1
|
Isobe Y, Kawaguchi T, Tauchi H. Thermoregulatory responses in rat pups during the nursing period: effects of separation from the dam on Per2, Bmal1, LDH and Arg-vasopressin mRNAs in the suprachiasmatic nucleus. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010500138662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Isobe Y, Tauchi H, Kawaguchi T. Development of Per2, Bmal1 and Arg-vasopressin mRNA circadian rhythms in the suprachiasmatic nucleus of rat pups under a light – dark cycle and constant dim light. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010500138720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Mueller NK, Di S, Paden CM, Herman JP. Activity-dependent modulation of neurotransmitter innervation to vasopressin neurons of the supraoptic nucleus. Endocrinology 2005; 146:348-54. [PMID: 15388644 DOI: 10.1210/en.2004-0539] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Confocal microscopy was used to assess activity-dependent neuroplasticity in neurotransmitter innervation of vasopressin immunoreactive magnocellular neurons in the supraoptic nucleus (SON). Vesicular glutamate transporter 2, glutamic acid decarboxylase, and dopamine beta-hydroxylase (DBH) synaptic boutons were visualized in apposition to vasopressin neurons in the SON. A decrease in DBH synaptic boutons per cell was seen upon salt loading, indicating diminished noradrenergic/adrenergic innervation. Loss of DBH appositions to vasopressin neurons was associated with a general loss of DBH immunoreactivity in the SON. In contrast, the number of vesicular glutamate transporter 2 synaptic boutons per neuron increased with salt loading, consistent with increased glutamatergic drive of magnocellular SON neurons. Salt loading also caused an increase in the total number of glutamic acid decarboxylase synaptic boutons on vasopressinergic neurons, suggesting enhanced inhibitory innervation as well. These studies indicate that synaptic plasticity compensates for increased secretory demand and may indeed underlie increased secretion, perhaps via neurotransmitter-specific, activity-related changes in synaptic contacts on vasopressinergic magnocellular neurons in the SON.
Collapse
Affiliation(s)
- Nancy K Mueller
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45237-0506, USA
| | | | | | | |
Collapse
|
4
|
Isobe Y, Torii T, Kawaguchi T, Nishino H. Dexamethasone induces different wheel running activity than corticosterone through vasopressin release from the suprachiasmatic nucleus. Brain Res 2004; 1028:219-24. [PMID: 15527747 DOI: 10.1016/j.brainres.2004.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2004] [Indexed: 11/21/2022]
Abstract
During the analysis of wheel running activity, we found that corticosterone (1 mg/100 g BW) injection decreased wheel activity, while dexamethasone (0.1 mg/100 g) increased the activity. To clarify the functional differences between corticosterone and dexamethasone, we measured Arg-vasopressin (AVP) release from the suprachiasmatic nucleus (SCN) slice culture in vitro and AVP coding mRNA in the SCN in vivo. The corticosterone (0.2 and 2 microg/ml, final concentration in medium) decreased the AVP release, while it increased by dexamethasone (0.2 and 2 microg/ml). An AVP mRNA in the SCN was decreased by both corticosterone (1 mg/100 g) and dexamethasone (0.1 mg/100 g). The differences in wheel activity by corticosterone and dexamethasone are discussed from the changes of AVP in the SCN.
Collapse
Affiliation(s)
- Yoshiaki Isobe
- Department of Neuro-physiology and Brain Sciences, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | |
Collapse
|
5
|
Isobe Y, Nishino H. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods. Brain Res 2004; 1013:204-11. [PMID: 15193530 DOI: 10.1016/j.brainres.2004.04.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2004] [Indexed: 11/16/2022]
Abstract
Arg-vasopressin (AVP) containing neurons are one of the output paths from the suprachiasmatic nucleus (SCN), the center of the biological clock. AVP mRNA transcription is controlled by a negative feedback loop of clock genes. Circadian rhythm of melatonin release from the pineal gland is regulated by the SCN via the paraventricular nucleus (PVN). To clarify the transduction system of circadian signals from the SCN to the pineal gland, we determined the effects of melatonin injection (1 mg/kg, i.p.) during light and dark periods on Per2 and AVP mRNAs in the SCN and PVN, in addition to arylalkylamine N-acetyltransferase (AA-NAT) and inducible cAMP early repressor (ICER) mRNAs in the pineal gland of rats using RT-PCR. AVP peptide contents were also measured in the SCN and PVN. AVP content in the SCN decreased during the light period, while no changes were observed in the PVN. In the SCN, Per2 mRNA increased during both light and dark periods. In the PVN, Per2 decreased during the light period and increased during the dark period at 180 min after melatonin injection. In the pineal gland, Per2 mRNA increased between 60 and 180 min after the melatonin injection during the light period, while it did not significantly change during the dark period. The AA-NAT mRNA varied similar to the Per2 mRNA changes. These results might suggest that the different responses to melatonin in the pineal gland during the light and dark periods was originated in the changes of Per2 in the PVN via SCN.
Collapse
Affiliation(s)
- Yoshiaki Isobe
- Department of Neuro-physiology and Brain Sciences, Nagoya City University, Graduate School of Medical Sciences, Mizuho, Nagoya 467-8601, Japan.
| | | |
Collapse
|
6
|
Foley CM, Stanton JJ, Price EM, Cunningham JT, Hasser EM, Heesch CM. GABA(A) alpha1 and alpha2 receptor subunit expression in rostral ventrolateral medulla in nonpregnant and pregnant rats. Brain Res 2003; 975:196-206. [PMID: 12763608 DOI: 10.1016/s0006-8993(03)02635-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pregnancy results in attenuated baroreflex mediated sympathoexcitatory responses which may be due to potentiation of gamma-aminobutyric acid (GABA) inhibition in the rostral ventrolateral medulla (RVLM). The major metabolite of progesterone, 3alpha-hydroxy-dihydroprogesterone (3alpha-OH-DHP), which is elevated in pregnancy, is a potent neurosteroid positive modulator of GABA(A) receptors, and sensitivity of GABA(A) receptors to 3alpha-OH-DHP is dependent on the receptor subunit composition. The purpose of this study was to evaluate the GABA(A) alpha(1) and alpha(2) receptor subunit mRNA and protein expression in the RVLM of nonpregnant and late term pregnant rats. Micropunches of RVLM were collected from nonpregnant and late term pregnant rats and the expression levels of GABA(A) alpha(1) and alpha(2) receptor subunits were analyzed using quantitative competitive reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblot techniques. The competitive RT-PCR analysis allows comparison of expression levels between different mRNA, and the mRNA expression level of GABA(A) alpha(1) was several hundred fold greater than GABA(A) alpha(2) in both groups. However, this relative distribution of GABA(A) alpha(1) and alpha(2) receptor subunits protein or mRNA expression was not altered in late term pregnant compared to nonpregnant rats. These data demonstrate, that within the RVLM of both nonpregnant and late term pregnant rats, the relative expression levels of GABA(A) alpha(1,2) receptor subunits favor GABA(A) receptors susceptible to positive modulation by progesterone metabolites.
Collapse
Affiliation(s)
- C Michael Foley
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, 134 Research Park Drive, University of Missouri-Columbia, Columbia, MO 65211-3300, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Nikodemova M, Kasckow J, Liu H, Manganiello V, Aguilera G. Cyclic adenosine 3',5'-monophosphate regulation of corticotropin-releasing hormone promoter activity in AtT-20 cells and in a transformed hypothalamic cell line. Endocrinology 2003; 144:1292-300. [PMID: 12639912 DOI: 10.1210/en.2002-220990] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The regulation of CRH promoter activity by cAMP was studied in two cell lines, the pituitary corticotroph cell line AtT-20 and the immortalized hypothalamic cell line 4B, which expresses CRH and vasopressin. In 4B cells transfected with a CRH promoter-luciferase construct, the adenylyl cyclase stimulator, forskolin, increased luciferase activity in parallel with increases in intracellular cAMP. In 4B cells, however, the phosphodiesterase inhibitor, isobutylmethylxanthine, potentiated forskolin-stimulated cAMP without affecting further increases in luciferase activity. In AtT-20 cells, forskolin plus isobutylmethylxanthine elevated cAMP only slightly, but increased luciferase activity to levels similar to those observed in 4B cells. AtT-20 cells were also unresponsive to 8-bromo-cAMP, due in part to higher phosphodiesterase (PDE) activities. Although both cells contained PDE1, -3, and -4, inhibition of either PDE4 or PDE1 potentiated luciferase activity stimulated by submaximal forskolin concentrations in 4B cells, while only simultaneous inhibition of PDE3 and PDE4 was effective in AtT-20 cells. The data show that minor elevations in intracellular cAMP are sufficient for full stimulation of CRH promoter activity regardless of the cell line. Furthermore, poor CRH promoter activation in AtT-20 cells appears to result from deficient cAMP production and rapid cAMP degradation by PDE.
Collapse
Affiliation(s)
- Maria Nikodemova
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
8
|
Hurbin A, Orcel H, Alonso G, Moos F, Rabié A. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology 2002; 143:456-66. [PMID: 11796498 DOI: 10.1210/endo.143.2.8643] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activity of the magnocellular neurons that synthesize vasopressin in the supraoptic and paraventricular nuclei of the hypothalamus is modulated by local release of the neuropeptide within the nuclei. V(1a) and V(1b) vasopressin receptor genes are expressed in these cells. The present study reports the localization of V(1a) and V(1b) receptors using multiple labeling immunocytochemistry. Both receptors are mainly located in vasopressinergic magnocellular neurons and colocalized with vasopressin in cytoplasmic vesicles dispersed throughout the cell. Possible functional modifications of the mRNA and protein levels of the V(1a) receptor, the major isoform, were also investigated by semiquantitative in situ hybridization and immunocytochemistry in rats submitted to reduced or increased water intake. V(1a) mRNA and receptor levels varied with water balance. V(1a) mRNA level dropped in rats submitted to high water intake. Conversely, dehydration up-regulated the V(1a) receptor content. These observations suggest that the pathways that regulate the expression of the genes encoding vasopressin and the V(1a) receptor are linked, which fits the present findings that the two partners are colocalized in cytoplasmic vesicles. Colocalization might explain how V(1) autoreceptors are controlled by cell activity and/or local concentration of vasopressin (released locally by the neurons themselves), allowing fine adjustment of magnocellular neuron activity.
Collapse
Affiliation(s)
- Amandine Hurbin
- Centre National de la Recherche Scientifique-Unité Mixte de Recherche 5101, Biologie des Neurones Endocrines, Centre de Pharmacologie-Endocrinologie, Montpellier F-34094, France
| | | | | | | | | |
Collapse
|
9
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Heesch CM, Foley CM. CNS effects of ovarian hormones and metabolites on neural control of circulation. Ann N Y Acad Sci 2001; 940:348-60. [PMID: 11458692 DOI: 10.1111/j.1749-6632.2001.tb03690.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pregnant women often experience orthostatic hypotension, and pregnancy is associated with increased susceptibility to hemorrhagic hypotension. Experiments evaluating arterial baroreflex control of efferent sympathetic nerve activity in virgin and term-pregnant rats revealed that arterial baroreflex sympathoexcitation is attenuated, while sympathoinhibitory responses are well-maintained or potentiated. Following a hypotensive challenge, pregnant animals exhibit attenuated Fos expression in the rostral ventrolateral medulla (RVLM), suggesting that unloading of arterial baroreceptors results in less excitation of presympathetic neurons in the brain stem. Other experiments, in which afferent baroreceptor discharge was recorded, suggest that this was not due to differences in afferent baoreceptor function. GABAergic mechanisms are responsible for tonic inhibition of sympathoexcitatory neurons in the RVLM and the major metabolite of progesterone, 3 alpha-OH-dihydro-progesterone (3 alpha-OH-DHP), which is elevated in pregnancy, is the most potent endogenous positive modulator of CNS GABAA receptor function. Additional experiments revealed that acutely administered 3 alpha-OH-DHP, either intravenously or directly into the RVLM, mimicked the effects of pregnancy on baroreflex control of efferent sympathetic nerve activity and potentiated pressure sensitivity of spinally projecting RVLM neurons. Preliminary experiments using semiquantitative RT-PCR, evaluated the relative expression of three subunits (alpha 1-3) of the GABAA receptor, and suggest that chronic exposure to elevated levels of ovarian hormones can result to changes in GABAA receptor subunit composition. It is likely that changes in control of sympathetic outflow in pregnancy are related to complex interactions between genomic and nongenomic actions of ovarian hormones and metabolites.
Collapse
Affiliation(s)
- C M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Research Park, Columbia, MO 65211-3300, USA.
| | | |
Collapse
|
11
|
Xi D, Kusano K, Gainer H. Quantitative analysis of oxytocin and vasopressin messenger ribonucleic acids in single magnocellular neurons isolated from supraoptic nucleus of rat hypothalamus. Endocrinology 1999; 140:4677-82. [PMID: 10499525 DOI: 10.1210/endo.140.10.7054] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are peptide hormones that are derived from genes predominantly expressed in distinct magnocellular neurons in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Recent evidence suggests that some magnocellular neurons coexpress both peptides. Our qualitative RT-PCR experiments on single cells show that the majority of magnocellular neurons coexpress both peptide messenger RNAs (mRNAs) in varying amounts. Using a competitive RT-PCR method combined with a standard calibration curve, we quantitatively determined OT and VP mRNA in single magnocellular neurons from the normal female rat SON, with a detection sensitivity of less than 30 mRNA molecules/cell. We defined the phenotypes of the single magnocellular neurons according to their ratios of these two peptide mRNAs. Using this approach, we identified three major phenotypes: oxytocin neurons, where the average OT to VP mRNA ratio is about 256; vasopressin neurons, where the average VP to OT mRNA ratio is about 182; and one oxytocin/vasopressin coexisting neuron, where the OT/VP mRNA ratio is 2. Thus, there is some OT and VP mRNA coexpression in virtually all of the magnocellular neurons in supraoptic nuclei of hypothalamus. However, clear phenotypes are identifiable by considering quantitative as opposed to qualitative differences.
Collapse
Affiliation(s)
- D Xi
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|