- A M Petrunkina
- Institute for Reproductive Medicine, School of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | | |
Collapse
|
6
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
7
|
Musch MW, Goldstein L. Tyrosine kinase inhibition affects skate anion exchanger isoform I alterations after volume expansion. Am J Physiol Regul Integr Comp Physiol 2004; 288:R885-90. [PMID: 15539612 DOI: 10.1152/ajpregu.00691.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon exposure to hypotonic medium, skate red blood cells swell and then reduce their volume by releasing organic osmolytes and associated water. The regulatory volume decrease is inhibited by stilbenes and anion exchange inhibitors, suggesting involvement of the red blood cell anion exchanger skAE1. To determine the role of tyrosine phosphorylation, red blood cells were volume expanded with and without prior treatment with the tyrosine kinase inhibitor piceatannol. At the concentration used, 130 microM, piceatannol nearly completely inhibits p72(syk), a tyrosine kinase previously shown to phosphorylate skAE1 (M. W. Musch, E. H. Hubert, and L. Goldstein. J Biol Chem 274: 7923-7928, 1999). Hyposmotic-induced volume expansion stimulated association of p72(syk) with a light membrane fraction of skate red blood cells. Piceatannol did not inhibit this association but decreased hyposmotically stimulated increased skAE1 tyrosine phophorylation. Movement of skAE1 from an intracellular to a surface detergent-resistant membrane domain and tetramer formation were not inhibited by piceatannol treatment. Two effects of hyposmotic-induced volume expansion, decreased band 4.1 binding and increased ankyrin, were both inhibited by piceatannol. These results suggest that at least one event requiring p72(syk) activation is pivotal for hyposmotic-induced increased transport; however, steps that do not require tyrosine phosphorylation may also play a role.
Collapse
Affiliation(s)
- Mark W Musch
- The Martin Boyer Laboratories, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
8
|
Moeser AJ, Haskell MM, Shifflett DE, Little D, Schultz BD, Blikslager AT. ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Gastroenterology 2004; 127:802-15. [PMID: 15362036 DOI: 10.1053/j.gastro.2004.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Ischemia results in the breakdown of the intestinal barrier, predisposing patients to sepsis and multiple organ failure. Prostaglandins play a critical role in mediating recovery of barrier function in ischemia-injured intestine through a mechanism involving stimulation of Cl - secretion. In the present study, we investigated the contributory role of individual Cl - channels in the recovery of barrier function in ischemia-injured porcine ileum. METHODS Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers. Short-circuit current (Isc) and transepithelial resistance (TER) were measured in response to prostaglandin E 2 (PGE 2 ) and pharmacologic inhibitors of epithelial Cl - channels. Immunoassays were used to assess the expression and localization of ion channels. RESULTS Application of PGE 2 to ischemia-injured ileal mucosa stimulated increases in Isc, an indicator of Cl - secretion, that was followed by marked increases in TER, an indicator of barrier function recovery. In vitro studies revealed that although PGE 2 induced Cl - secretion via at least 3 distinct secretory pathways, recovery of barrier function was initiated by Cl - secretion via ClC-2 Cl - channels co-expressed with occludin and localized to tight junctions within restituting epithelium. Intravenous administration of furosemide to pigs subjected to 1 hour of ileal ischemia impaired recovery of barrier function, as evidenced by decreased TER and increased mucosal-to-serosal 3 H-mannitol flux after a 2-hour reperfusion/recovery period, confirming an important role for Cl - secretory pathways in vivo. CONCLUSIONS ClC-2-mediated intestinal Cl - secretion restores TER in ischemia-injured intestine. These data may provide the basis for targeted pharmacologic therapy for diseases associated with impaired barrier function.
Collapse
Affiliation(s)
- Adam J Moeser
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wang ECY, Lee JM, Johnson JP, Kleyman TR, Bridges R, Apodaca G. Hydrostatic pressure-regulated ion transport in bladder uroepithelium. Am J Physiol Renal Physiol 2003; 285:F651-63. [PMID: 12770841 DOI: 10.1152/ajprenal.00403.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The effect of hydrostatic pressure on ion transport in the bladder uroepithelium was investigated. Isolated rabbit uroepithelium was mounted in modified Ussing chambers and mechanically stimulated by applying hydrostatic pressure across the mucosa. Increased hydrostatic pressure led to increased mucosal-to-serosal Na+ absorption across the uroepithelium via the amiloride-sensitive epithelial Na+ channel. In addition to this previously characterized pathway for Na+ absorption, hydrostatic pressure also induced the secretion of Cl- and K+ into the mucosal bathing solution under short-circuit conditions, which was confirmed by a net serosal-to-mucosal flux of 36Cl- and 86Rb+. K+ secretion was likely via a stretch-activated nonselective cation channel sensitive to 100 microM amiloride, 10 mM tetraethylammonium, 3 mM Ba2+, and 1 mM Gd3+. Hydrostatic pressure-induced ion transport in the uroepithelium may play important roles in electrolyte homeostasis, volume regulation, and mechanosensory transduction.
Collapse
Affiliation(s)
- Edward C Y Wang
- Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
10
|
Egée S, Lapaix F, Decherf G, Staines HM, Ellory JC, Doerig C, Thomas SLY. A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J Physiol 2002; 542:795-801. [PMID: 12154179 PMCID: PMC2290452 DOI: 10.1113/jphysiol.2002.022970] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A recent study on malaria-infected human red blood cells (RBCs) has shown induced ion channel activity in the host cell membrane, but the questions of whether they are host- or parasite-derived and their molecular nature have not been resolved. Here we report a comparison of a malaria-induced anion channel with an endogenous anion channel in Plasmodium falciparum-infected human RBCs. Ion channel activity was measured using the whole-cell, cell-attached and excised inside-out configurations of the patch-clamp method. Parasitised RBCs were cultured in vitro, using co-cultured uninfected RBCs as controls. Unstimulated uninfected RBCs possessed negligible numbers of active anion channels. However, anion channels could be activated in the presence of protein kinase A (PKA) and ATP in the pipette solution or by membrane deformation. These channels displayed linear conductance (~15 pS), were blocked by known anion channel inhibitors and showed the permeability sequence I(-) > Br(-) > Cl(-). In addition, in less than 5 % of excised patches, an outwardly rectifying anion channel (~80 pS, outward conductance) was spontaneously active. The host membrane of malaria-infected RBCs possessed spontaneously active anion channel activity, with identical conductances, pharmacology and selectivity to the linear conductance channel measured in stimulated uninfected RBCs. Furthermore, the channels measured in malaria-infected RBCs were shown to have a low open-state probability (P(o)) at positive potentials, which explains the inward rectification of membrane conductance observed when using the whole-cell configuration. The data are consistent with the presence of two endogenous anion channels in human RBCs, of which one (the linear conductance channel) is up-regulated by the malaria parasite P. falciparum.
Collapse
Affiliation(s)
- Stéphane Egée
- Centre National de la Recherche Scientifique, UPR 9042, Station Biologique, Place G.Teissier, B. P. 74, 29682 Roscoff cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun XC, Bonanno JA. Expression, localization, and functional evaluation of CFTR in bovine corneal endothelial cells. Am J Physiol Cell Physiol 2002; 282:C673-83. [PMID: 11880256 PMCID: PMC4100724 DOI: 10.1152/ajpcell.00384.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HCO-dependent fluid secretion by the corneal endothelium controls corneal hydration and maintains corneal transparency. Recently, it has been shown that mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the corneal endothelium; however, protein expression, functional localization, and a possible role in HCO transport have not been reported. Immunoblotting for CFTR showed a single band at approximately 170 kDa for both freshly isolated and primary cultures of bovine corneal endothelial cells. Indirect immunofluorescence confocal microscopy indicated that CFTR locates to the apical membrane. Relative changes in apical and basolateral chloride permeability were estimated by measuring the rate of fluorescence quenching of the halide-sensitive indicator 6-methoxy-N-ethylquinolinium iodide during Cl(-) influx in the absence and presence of forskolin (FSK). Apical and basolateral Cl(-) permeability increased 10- and 3-fold, respectively, in the presence of 50 microM FSK. FSK-activated apical chloride permeability was unaffected by H(2)DIDs (250 microM); however, 5-nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB; 50 microM) and glibenclamide (100 microM ) inhibited activated Cl(-) fluxes by 45% and 30%, respectively. FSK-activated basolateral Cl(-) permeability was insensitive to NPPB, glibenclamide, or furosemide but was inhibited 80% by H(2)DIDS. HCO permeability was estimated by measuring changes in intracellular pH in response to quickly lowering bath [HCO]. FSK (50 microM) increased apical HCO permeability by twofold, which was inhibited 42% by NPPB and 65% by glibenclamide. Basolateral HCO permeability was unaffected by FSK. Genistein (50 microM) significantly increased apical HCO and Cl(minus sign) permeability by 1.8- and 16-fold, respectively. When 50 microM genistein was combined with 50 microM FSK, there was no further increase in Cl(-) permeability; however, HCO permeability was reduced to the control level. In summary, we conclude that CFTR is present in the apical membrane of bovine corneal endothelium and could contribute to transendothelial Cl(-) and HCO transport. Furthermore, there is a cAMP-activated Cl(-) pathway on the basolateral membrane that is not CFTR.
Collapse
Affiliation(s)
- Xing Cai Sun
- Indiana University School of Optometry, 800 E. Atwater Ave., Bloomington, IN 47405, USA
| | | |
Collapse
|
12
|
Thomas SL, Egée S, Lapaix F, Kaestner L, Staines HM, Ellory JC. Malaria parasite Plasmodium gallinaceum up-regulates host red blood cell channels. FEBS Lett 2001; 500:45-51. [PMID: 11434924 DOI: 10.1016/s0014-5793(01)02579-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The properties of the malaria parasite-induced permeability pathways in the host red blood cell have been a major area of interest particularly in the context of whether the pathways are host- or parasite-derived. In the present study, the whole-cell configuration of the patch-clamp technique has been used to show that, compared with normal cells, chicken red blood cells infected by Plasmodium gallinaceum exhibited a 5-40-fold larger membrane conductance, which could be further increased up to 100-fold by raising intracellular Ca(2+) levels. The increased conductance was not due to pathways with novel electrophysiological properties. Rather, the parasite increased the activity of endogenous 24 pS stretch-activated non-selective cationic (NSC) and 62 pS calcium-activated NSC channels, and, in some cases, of endogenous 255 pS anionic channels.
Collapse
Affiliation(s)
- S L Thomas
- Centre National de la Recherche Scientifique, UPR 9042, Station Biologique, Place G. Teissier, 29682 Roscoff Cedex, France.
| | | | | | | | | | | |
Collapse
|