1
|
Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol Immunother 2016; 65:1189-99. [PMID: 27522581 DOI: 10.1007/s00262-016-1881-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Optimal approaches to induce T cell infiltration of tumors are not known. Chemokines CXCL9, CXCL10, and CXCL11 support effector T cell recruitment and may be induced by IFN. This study tests the hypothesis that intratumoral administration of IFNγ will induce CXCL9-11 and will induce T cell recruitment and anti-tumor immune signatures in melanoma metastases. PATIENTS AND METHODS Nine eligible patients were immunized with a vaccine comprised of 12 class I MHC-restricted melanoma peptides and received IFNγ intratumorally. Effects on the tumor microenvironment were evaluated in sequential tumor biopsies. Adverse events (AEs) were recorded. T cell responses to vaccination were assessed in PBMC by IFNγ ELISPOT assay. Tumor biopsies were evaluated for immune cell infiltration, chemokine protein expression, and gene expression. RESULTS Vaccination and intratumoral administration of IFNγ were well tolerated. Circulating T cell responses to vaccine were detected in six of nine patients. IFNγ increased production of chemokines CXCL10, CXCL11, and CCL5 in patient tumors. Neither vaccination alone, nor the addition of IFNγ promoted immune cell infiltration or induced anti-tumor immune gene signatures. CONCLUSION The melanoma vaccine induced circulating T cell responses, but it failed to infiltrate metastases, thus highlighting the need for combination strategies to support T cell infiltration. A single intratumoral injection of IFNγ induced T cell-attracting chemokines; however, it also induced secondary immune regulation that may paradoxically limit immune infiltration and effector functions. Alternate dosing strategies or additional combinatorial treatments may be needed to promote trafficking and retention of tumor-reactive T cells in melanoma metastases.
Collapse
|
3
|
Lacreusette A, Lartigue A, Nguyen J, Barbieux I, Pandolfino M, Paris F, Khammari A, Dréno B, Jacques Y, Blanchard F, Godard A. Relationship between responsiveness of cancer cells to Oncostatin M and/or IL‐6 and survival of stage III melanoma patients treated with tumour‐infiltrating lymphocytes. J Pathol 2008; 216:451-9. [DOI: 10.1002/path.2416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A Lacreusette
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Lartigue
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | | | - I Barbieux
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - M‐C Pandolfino
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
| | - F Paris
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Khammari
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - B Dréno
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - Y Jacques
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - F Blanchard
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- INSERM ERI7, Nantes F‐44035, France
| | - A Godard
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Laboratoire de Biochimie, CHU de Nantes, Nantes F‐44093, France
| |
Collapse
|
4
|
Kortylewski M, Komyod W, Kauffmann ME, Bosserhoff A, Heinrich PC, Behrmann I. Interferon-γ-Mediated Growth Regulation of Melanoma Cells: Involvement of STAT1-Dependent and STAT1-Independent Signals. J Invest Dermatol 2004; 122:414-22. [PMID: 15009724 DOI: 10.1046/j.0022-202x.2004.22237.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon-gamma, a known inhibitor of tumor cell growth, has been used in several protocols for the treatment of melanoma. We have studied the molecular events underlying interferon-gamma-induced G0/G1 arrest in four metastatic melanoma cell lines with different responsiveness to interferon-gamma. The growth arrest did not result from enhanced expression of cyclin-dependent kinase inhibitors p21 and p27. Instead, it correlated with downregulation of cyclin E and cyclin A and inhibition of their associated kinase activities. We show that interferon-gamma-induced growth inhibition could be abrogated by overexpression of dominant negative STAT1 (signal transducer and activator of transcription 1) in the melanoma cell line A375, suggesting that STAT1 plays a crucial part for the anti-proliferative effect. Erythropoietin stimulation of a chimeric receptor led to a concentration-dependent STAT1 activation and concomitant growth arrest when it contained the STAT recruitment motif Y440 of the interferon-gamma receptor 1. In contrast, dose-response studies for interferon-gamma revealed a discrepancy between levels of STAT1 activation and the extent of growth inhibition; whereas STAT1 was activated by low doses of interferon-gamma (10 U per mL), growth inhibitory effects were only visible with 100-fold higher concentrations. Our results suggest the presence of additional signals emanating from the interferon-gamma receptor, which may counteract the anti-proliferative function of STAT1.
Collapse
|
5
|
Yu D, Thomas-Tikhonenko A. A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene 2002; 21:1922-7. [PMID: 11896625 DOI: 10.1038/sj.onc.1205244] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Revised: 12/04/2001] [Accepted: 12/11/2001] [Indexed: 11/09/2022]
Abstract
The c-Myc oncoprotein is strongly implicated in B-cell neoplasms such as human Burkitt lymphomas and mouse plasmocytomas. Transgenic mice in which the myc gene is juxtaposed to an immunoglobulin enhancer (E(mu)-myc) also develop B-cell lymphomas, but relatively late in life. In addition, these neoplasms are invariably clonal, suggesting the involvement of additional mutations. Such mutations frequently affect the p53 tumour suppressor gene or its positive regulator Arf, hinting that inactivation of the p53 pathway might be the second hit required for the progression towards malignancy. However, even tumours arising in E(mu)-myc/Arf-null animals are thought to be clonal. This observation raised doubts whether overexpression of Myc in p53-null B-cell precursors is sufficient for tumorigenesis. To address this question, we have established a new, non-transgenic mouse model of B-lymphoma. This model is based on isolation of primary bone marrow (BM) cells, admixing them with packaging cells producing a Myc-encoding retrovirus (LMycSN), and subcutaneous injection into a host with which BM cells are syngeneic. Predictably, wild type BM cells infected in vivo by LMycSN were not tumorigenic. However, LMycSN-infected p53-null BM cells readily gave rise to B-cell lymphomas composed predominantly of late pro-B/small pre-B-cells. In these tumours, heavy chain gene rearrangements were analysed using two independent PCR-based assays. All neoplasms with DJ-rearrangements were found to be polyclonal. This result suggests that inactivation of p53 and overexpression of Myc is all that is necessary for the development of full-fledged B-lymphomas. Our model would also be instrumental in assessing the transforming potential of Myc mutants and in studying cooperation between Myc and other oncogenes.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- B-Lymphocytes/metabolism
- Bone Marrow/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA Primers/chemistry
- Disease Models, Animal
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/virology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Recombination, Genetic/genetics
- Retroviridae/genetics
- Retroviridae/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Duonan Yu
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104-6051, USA
| | | |
Collapse
|