1
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Moriyama S, Oda M, Yamazaki T, Yamaguchi K, Amiya N, Takahashi A, Amano M, Goto T, Nozaki M, Meguro H, Kawauchi H. Gene structure and functional characterization of growth hormone in dogfish, Squalus acanthias. Zoolog Sci 2008; 25:604-13. [PMID: 18624571 DOI: 10.2108/zsj.25.604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
Dogfish (Squalus acanthias) growth hormone (GH) was identified by cDNA cloning and protein purification from the pituitary gland. Dogfish GH cDNA encoded a prehormone of 210 amino acids (aa). Sequence analysis of purified GH revealed that the prehormone is composed of a signal peptide of 27 aa and a mature protein of 183 aa. Dogfish GH showed 94% sequence identity with blue shark GH, and also showed 37-66%, 26%, and 48-67% sequence identity with GH from osteichtyes, an agnathan, and tetrapods. The site of production was identified through immunocytochemistry to be cells of the proximal pars distalis of the pituitary gland. Dogfish GH stimulates both insulin-like growth factor-I and II mRNA levels in dogfish liver in vitro. The dogfish GH gene consisted of five exons and four introns, the same as in lamprey, teleosts such as cypriniforms and siluriforms, and tetrapods. The 5'-flanking region within 1082 bp of the transcription start site contained consensus sequences for the TATA box, Pit-1/GHF-1, CRE, TRE, and ERE. These results show that the endocrine mechanism for growth stimulation by the GH-IGF axis was established at an early stage of vertebrate evolution, and that the 5-exon-type gene organization might reflect the structure of the ancestral gene for the GH gene family.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- School of Fisheries Sciences, Kitasato University, Sanriku, Iwate, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rajesh R, Majumdar KC. The growth hormone-encoding gene isolated and characterized from Labeo rohita Hamilton is expressed in CHO cells under the control of constitutive promoters in 'autotransgene' constructs. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:413-436. [PMID: 18958599 DOI: 10.1007/s10695-008-9201-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/04/2008] [Indexed: 05/27/2023]
Abstract
The growth hormone (GH) gene along with its regulatory sequences has been isolated from the blood and pituitary gland of Labeo rohita. This GH gene is approximately 2.8 kb long and consists of five exons and four introns of varying sizes with AG/TA in its exon-intron junctions. The promoter has a single cyclic AMP response unit (CRE) element, TATA, CAT and several Pit 1 binding sequences. The 1169-bp gene transcript starts 54 bp upstream of the ATG initiation codon and has two polyadenylation signals, ATTAAA, after the TAG stop codon. The mature mRNA has the poly (A) tail inserted 16 bp downstream of the second polyadenylation signal. Four chimeric 'autotransgenes' were constructed having either histone 3 or beta-actin promoter and cDNA or the total GH gene. The functionality of the individual components of the autotransgene was determined in the Chinese hamster ovary (CHO) cells by transfection experiments. Based on the results, the transcription of the GH gene is initiated at the transcription start signal of the respective promoters and terminates at the 3' regulatory sequence of the GH gene. Expression of GH in CHO cells shows that the fish promoters are active, the splicing signal is recognized, and the mRNA produced is stable and translated. The GH protein produced is effectively translocated and secreted into the medium. These results indicate the usefulness of CHO cells in determining the property of individual components of autotransgenes constructed from L. rohita and overall functional commonality between fish and mammal.
Collapse
Affiliation(s)
- R Rajesh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | |
Collapse
|
4
|
von Schalburg KR, Yazawa R, de Boer J, Lubieniecki KP, Goh B, Straub CA, Beetz-Sargent MR, Robb A, Davidson WS, Devlin RH, Koop BF. Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics 2008; 9:522. [PMID: 18980692 PMCID: PMC2584663 DOI: 10.1186/1471-2164-9-522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 11/03/2008] [Indexed: 12/04/2022] Open
Abstract
Background Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes in salmonids. The GH gene (gh) in salmonids is represented by duplicated, non-allelic isoforms designated as gh1 and gh2. We have isolated and characterized gh-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook salmon (Salmo salar and Oncorhynchus tshawytscha) in order to further elucidate our understanding of the conservation and regulation of these loci. Results BACs containing gh1 and gh2 from both Atlantic and Chinook salmon were assembled, annotated, and compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1, myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations relative to gh1 and gh2. Viability of each of these genes was examined by PCR. We show that transposon insertions have occurred differently in the promoters of gh, within and between each species. Other differences within the promoters and intronic and 3'-flanking regions of the four gh genes provide evidence that they have distinct regulatory modes and possibly act to function differently and/or during different times of salmonid development. Conclusion A core proximal promoter for transcription of both gh1 and gh2 is conserved between the two species of salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of gh1 and gh2. Additionally, organization of transposon families into the BACs containing gh1 and for the BACs containing gh2, are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the gh1- and gh2-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and other Oncorhynchus GH1s are strikingly different in comparison to the other GHs and this change is not apparent in the surrounding non-coding sequences.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Moriyama S, Oda M, Takahashi A, Sower SA, Kawauchi H. Genomic structure of the sea lamprey growth hormone-encoding gene. Gen Comp Endocrinol 2006; 148:33-40. [PMID: 16288756 DOI: 10.1016/j.ygcen.2005.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Accepted: 09/21/2005] [Indexed: 12/01/2022]
Abstract
Growth hormone (GH) belongs to a family of pituitary hormones together with prolactin and somatolactin. In our previous study, GH and its cDNA were identified in the pituitary gland of the sea lamprey, Petromyzon marinus, an extant representative of the most ancient class of vertebrates, and isolated GH stimulated expression of insulin-like growth factor in the liver. The evidence suggests that GH is the ancestral hormone in the molecular evolution of the GH/PRL/SL family and that the endocrine mechanism for growth stimulation was established at an early stage in the evolution of vertebrates. To further understand the molecular evolution of the GH/PRL/SL gene family, we report the genomic structure of sea lamprey GH including its 5'-flanking region, being cloned by PCR using specific primers prepared from its cDNA. The sea lamprey GH gene consists of 13,604 bp, making it the largest of all the GH genes. The 5'-flanking region within 697 bp contains consensus sequences for a TATA box, two Pit-1/GHF-1, three TRE, and a CRE. The sea lamprey GH gene consists of five exons and four introns, the same as in mammals, birds, and teleosts such as cypriniforms and siluriforms with the exception of some teleosts such as salmoniforms, percififorms, and tetradontiforms, in which there is an additional intron in the 5th exon. The 5-exon-type gene organization might reflect the structure of the ancestral gene for the GH/PRL/SL gene family.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- Laboratory of Molecular Endocrinology, School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | |
Collapse
|
7
|
Yada T, Muto K, Azuma T, Hyodo S, Schreck CB. Cortisol stimulates growth hormone gene expression in rainbow trout leucocytes in vitro. Gen Comp Endocrinol 2005; 142:248-55. [PMID: 15862570 DOI: 10.1016/j.ygcen.2005.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/11/2005] [Accepted: 01/13/2005] [Indexed: 11/27/2022]
Abstract
Extrapituitary expression of the growth hormone (GH) gene has been reported for the immune system of various vertebrates. In the rainbow trout (Oncorhynchus mykiss), GH mRNA could be detected in several lymphoid organs and leucocytes by reverse transcriptase-polymerase chain reaction (RT-PCR). To understand the control of GH expression in the fish immune system, mRNA levels for two distinct GH genes (GH1 and GH2) in trout leucocytes isolated from peripheral blood were quantified using a real-time PCR method. Both GH mRNAs could be detected in trout leucocytes, although their levels were extremely low compared to those in pituitary cells. The levels of GH2 mRNA in leucocytes were several times higher than those of GH1, while no difference was observed between GH1 and GH2 mRNA levels in the pituitary. Administration of dibutyryl cyclic AMP and cortisol produced a significant elevation of GH mRNA levels in trout leucocytes, although the levels were unchanged by T3. GH1 and GH2 mRNA levels showed similarities in responses to those factors. The effect of cortisol on GH mRNA appears biphasic; a dose-depending elevation of GH gene expression was observed in leucocytes treated with cortisol at below 200 nM, however, cortisol had no effect at 2000 nM. Cortisol-treated leucocytes showed no significant change in the mRNA level of beta-actin or proliferative activity during the experiments. Our results thus show that, at the low levels, GH gene expression in trout leucocytes is regulated by cortisol, which has been known as a regulatory factor of GH gene expression in pituitary cells, and suggest a physiological significance of paracrine GH produced in the fish immune system.
Collapse
Affiliation(s)
- Takashi Yada
- Freshwater Fisheries Research Division, National Research Institute of Fisheries Science, Nikko, Tochigi 321-1661, Japan.
| | | | | | | | | |
Collapse
|