1
|
Possetto D, Gambetta C, Gatica E, Montaña MP, Porcal GV, Massad W, Natera J. Photocatalytic evaluation and characterization of TiO2-riboflavin phosphate film: analysis of reactive oxygen species. Photochem Photobiol Sci 2022; 22:513-524. [PMID: 36308632 DOI: 10.1007/s43630-022-00331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 04/18/2023]
Abstract
The effect of Riboflavin-5'-phosphate (RFPO4) sensitization on photocatalytic properties of TiO2 film was studied. RFPO4 was adsorbed on film surface to investigate the photophysical properties of TiO2 upon blue-light photoexcitation. The film was characterized through scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and diffuse reflectance spectroscopy. The efficiency of the TiO2/RFPO4 film was tested for pollutant elimination in aqueous media in a visible-light-driven system. The phenol paradigmatic model was employed in an aqueous solution as a contaminant target. TiO2/RFPO4 sensitized photodegradation of phenol, which produces catechol, hydroquinone, and benzophenone, was monitored by absorption spectroscopy and HPLC. The results indicated that phenol degradation with TiO2/RFPO4 film was due to the photogeneration of two reactive oxygen species, singlet molecular oxygen (O2(1Δg)) and superoxide radical anion (O2·-) identified through specific detection techniques. The presence of O2(1Δg) is reported here for the first time as generated from a sensitized TiO2 film upon visible-light photoirradiation. Based on the photophysical determinations, a photocatalytic mechanism for TiO2/RFPO4 was established.
Collapse
|
2
|
Kormányos A, Hossain MS, Ghadimkhani G, Johnson JJ, Janáky C, de Tacconi NR, Foss FW, Paz Y, Rajeshwar K. Flavin Derivatives with Tailored Redox Properties: Synthesis, Characterization, and Electrochemical Behavior. Chemistry 2016; 22:9209-17. [PMID: 27243969 DOI: 10.1002/chem.201600207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/11/2022]
Abstract
This study establishes structure-property relationships for four synthetic flavin molecules as bioinspired redox mediators in electro- and photocatalysis applications. The studied flavin compounds were disubstituted with polar substituents at the N1 and N3 positions (alloxazine) or at the N3 and N10 positions (isoalloxazines). The electrochemical behavior of one such synthetic flavin analogue was examined in detail in aqueous solutions of varying pH in the range from 1 to 10. Cyclic voltammetry, used in conjunction with hydrodynamic (rotating disk electrode) voltammetry, showed quasi-reversible behavior consistent with freely diffusing molecules and an overall global 2e(-) , 2H(+) proton-coupled electron transfer scheme. UV/Vis spectroelectrochemical data was also employed to study the pH-dependent electrochemical behavior of this derivative. Substituent effects on the redox behavior were compared and contrasted for all the four compounds, and visualized within a scatter plot framework to afford comparison with prior knowledge on mostly natural flavins in aqueous media. Finally, a preliminary assessment of one of the synthetic flavins was performed of its electrocatalytic activity toward dioxygen reduction as a prelude to further (quantitative) studies of both freely diffusing and tethered molecules on various electrode surfaces.
Collapse
Affiliation(s)
- Attila Kormányos
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA.,Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, 6720, Hungary.,MTA-SZTE "Lendület" Photoelectrochemistry Research Group, Rerrich Square 1, Szeged, 6720, Hungary
| | - Mohammad S Hossain
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Ghazaleh Ghadimkhani
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Joe J Johnson
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, 6720, Hungary.,MTA-SZTE "Lendület" Photoelectrochemistry Research Group, Rerrich Square 1, Szeged, 6720, Hungary
| | - Norma R de Tacconi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Frank W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Yaron Paz
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Krishnan Rajeshwar
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas, 76019, USA.
| |
Collapse
|
3
|
Mansouri Majd S, Salimi A, Astinchap B. Manganese Oxide Nanoparticles/Reduced Graphene Oxide as Novel Electrochemical Platform for Immobilization of FAD and its Application as Highly Sensitive Persulfate Sensor. ELECTROANAL 2015. [DOI: 10.1002/elan.201500421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Emre FB, Lopes P, Ferapontova EE. Implications of FAD Electrode Reaction Kinetics for Electrocatalysis of NADH Oxidation and Development of NAD-Dependent Enzyme Electrodes. ELECTROANAL 2014. [DOI: 10.1002/elan.201400048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Avalle LB, Valle L. Riboflavin and flavin mononucleotide adsorption on Ag (111) electrodes and their interaction with l-cysteine investigated by electrochemical and non-linear optical methods. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Salimi A, Noorbakhsh A, Semnani A. Immobilization of flavine adenine dinucleotide onto nickel oxide nanostructures modified glassy carbon electrode: fabrication of highly sensitive persulfate sensor. J Solid State Electrochem 2010. [DOI: 10.1007/s10008-010-1221-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chen SM, Chzo WY, Thangamuthu R. Preparation and Characterization of GCE Coatings Combining DDDMAB and PDADMAC with FAD and HCM for Electrocatalytic Detection of Oxygen and Sulfur Oxoanions. ELECTROANAL 2009. [DOI: 10.1002/elan.200904691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Li Y, Umasankar Y, Chen SM. Polyaniline and poly(flavin adenine dinucleotide) doped multi-walled carbon nanotubes for p-acetamidophenol sensor. Talanta 2009; 79:486-92. [PMID: 19559909 DOI: 10.1016/j.talanta.2009.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
A conductive biocomposite film (MWCNTs-PANIFAD) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(aniline) and poly(flavin adenine dinucleotide) co-polymer (PANIFAD) has been synthesized on gold and screen printed carbon electrodes by potentiostatic methods. The presence of MWCNTs in the MWCNTs-PANIFAD biocomposite film enhances the surface coverage concentration (Gamma) of PANIFAD and increases the electron transfer rate constant (k(s)) to 89%. Electrochemical quartz crystal microbalance studies reveal the enhancements in the functional properties of MWCNTs and PANIFAD present in MWCNTs-PANIFAD biocomposite film. Surface morphology of the biocomposite film has been studied using scanning electron microscopy and atomic force microscopy. The surface morphology results reveal that PANIFAD incorporated on MWCNTs. The MWCNTs-PANIFAD biocomposite film exhibits promising enhanced electrocatalytic activity towards the oxidation of p-acetamidophenol. The cyclic voltammetry has been used for the measurement of electroanalytical properties of p-acetamidophenol by means of PANIFAD, MWCNTs and MWCNTs-PANIFAD biocomposite film modified gold electrodes. The sensitivity value of MWCNTs-PANIFAD film (88.5 mA mM(-1)cm(-2)) is higher than the values which are obtained for PANIFAD (28.7 mA mM(-1)cm(-2)) and MWCNTs films (60.7 mA mM(-1)cm(-2)). Finally, the flow injection analysis (FIA) has been used for the amperometric detection of p-acetamidophenol at MWCNTs-PANIFAD film modified screen printed carbon electrode. The sensitivity value of MWCNTs-PANIFAD film (3.3 mA mM(-1)cm(-2)) in FIA is also higher than the value obtained for MWCNTs film (1.1 mA mM(-1)cm(-2)).
Collapse
Affiliation(s)
- Ying Li
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | | | |
Collapse
|
9
|
Wei H, Omanovic S. Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface. Chem Biodivers 2008; 5:1622-1639. [PMID: 18729097 DOI: 10.1002/cbdv.200890150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode (GCE) surface was investigated in terms of the FAD adsorption thermodynamics and kinetics, the subsequent electroreduction mechanism, and the corresponding electron-transfer rate. The kinetics of FAD electroreduction at the GCE was found to be an adsorption-controlled process. A set of electroreduction kinetic parameters was calculated: the true number of electrons involved in the FAD reduction, n=1.76, the apparent transfer coefficient, alpha(app)=0.41, and the apparent heterogeneous electron-transfer rate constant, k(app)=1.4 s(-1). The deviation of the number of exchanged electrons from the theoretical value for the complete reduction of FAD to FADH(2) (n=2) indicates that a small portion of FAD goes to a semiquinone state during the redox process. The FAD adsorption was well described by the Langmuir adsorption isotherm. The large negative apparent Gibbs energy of adsorption (DeltaG(ads)=-39.7 +/-0.4 kJ mol(-1)) indicated a highly spontaneous and strong adsorption of FAD on the GCE. The energetics of the adsorption process was found to be independent of the electrode surface charge in the electrochemical double-layer region. The kinetics of FAD adsorption was modeled using a pseudo-first-order kinetic model.
Collapse
Affiliation(s)
- Haizhen Wei
- Department of Chemical Engineering, McGill University Montreal, 3610 University Street, Montreal Quebec, H3A 2B2, Canada
| | | |
Collapse
|
10
|
Wei HZ, van de Ven TGM, Omanovic S, Zeng YW. Adsorption behavior of dinucleotides on bare and ru-modified glassy carbon electrode surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12375-12384. [PMID: 18839974 DOI: 10.1021/la801926t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interactive behavior of flavin adenine dinucleotide (FAD) with a bare glassy carbon electrode (GCE) and a Ru-modified GCE was investigated. The reduction of FAD at a GCE/ruthenium-modified GCE surface is a quasi-reversible, surface-controlled process, and our data implied that the attachment of FAD onto the surface is caused by nonspecific adsorption instead of covalent linkage, in which the adenine ring of FAD adopts a flat orientation on the GCE surface in neutral and dilute solutions in order to maximize the pi-pi stacking with the carbon surface and reorients to a perpendicular orientation as the surface gets more crowded. FAD desorption during the exchange with nicotinamide adenine dinucleotide (NAD+) is one order of magnitude slower than desorption in the absence of NAD+, which indicates a strong interaction between FAD and NAD+. General knowledge of the interactive behavior of NAD+ on a FAD-adsorbed GCE provides useful information for the design of a modified electrode surface for the generation of NADH from NAD+.
Collapse
Affiliation(s)
- H Z Wei
- College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, PR China
| | | | | | | |
Collapse
|
11
|
Ashok Kumar S, Lo PH, Chen SM. Electrochemical synthesis and characterization of TiO(2) nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis. NANOTECHNOLOGY 2008; 19:255501. [PMID: 21828652 DOI: 10.1088/0957-4484/19/25/255501] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here, we report the electrochemical synthesis of TiO(2) nanoparticles (NPs) using the potentiostat method. Synthesized particles have been characterized by using x-ray diffraction (XRD) studies, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results revealed that the TiO(2) film produced was mainly composed of rutile and that the particles are of a size in the range of 100 ± 50 nm. TiO(2) NPs were used for the modification of a screen printed carbon electrode (SPE). The resulting TiO(2) film coated SPE was used to immobilize flavin adenine dinucleotide (FAD). The flavin enzyme firmly attached onto the metal oxide surface and this modified electrode showed promising electrocatalytic activities towards the reduction of hydrogen peroxide (H(2)O(2)) in physiological conditions. The electrochemistry of FAD confined in the oxide film was investigated. The immobilized FAD displayed a pair of redox peaks with a formal potential of -0.42 V in pH 7.0 oxygen-free phosphate buffers at a scan rate of 50 mV s(-1). The FAD in the nanostructured TiO(2) film retained its bioactivity and exhibited excellent electrocatalytic response to the reduction of H(2)O(2), based on which a mediated biosensor for H(2)O(2) was achieved. The linear range for the determination of H(2)O(2) was from 0.15 × 10(-6) to 3.0 × 10(-3) M with the detection limit of 0.1 × 10(-6) M at a signal-to-noise ratio of 3. The stability and repeatability of the biosensor is also discussed.
Collapse
|
12
|
Marafon E, Kubota LT, Gushikem Y. FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0564-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Lima PR, Santos WDJR, de Oliveira AB, Goulart MOF, Kubota LT. Electrochemical investigations of the reaction mechanism and kinetics between NADH and redox-active (NC)2C6H3-NHOH/(NC)2C6H3-NO from 4-nitrophthalonitrile-(NC)2C6H3-NO2-modified electrode. Biosens Bioelectron 2008; 24:448-54. [PMID: 18562191 DOI: 10.1016/j.bios.2008.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/10/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022]
Abstract
A simple and sensitive method for the electrocatalytic detection of NADH on a carbon paste electrode modified with a redox-active (NC)(2)C(6)H(3)-NO/(NC)(2)C(6)H(3)-NHOH (NOPH/NHOHPH) electrogenerated in situ from 4-nitrophthalonitrile (4-NPHN) is presented. The electrode modified with 4-NPHN showed an efficient electrocatalytic activity towards the oxidation of NADH with activation overpotential of 0.12V vs. Ag/AgCl. The formation of an intermediate charge transfer complex is proposed for the charge transfer reaction between NADH and the 4-NPHN-resulting system. The second-order rate constant for electrocatalytic oxidation of NADH, kappa(obs), and the apparent Michaelis-Menten constant K(M), at pH 7.0 were evaluated with rotating disk electrode (RDE) experiments, giving 1.0 x 10(4)mol(-1)Ls(-1) and 2.7 x 10(-5)mol L(-1), respectively. Employing the Koutecky-Levich approach indicated that the NADH oxidation reaction involves two electrons. The sensor provided a linear response range for NADH from 0.8 up to 8.5 micromol L(-1) with sensitivity, detection, quantification limits and time response of 0.50 microA L micromol(-1), 0.25micromol L(-1), 0.82 micromol L(-1) and 0.1s, respectively. The repeatability of the measurements with the same sensor and different sensors, evaluated in terms of relative standard deviation, were 4.1 and 5.0%, respectively, for n=10.
Collapse
|
14
|
Kumar SA, Chen S. Nanostructured Zinc Oxide Particles in Chemically Modified Electrodes for Biosensor Applications. ANAL LETT 2008. [DOI: 10.1080/00032710701792612] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Chen SM, Song JL, Thangamuthu R. Preparation, characterization and electrocatalytic studies on hybrid films of electropolymerized manganese tetra(o-aminophenyl)porphyrin and adsorbed flavins. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Shukla A, Gillam EM, Bernhardt PV. Direct electrochemistry of human and rat NADPH cytochrome P450 reductase. Electrochem commun 2006. [DOI: 10.1016/j.elecom.2006.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Milsom EV, Perrott HR, Peter LM, Marken F. Redox processes in mesoporous oxide membranes: layered TiO2 phytate and TiO2 flavin adenine dinucleotide films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:9482-7. [PMID: 16207025 DOI: 10.1021/la0506325] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Thin films of TiO2 (anatase) nanoparticles are assembled at an electrode surface via a layer-by-layer deposition process employing phytic acid, pyromellitic acid, or flavin adenine dinucleotide (FAD) as molecular binders. With all three types of binders, layers of typically 30 nm thickness are formed each deposition cycle. FAD as an electrochemically active component immobilized at the surface of the TiO2 particles is reduced to FADH2 and reoxidized in a chemically reversible two electron-two proton redox process. Two distinct voltammetric signals are observed for the immobilized FAD redox system associated with (i) hopping of electrons at the TiO2 surface (reversible) and (ii) conduction of electrons through the TiO2 assembly (irreversible). The conduction of electrons through the TiO2 assembly is possible by diffusion over considerable distances as well as through a "spacer" layer of TiO2 phytate. An order of magnitude (upper limit) estimate for the diffusion coefficient of electrons through TiO2 phytate, D(electron) approximately 10(-6) m(2) s(-1), is obtained from voltammetric data. Finally, it is demonstrated that the calcination of TiO2 assemblies causes dramatic changes in the electron transfer kinetics for the immobilized FAD/FADH2 redox system.
Collapse
Affiliation(s)
- Elizabeth V Milsom
- Department of Chemistry and Centre for Electron Optical Studies, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | | | | |
Collapse
|
18
|
|
19
|
Ladiu CI, Popescu IC, Gorton L. Electrocatalytic oxidation of NADH at carbon paste electrodes modified with meldola blue adsorbed on zirconium phosphate: effect of Ca2+ and polyethyleneimine. J Solid State Electrochem 2005. [DOI: 10.1007/s10008-004-0618-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
de-los-Santos-Álvarez N, Lobo-Castañón M, Miranda-Ordieres A, Tuñón-Blanco P. Electrochemical and Catalytic Properties of the Adenine Coenzymes FAD and Coenzyme A on Pyrolytic Graphite Electrodes. ELECTROANAL 2005. [DOI: 10.1002/elan.200403180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Garjonyte R, Malinauskas A, Gorton L. Investigation of electrochemical properties of FMN and FAD adsorbed on titanium electrode. Bioelectrochemistry 2004; 61:39-49. [PMID: 14642908 DOI: 10.1016/s1567-5394(03)00058-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The electrochemical properties (such as the values of the formal potentials, the dependence of the formal potentials on solution pH, the reversibility of the electrochemical process) of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) adsorbed on a titanium electrode were dependent on the electrolyte. The formal potentials of adsorbed FMN and FAD in phosphate, HEPES and PIPES buffers at pH 7 were similar to those for dissolved flavins (-460 to -480 mV vs. SCE) and changed linearly with a slope of about 52 mV per pH unit in the pH region 3 to 8. In TRIS buffer, the formal potentials of adsorbed FMN and FAD were also pH-dependent, however, with invariance in the pH range 4.5 to 5.5. In non-buffered solutions (KCl, LiCl, NaCl, CsCl, CaCl(2), Na(2)SO(4) at different concentrations), the electrochemical behavior of adsorbed FMN and FAD differed from that of dissolved flavins and was dependent on the electrolyte (especially at pH 4.5 and pH 5). Under certain conditions (electrolyte, concentration, pH), a two-step oxidation of FMN could be observed.
Collapse
Affiliation(s)
- R Garjonyte
- Institute of Chemistry, Gostauto 9, LT-2600 Vilnius, Lithuania.
| | | | | |
Collapse
|
22
|
Munteanu F, Mano N, Kuhn A, Gorton L. NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2003.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Electrochemical study of the redox dyes Nile Blue and Toluidine Blue adsorbed on graphite and zirconium phosphate modified graphite. J Electroanal Chem (Lausanne) 2000. [DOI: 10.1016/s0022-0728(00)00059-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Malinauskas A, Ruzgas T, Gorton L. Tuning the redox potential of riboflavin by zirconium phosphate in carbon paste electrodes. BIOELECTROCHEMISTRY AND BIOENERGETICS (LAUSANNE, SWITZERLAND) 1999; 49:21-7. [PMID: 10619444 DOI: 10.1016/s0302-4598(99)00061-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modified carbon paste electrodes were prepared by inclusion of riboflavin together with zirconium phosphate (ZrP) into carbon paste. The midpoint potential for riboflavin in this electrode was found to be -0.259 V vs. SCE and shifted by 0.207 V to the positive direction, as compared to carbon paste electrode not containing ZrP. The electrode prepared was shown to electrocatalyse the anodic oxidation of the coenzyme NADH in the potential range of 0.0 to 0.25 V.
Collapse
|