1
|
Yang R, Winters SJ, Moore JP. Signaling pathways and promoter regions that mediate pituitary adenylate cyclase activating polypeptide (PACAP) self-regulation in gonadotrophs. Mol Cell Endocrinol 2020; 512:110851. [PMID: 32439415 PMCID: PMC7339524 DOI: 10.1016/j.mce.2020.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is thought to play a role in the development and regulation of gonadotrophs. PACAP levels are very high in the rodent fetal pituitary, and decline substantially and rapidly at birth, followed by a significant rise in FSHβ and GnRH-R expression. Because there is evidence that PACAP stimulates its own transcription, we propose that this self-regulation is interrupted around the time of birth. To begin to examine the mechanisms for PACAP self-regulation, we used two well-established gonadotroph cell lines, αT3-1 cells and the more mature LβT2 cells which were transfected with a PACAP promoter-reporter construct As in vivo, the basal PACAP transcription level is significantly lower in the more mature LβT2 cells in which basal cAMP signaling is also much reduced. The PACAP promoter was stimulated by PACAP in both cell lines. Treatment with inhibitors of second messenger pathways implicated PKA, PKC and MAPK in PACAP transcription. Three regions of the PACAP promoter were found to confer inhibition or stimulation of PACAP transcription. By inhibiting cAMP response element binding (CREB) activity and mutating a proximal CREB binding site, we found that CREB is essential for promoter activation. Finally, overexpression of PACAP receptor HOP1 isoform, to increase the level in LβT2 cells to that of αT3-1 cells and simulate the E19 pituitary, increased PACAP- stimulated sensitivity and significantly altered downstream gene transcription. These results provide novel insight into the feed-forward regulation of PACAP expression that may help initiate gonadotroph function at birth.
Collapse
Affiliation(s)
- Rongquiang Yang
- Department of Anatomical Sciences and Neurobiology, Louisville, KY, 40202, USA
| | - Stephen J Winters
- Division of Endocrinology & Metabolism, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Joseph P Moore
- Department of Anatomical Sciences and Neurobiology, Louisville, KY, 40202, USA; Division of Endocrinology & Metabolism, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
2
|
Halvorson LM. PACAP modulates GnRH signaling in gonadotropes. Mol Cell Endocrinol 2014; 385:45-55. [PMID: 24095645 DOI: 10.1016/j.mce.2013.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
Hypothalamic gonadotropin-releasing hormone is known to be critical for normal gonadotropin biosynthesis and secretion by the gonadotrope cells of the anterior pituitary gland. Additional regulation is provided by gonadal steroid feedback as well as by intrapituitary factors, such as activin and follistatin. Less well-appreciated is the role of pituitary adenylate-cyclase activating polypeptide (PACAP) as both a hypothalamic-pituitary releasing factor as well as an autocrine-paracrine factor within the pituitary. PACAP regulates gonadotropin expression alone and through modulation of GnRH responsiveness achieved by increases in GnRH receptor expression and interactions at the level of intracellular signaling pathways. In addition to direct effects on the gonadotrope, PACAP stimulates follistatin secretion by the folliculostellate cells and thereby contributes to differential expression of the gonadotropin subunits. Conversely, GnRH augments the ability of PACAP to regulate gonadotrope function by increasing pituitary PACAP and PACAP receptor expression. This review will summarize the current understanding of the mechanisms by which PACAP modulates gonadotrope function, with a focus on interactions with GnRH.
Collapse
Affiliation(s)
- Lisa M Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, United States.
| |
Collapse
|
3
|
Thomas RL, Crawford NM, Grafer CM, Zheng W, Halvorson LM. GATA augments GNRH-mediated increases in Adcyap1 gene expression in pituitary gonadotrope cells. J Mol Endocrinol 2013; 51:313-24. [PMID: 24018543 PMCID: PMC3825478 DOI: 10.1530/jme-13-0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide 1 (PACAP or ADCYAP1) regulates gonadotropin biosynthesis and secretion, both alone and in conjunction with GNRH. Initially identified as a hypothalamic-releasing factor, ADCYAP1 subsequently has been identified in pituitary gonadotropes, suggesting it may act as an autocrine-paracrine factor in this tissue. GNRH has been shown to increase pituitary Adcyap1 gene expression through the interaction of CREB and jun/fos with CRE/AP1 cis-elements in the proximal promoter. In these studies, we were interested in identifying additional transcription factors and cognate cis-elements which regulate Adcyap1 gene promoter activity and chose to focus on the GATA family of transcription factors known to be critical for both pituitary cell differentiation and gonadotropin subunit expression. By transient transfection and electrophoretic mobility shift assay analysis, we demonstrate that GATA2 and GATA4 stimulate Adcyap1 promoter activity via a GATA cis-element located at position -191 in the rat Adcyap1 gene promoter. Furthermore, we show that addition of GATA2 or GATA4 significantly augments GNRH-mediated stimulation of Adcyap1 gene promoter activity in the gonadotrope LβT2 cell line. Conversely, blunting GATA expression with specific siRNA inhibits the ability of GNRH to stimulate ADCYAP1 mRNA levels in these cells. These data demonstrate a complex interaction between GNRH and GATA on ADCYAP1 expression, providing important new insights into the regulation of gonadotrope function.
Collapse
Affiliation(s)
- Robin L. Thomas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | - Natalie M. Crawford
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | - Constance M. Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | - Weiming Zheng
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | - Lisa M. Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
- Corresponding author at: Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA Tel: 214-648-4885; fax: 214-648-8066
| |
Collapse
|
4
|
Grafer CM, Halvorson LM. Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 2013; 27:1343-56. [PMID: 23798575 DOI: 10.1210/me.2012-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gonadotropin expression is precisely regulated within the hypothalamic-pituitary-gonadal axis through the complex interaction of neuropeptides, gonadal steroids. and both gonadal- and pituitary-derived peptides. In the anterior pituitary gland, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) modulates gonadotropin biosynthesis and secretion, acting both alone and in conjunction with GnRH. Steroid hormone feedback also influences gonadotropin expression via both direct and indirect mechanisms. Evidence from nonpituitary tissues suggests that PACAP may be a target for gonadal steroid regulation. In the present study, we show that androgen markedly stimulates rat (r) PACAP promoter-reporter activity in the LβT2 mature mouse gonadotrope cell line. 5'-Serial deletion analysis of reporter constructs identifies 2 regions of androgen responsiveness located at (-915 to -818) and (-308 to -242) of the rPACAP promoter. Androgen receptor (AR) binds directly to DNA cis-elements in each of these regions in vitro. Site-directed mutagenesis of 3 conserved hormone response element half-sites straddling the (-308 to -242) region dramatically blunts androgen-dependent PACAP promoter activity and prevents AR binding at the mutated promoter element. Chromatin immunoprecipitation demonstrates that endogenous AR binds the homologous region on mouse chromatin in LβT2 cells in both the presence and absence of androgen. These data demonstrate that androgen stimulates PACAP gene expression in the pituitary gonadotrope via direct binding of AR to a specific cluster of evolutionarily conserved hormone response elements in the proximal rPACAP gene promoter. Thus, androgen regulation of pituitary PACAP expression may provide an additional layer of control over gonadotropin expression within the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
5
|
Schang AL, Quérat B, Simon V, Garrel G, Bleux C, Counis R, Cohen-Tannoudji J, Laverrière JN. Mechanisms underlying the tissue-specific and regulated activity of the Gnrhr promoter in mammals. Front Endocrinol (Lausanne) 2012; 3:162. [PMID: 23248618 PMCID: PMC3521148 DOI: 10.3389/fendo.2012.00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023] Open
Abstract
The GnRH receptor (GnRHR) plays a central role in the development and maintenance of reproductive function in mammals. Following stimulation by GnRH originating from the hypothalamus, GnRHR triggers multiple signaling events that ultimately stimulate the synthesis and the periodic release of the gonadotropins, luteinizing-stimulating hormone (LH) and follicle-stimulating hormones (FSH) which, in turn, regulate gonadal functions including steroidogenesis and gametogenesis. The concentration of GnRHR at the cell surface is essential for the amplitude and the specificity of gonadotrope responsiveness. The number of GnRHR is submitted to strong regulatory control during pituitary development, estrous cycle, pregnancy, lactation, or after gonadectomy. These modulations take place, at least in part, at the transcriptional level. To analyze this facet of the reproductive function, the 5' regulatory sequences of the gene encoding the GnRHR have been isolated and characterized through in vitro and in vivo approaches. This review summarizes results obtained with the mouse, rat, human, and ovine promoters either by transient transfection assays or by means of transgenic mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Noël Laverrière
- *Correspondence: Jean-Noël Laverrière, Physiologie de l’Axe Gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Bâtiment Buffon, case courrier 7007, 4 rue MA Lagroua Weill-Hallé, 75205 Paris Cedex 13, France. e-mail:
| |
Collapse
|
6
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 862] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Grafer CM, Thomas R, Lambrakos L, Montoya I, White S, Halvorson LM. GnRH stimulates expression of PACAP in the pituitary gonadotropes via both the PKA and PKC signaling systems. Mol Endocrinol 2009; 23:1022-32. [PMID: 19342443 DOI: 10.1210/me.2008-0477] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated a clear role for pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of gonadotropin biosynthesis and secretion, both alone and in conjunction with GnRH. First defined as a hypothalamic releasing factor, PACAP subsequently has been identified in the gonadotrope subpopulation of the anterior pituitary gland, suggesting that PACAP may act as an autocrine-paracrine factor in this tissue. In initial studies, we determined that GnRH markedly stimulated endogenous PACAP mRNA levels and promoter-reporter activity in the mature gonadotrope cell line, LbetaT2. GnRH-stimulated rat PACAP promoter activity was blunted with deletion from position -915 to -402 and eliminated with further truncation to position -77 relative to the transcriptional start site. Site-directed mutagenesis demonstrated a functional requirement for a cAMP response element (CRE)-like site at position -205 and an activating protein-1 (AP-1)-like site at position -275, both of which bound CRE binding protein and AP-1 family members on EMSA. Treatment with pharmacological activators or inhibitors of second messenger signaling pathways implicated the protein kinase A, protein kinase C, and MAPK pathways in the GnRH response. In support of these in vitro data, we demonstrate that JunB binds to the rat PACAP gene promoter by chromatin immunoprecipitation assay and that small interfering RNA knockdown of JunB, cFos, and CRE binding protein factors blunts PACAP expression. In summary, these results further elucidate the complex functional interactions between PACAP and GnRH in the anterior pituitary. Specifically, these studies demonstrate that GnRH-stimulated PACAP gene expression is mediated via multiple signaling pathways acting on CRE/AP-1 sites in the proximal gene promoter. Because both PACAP and GnRH regulate gonadotropin biosynthesis and secretion, these results provide important insight into the critical fine tuning of gonadotrope function and, thereby, the maintenance of normal reproductive function.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chinnappan D, Qu X, Xiao D, Ratnasari A, Weber HC. Human gastrin-releasing peptide receptor gene regulation requires transcription factor binding at two distinct CRE sites. Am J Physiol Gastrointest Liver Physiol 2008; 295:G153-G162. [PMID: 18483184 PMCID: PMC2494719 DOI: 10.1152/ajpgi.00036.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ectopic expression of the gastrin-releasing peptide (GRP) receptor (GRP-R) occurs frequently in human malignancies of the gastrointestinal tract. Owing to paracrine and autocrine interaction with its specific high-affinity ligand GRP, tumor cell proliferation, migration, and invasion might ensue. Here we provide the first insights regarding molecular mechanisms of GRP-R regulation in gastrointestinal cancer cells. We identified by EMSA and chromatin immunoprecipitation assays two cAMP response element (CRE) binding sites that recruited transcription factor CRE binding protein (CREB) to the human GRP-R promoter. Transfection studies with a wild-type human GRP-R promoter reporter and corresponding CRE mutants showed that both CRE sites are critical for basal transcriptional activation in gastrointestinal cancer cells. Forced expression of cAMP-dependent effectors CREB and PKA resulted in robust upregulation of human GRP-R transcriptional activity, and this overexpression strictly required intact wild-type CRE sites. Direct cAMP stimulation with forskolin resulted in enhanced human GRP-R promoter activity only in HuTu-80 cells, but not in Caco-2 cells, coinciding with forskolin-induced CREB phosphorylation occurring only in HuTu-80 but not Caco-2 cells. In summary, CREB is a critical regulator of human GRP-R expression in gastrointestinal cancer and might be activated through different upstream intracellular pathways.
Collapse
Affiliation(s)
- Dharmaraj Chinnappan
- Boston University School of Medicine, Section of Gastroenterology, Boston, Massachusetts
| | - Xiangping Qu
- Boston University School of Medicine, Section of Gastroenterology, Boston, Massachusetts
| | - Dongmei Xiao
- Boston University School of Medicine, Section of Gastroenterology, Boston, Massachusetts
| | - Anita Ratnasari
- Boston University School of Medicine, Section of Gastroenterology, Boston, Massachusetts
| | - H. Christian Weber
- Boston University School of Medicine, Section of Gastroenterology, Boston, Massachusetts
| |
Collapse
|
9
|
Janssens K, Boussemaere M, Wagner S, Kopka K, Denef C. Beta1-adrenoceptors in rat anterior pituitary may be constitutively active. Inverse agonism of CGP 20712A on basal 3',5'-cyclic adenosine 5'-monophosphate levels. Endocrinology 2008; 149:2391-402. [PMID: 18202135 DOI: 10.1210/en.2007-1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Catecholamines directly stimulate GH, ACTH, and prolactin secretion from rat anterior pituitary through the beta(2)-adrenoceptor (AR). We recently showed that gonadotrophs express the beta(1)-AR and that glucocorticoids drastically increase its mRNA expression level. The present investigation explores whether beta(1)-ARs are functionally coupled to adenylate cyclase. In anterior pituitary cell aggregates, the highly selective beta(1)-AR antagonists CGP 20712A and ICI 89,406-8a attenuated isoproterenol-stimulated cAMP accumulation, but no agonist action of norepinephrine could be detected. Remarkably, CGP 20712A inhibited basal cAMP levels by its own for at least 50%, an action that tended to be more effective in dexamethasone-supplemented medium. The latter effect was abolished by the beta-AR antagonist carvedilol, but not by other beta-AR antagonists. Pretreatment with pertussis toxin abolished the action of CGP 20712A on basal cAMP. CGP 20712A also attenuated isoproterenol-induced cAMP accumulation in the gonadotroph cell lines alphaT3-1 and LbetaT2, but not in the somatotroph precursor cell line GHFT and the folliculo-stellate cell line TtT/GF. However, in LbetaT2 cells CGP 20712A did not inhibit basal cAMP levels by its own. The present data suggest that beta(1)-AR in the anterior pituitary is positively coupled to adenylyl cyclase but is constitutively active in a pertussis toxin-sensitive manner. CGP 20712A may act as an inverse agonist with approximately 50% negative intrinsic activity, suggesting that the beta(1)-AR significantly contributes to basal adenylate cyclase activity in the pituitary.
Collapse
Affiliation(s)
- Kristel Janssens
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Campus Gasthuisberg (O & N), B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
10
|
Rispoli LA, Nett TM. Pituitary gonadotropin-releasing hormone (GnRH) receptor: structure, distribution and regulation of expression. Anim Reprod Sci 2005; 88:57-74. [PMID: 15993012 DOI: 10.1016/j.anireprosci.2005.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reproduction in mammals is controlled by interactions between the hypothalamus, anterior pituitary and gonads. Interaction of GnRH with its cognate receptor is essential to regulating reproduction. Characterization of the structure, distribution and expression of GnRH receptors (GnRH-R) has furthered our understanding of the physiological consequences of GnRH stimulation of pituitary gonadotropes. Based on the putative topology of the amino acid sequence of the GnRH-R and point mutation studies, key elements of the GnRH-R have been identified to play a role in ligand recognition and binding, G-protein activation and internalization. Normally, reproductive function is mediated by GnRH-R expressed only on the membranes of pituitary gonadotropes. The density of GnRH-R on gonadotropes determines their ability to respond to GnRH. This density is highest just prior to ovulation and likely is important for complete expression of the pre-ovulatory surge of LH. Therefore, knowledge regarding what regulates the density of GnRH-R is essential to understanding changes in pituitary sensitivity to GnRH and ultimately, to expression of the LH surge. Regulation of GnRH-R gene expression is influenced by a multitude of factors including gonadal steroid hormones, inhibin, activin and perhaps most importantly GnRH itself.
Collapse
Affiliation(s)
- L A Rispoli
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
11
|
Hapgood JP, Sadie H, van Biljon W, Ronacher K. Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes. J Neuroendocrinol 2005; 17:619-38. [PMID: 16159375 DOI: 10.1111/j.1365-2826.2005.01353.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues via autocrine, paracrine and endocrine signalling.
Collapse
Affiliation(s)
- J P Hapgood
- Department of Biochemistry, University of Stellenbosch, Matieland, South Africa.
| | | | | | | |
Collapse
|
12
|
Agarwal A, Halvorson LM, Legradi G. Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 138:45-57. [PMID: 15882914 PMCID: PMC1950324 DOI: 10.1016/j.molbrainres.2005.03.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 03/22/2005] [Accepted: 03/27/2005] [Indexed: 11/15/2022]
Abstract
The physiologic response to stress is highly dependent on the activation of corticotropin-releasing hormone (CRH) neurons by various neurotransmitters. A particularly rich innervation of hypophysiotropic CRH neurons has been detected by nerve fibers containing the neuropeptide PACAP, a potent activator of the cAMP-protein kinase A (PKA) system. Intracerebroventricular (icv) injections of PACAP also elevate steady-state CRH mRNA levels in the paraventricular nucleus (PVN), but it is not known whether PACAP effects can be associated with acute stress responses. Likewise, in cell culture studies, pharmacologic activation of the PKA system has stimulated CRH gene promoter activity through an identified cAMP response element (CRE); however, a direct link between PACAP and CRH promoter activity has not been established. In our present study, icv injection of 150 or 300 pmol PACAP resulted in robust phosphorylation of the transcription factor CREB in the majority of PVN CRH neurons at 15 to 30 min post-injection and induced nuclear Fos labeling at 90 min. Simultaneously, plasma corticosterone concentrations were elevated in PACAP-injected animals, and significant increases were observed in face washing, body grooming, rearing and wet-dog shakes behaviors. We investigated the effect of PACAP on human CRH promoter activity in alphaT3-1 cells, a PACAP-receptor expressing cell line. Cells were transiently transfected with a chloramphenicol acetyltransferase (CAT) reporter vector containing region - 663/+124 of the human CRH gene promoter then treated for with PACAP (100 nM) or with the adenylate cyclase activating agent, forskolin (2.5 muM). Both PACAP and forskolin significantly increased wild-type hCRH promoter activity relative to vehicle controls. The PACAP response was abolished in the CRE-mutant construct. Pretreatment of transfected cells with the PKA blocker, H-89, completely prevented both PACAP- and forskolin-induced increases in CRH promoter activity. Furthermore, CREB overexpression strongly enhanced PACAP-mediated stimulation of hCRH promoter activity, an effect which was also lost with mutation of the CRE. Thus, we demonstrate that icv PACAP administration to rats under non-stressed handling conditions leads to cellular, hormonal and behavioral responses recapitulating manifestations of the acute stress response. Both in vivo and in vitro data point to the importance of PACAP-mediated activation of the cAMP/PKA signaling pathway for stimulation of CRH gene transcription, likely via the CRE.
Collapse
Affiliation(s)
- Anika Agarwal
- Tufts-New England Medical Center, Boston, MA 02111, USA
| | - Lisa M. Halvorson
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabor Legradi
- Department of Anatomy, College of Medicine University of South Florida, 12901 Bruce B. Downs Blvd., MDC6 Tampa, FL 33612, USA
| |
Collapse
|
13
|
Cheng CK, Leung PCK. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 2005; 26:283-306. [PMID: 15561800 DOI: 10.1210/er.2003-0039] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In human beings, two forms of GnRH, termed GnRH-I and GnRH-II, encoded by separate genes have been identified. Although these hormones share comparable cDNA and genomic structures, their tissue distribution and regulation of gene expression are significantly dissimilar. The actions of GnRH are mediated by the GnRH receptor, which belongs to a member of the rhodopsin-like G protein-coupled receptor superfamily. However, to date, only one conventional GnRH receptor subtype (type I GnRH receptor) uniquely lacking a carboxyl-terminal tail has been found in the human body. Studies on the transcriptional regulation of the human GnRH receptor gene have indicated that tissue-specific gene expression is mediated by differential promoter usage in various cell types. Functionally, there is growing evidence showing that both GnRH-I and GnRH-II are potentially important autocrine and/or paracrine regulators in some extrapituitary compartments. Recent cloning of a second GnRH receptor subtype (type II GnRH receptor) in nonhuman primates revealed that it is structurally and functionally distinct from the mammalian type I receptor. However, the human type II receptor gene homolog carries a frameshift and a premature stop codon, suggesting that a full-length type II receptor does not exist in humans.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | |
Collapse
|
14
|
Cheng CK, Chow BKC, Leung PCK. An activator protein 1-like motif mediates 17beta-estradiol repression of gonadotropin-releasing hormone receptor promoter via an estrogen receptor alpha-dependent mechanism in ovarian and breast cancer cells. Mol Endocrinol 2003; 17:2613-29. [PMID: 12947046 DOI: 10.1210/me.2003-0217] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it is recognized that estrogen is one of the most important regulators of GnRH receptor (GnRHR) gene expression, the mechanism underlying the regulation at the transcriptional level is unknown. In the present study, we demonstrated that 17beta-estradiol (E2) repressed human GnRHR promoter via an activator protein 1-like motif and estrogen receptor-alpha, of which the DNA-binding domain and the ligand-binding domain were indispensable for the repression. Interestingly, the same cis-acting motif was also found to be important for both the basal activity and phorbol 12-myristate 13-acetate responsiveness of the GnRHR promoter. EMSAs indicated that multiple transcription factors including c-Jun and c-Fos bound to the activator protein 1-like site and that their DNA binding activity was not significantly affected by E2 treatment. In addition, we demonstrated that the E2 repression could be antagonized by phorbol 12-myristate 13-acetate, which stimulated c-Jun phosphorylation on serine 63, a process that is a prerequisite for recruitment of the transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP). Concomitantly, we found that overexpression of CBP could reverse the suppression in a dose-dependent manner. Taken together, our data indicate that E2-activated estrogen receptor-alpha represses human GnRHR gene transcription via an indirect mechanism involving CBP and possibly other transcriptional regulators.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada V6H 3V5
| | | | | |
Collapse
|
15
|
Moore JP, Wilson L, Dalkin AC, Winters SJ. Differential expression of the pituitary gonadotropin subunit genes during male rat sexual maturation: reciprocal relationship between hypothalamic pituitary adenylate cyclase-activating polypeptide and follicle-stimulating hormone beta expression. Biol Reprod 2003; 69:234-41. [PMID: 12646491 DOI: 10.1095/biolreprod.102.012757] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to differentially regulate the expression of the gonadotropin subunit genes in cultures of rat pituitary cells. PACAP is expressed within the hypothalamus, and concentrations of PACAP are 2- to 4-fold higher in the portal circulation than in the general circulation. Therefore, PACAP is a candidate regulator of pituitary function. In the present study, we examined the expression of PACAP mRNA within the paraventricular nucleus (PVN) during maturation (Days 20-60) in the male rat and compared this expression to the levels of the gonadotropin subunits, follistatin, and GnRH-receptor mRNAs within the anterior pituitary. Serum concentrations of FSH and LH confirm the established maturational pattern of divergent secretion of LH and FSH. Northern analysis of the gonadotropin subunit mRNAs revealed that FSHbeta expression parallels FSH secretion whereas LHbeta mRNA concentrations do not change during development. Expression of the GnRH receptor in the pituitary parallels that of FSHbeta. In situ hybridization revealed a developmental pattern of PACAP mRNA within the PVN that is reciprocal to that of FSHbeta. Competitive reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of total pituitary follistatin mRNA revealed no significant changes; however, semiquantitative RT-PCR analyses revealed the presence of two follistatin mRNA species, one of which, corresponding to follistatin-288, was developmentally regulated. These studies identified a reciprocal relationship between PVN PACAP and FSHbeta gene expression in maturing rats. We propose that PACAP contributes to the selective regulation of FSHbeta expression during maturation in the male rat, perhaps via regulation of follistatin.
Collapse
Affiliation(s)
- Joseph P Moore
- Division of Endocrinology & Metabolism, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
16
|
Sadie H, Styger G, Hapgood J. Expression of the mouse gonadotropin-releasing hormone receptor gene in alpha T3-1 gonadotrope cells is stimulated by cyclic 3',5'-adenosine monophosphate and protein kinase A, and is modulated by Steroidogenic factor-1 and Nur77. Endocrinology 2003; 144:1958-71. [PMID: 12697703 DOI: 10.1210/en.2002-220874] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulation of GnRH receptor (GnRHR) expression levels in the pituitary is a crucial control point in reproduction. The promoter of the mouse GnRHR gene contains nuclear receptor half-sites (NRS) at -244/-236 and -15/-7 relative to the translation start site. Although binding of steroidogenic factor-1 (SF-1) to the -244/-236NRS is implicated in mediating basal and gonadotrope-specific expression, no function or protein-DNA interactions have previously been described for the -15/-7NRS. We report that levels of the endogenous GnRHR mRNA in alpha T3-1 cells are stimulated by forskolin and 8-bromo-cAMP. We also show that the orphan nuclear receptor Nur77 is expressed in alpha T3-1 cells, and that both SF-1 and Nur77 bind to the -15/-7NRS and -244/-236NRS in vitro. We show that the activity of the proximal (-579/+1) mouse GnRHR promoter is up-regulated by protein kinase A, via a mechanism that is modulated by SF-1, both positively and negatively, through binding to the -244/-236NRS or the -15/-7NRS, respectively. Nur77 appears to be capable of acting as a negative regulator of this response, via the -15/-7NRS. Furthermore, we show that forskolin up-regulates SF-1 mRNA levels in alpha T3-1 cells, indicating that the levels of SF-1 play a role in modulating the protein kinase A response.
Collapse
Affiliation(s)
- Hanél Sadie
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | | | | |
Collapse
|